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Abstract. Let A be an irrational rotation algebra. In the present paper we will show
that automorphisms of As with some properties can be extended to inner automorphisms of
an AF-algebra. In other words, there are a monomorphism p of As into an AF-algebra B
and a unitary element w€ B such that p(a(z))=we(x)w* for any x € As.

§1. Introduction.

Let 6 be an irrational number in [0, 1] and let ¢ be the rotation by
the angle 276 on the circle T=R/Z. Let C(T) be the abelian C*-algebra
of all complex valued continuous functions on 7. Then we can regard ¢
as an automorphism of C(T'). Hence we can consider the crossed product
C(T)Yx,Z of C(T) by ¢ and we donote it by A,, which is called the
trrational rotation algebra by 6. It is well known that A4, has two
generators w and v with vu=e*%uv. Let Aut(4,) be the group of all
automorphisms of A4, and C*(v) be the abelian C*-subalgebra of A, gen-
erated by v. Furthermore throughout this paper we mean a unital *-
monomorphism by a monomorphism.

DEFINITION. Let o€ Aut(4,). We say that a can be extended to an
inner automorphism of an AF-algebra if there are a monomorphism o
of A, into an AF-algebra B and a unitary element we B such that
ola(x))=we(x)w* for any x <€ A,.

Now generally let A be a unital C*-algebra and for each ne N let
M, be the nXxXn matrix algebra. We identify AQRM, with the nxn
matrix algebra M,(A) over A. Let a be an automorphism of A. For
1=0, 1 we denote the K,-group of A by K,(A) and for any projection
pe ARM, (resp. any unitary element xr € AQM,) [p] (resp. [x]) denote the
corresponding class in K,(A4) (resp. K,(4)). Let o be the connecting map
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of K,(AX.Z) into K (A).

LEMMA 1. With the above motations if p € AQM, satisfies a(p)=xpx*
for some wunitary element x € AQM,, then an element w=(1—p)+px*yp
€c(AX, Z)RXM, is a unitary element with o(lw])=[p] where y is a
unitary element in A X, Z satisfying that a=Ad(y) and A and y generate
AX.Z.

PROOF. We will use the notations in Pimsner and Voiculescu [6].
Let K be the C*-algebra of all compact operators on a countably infinite
dimensional Hilbert space and T be the Toeplitz algebra for (4, a). Let
J be a closed two sided ideal generated by a projection Q=1XI—
(YRXRS)(WRS)*=1QP. Then we obtain the connecting map d of K,(T/J)
into K,(J). By Pimsner and Voiculescu [6], J is isomorphic to AQK and
T/J is isomorphic to Ax,Z. We denote the isomorphism of AQK onto
J by «r and the isomorphism of A X, Z onto T/J by ¢. Then it is sufficient
to show that d([¢(w)])=[v(p)]. By the definitions of ¢ and 4, we have

p(w)=1—p)RQI+px*ypRQS*

and
¥(p)=pQP .
_[A—p)RI+px*ypRS* 0 .
Let z——I: PP (1—p)RI+py*ep®S in TQ®M,,. Then

7(2)=¢(w)Pp(w)* where 7 is the quotient map of T onto T/J. Hence

[ 07,7 [[1®I 0
aasoon=|='g" o |-||'0" o]
Since 2 1T Jl» [T 0] we obtain that d((s(w))=[p@P). Q.E.D.

§2. The case of a(u)=fu and a(v)=7.

In this section we will show that if « <€ Aut(4,) with a(u)=su and
a(v)=v where f is a unitary element in C*(v), there are an AF-algebra
B, a monomorphism o and a unitary element we B such that po(a(x))=
wp(x)w* for any x € A,. Now we consider the crossed product A4,x,Z of
A, by a. Then there is a unitary element z € 4, %, Z such that a(x)=zx2*
for any x € A, and A4, and z generate A4,%x,Z. Hence we have the follow-
ing relations;

2uz*=fu ,
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o=,
vu=e*yv .

Let C*(v, z) be the C*-subalgebra of A,X,Z generated by » and z and
let B be the automorphlsm of C*(v, 2) defined by g(v)=wuvu*=e¢** and

B(R)=uzu*=f*z
LEMMA 2. With the above assumptions Sp(z)=T

ProOOF. Suppose that Sp(2)&7. Then we can find a selfadjoint ele-
ment a € A,%, Z such that z=e*. Hence [2]=0 in K,(4,%X,Z). On the
other hand by the Pimsner-Voiculescu six terms exact sequence we have
the following sequence:

0 —— Im@id—a,) — K,(Ay Xo) Z —— K,(A) — 0 .

Then by Lemma 1, 6([z])=[1]. Thus [2]#0 in K ,(4,%X,Z). This is a con-
tradietion. Q.E.D.

By Lemma 2, C*(v, z) is isomorphic to C(T*) and we identify C*(v, 2)
with C(T? and regard B as a homeomorphism of 7°. Then clearly
Ay X, Z is isomorphic to C(T?) x;Z. Let r be the unique faithful tracial
state of A4, and ¥ be a faithful tracial state of A4,x,Z defined by 7(g)=
7(g(0)) for each g el*(Z, A4,). Thus C(T?) x;Z has a faithful tracial state.
Recall that a separable unital C*-algebra A is quasidiagonal if there
is a monomorphism 7 of A into B(H) such that n(A)N K(H)=0 where
K(H) denotes the C*-algebra of all compact operators on a Hilbert space
H and a sequence {p,}..y of finite dimensional orthogonal projections in

B(H) such that
"épnépn-i—lé"' ’ (nglpn(H))_:

and for every ac A
|p,7(a) —7(a)p.]| —0 .

Moreover A is finite if no proper projection is algebraically equivalent to
1 and A is stably finite if M, (A) is finite for any n€ N. By the above
definition we can easily see that C(T?) x,;Z is finite since it has a faithful

tracial state.

LEMMA 3. Let T be a homeomQ'r'phism‘ of a compact metrizable space
X and ay be an automorphism of C(X) induced by T. Then the following
conditions for C(X)X,,Z are equivalent;
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(1) quasidiagonal,
(2) finite,
(3) stably finite.

PrOOF. (1) implies (3); By Pimsner [5, Theorem 9] there exists an
embedding of C(X)X,,Z into an AF-algebra. Hence C(X) Xap Z is stably
finite since we can regard it as a C*-subalgebra of the AF-algebra.

(3) implies (2); This is trivial.

(2) implies (1); Suppose that C(X)X.,Z is not quasidiagonal. Then
it follows from Pimsner [5, Proposition 8 and Theorem 9] that we can find
a non unitary isometry in C(X)., Z. However this contradicts (2). Q.E.D.

PROPOSITION 4. If acAut(4,) with alu)=fu and a(v)=v where f
is a unitary element in C*(v), there are an AF-algebra B(a), and a
monomorphism P, of AyX.Z into B(a).

Proor. By Lemma 8, C(T?) X, Z is quasidiagonal and A,%x,Z is iso-
morphic to C(T?) %, Z. Hence by Pimsner [5, Theorem 9] we can find an
AF-algebra B(a) and a monomorphism p, of A,%,Z into B(a). Q.E.D.

§3. The case of a(u)=sfu and a(v)=e"*v.

For each teR let B{" e Aut(4,) be defined by pBi"(u)=e""u and
B(v)=v and let B € Aut(4,) be defined by B (u)=u and B (v)=e""v.
And we define gB,,=R8"-B*. Let SL(2, Z) be the group of all 2x2
matrices over Z with determinant 1 and let G= {g e SL(2, Z); g=Db (1) }

For each g € SL(2, Z) let 8, € Aut(4,) be defined by B,(w)=u*v’ and B,(v)=

u*v* where g= g‘ 3] and a, b, ¢c,deZ.

In this section we will show that if a=p3,°8,,, withge G and s, te R,
there are an AF-algebra B, a monomorphism p of A, into B and a unitary

element w € B such that p(a(x))=wo(x)w* for any x€ A4,. ForeachneN
let U, e M, be defined by

0 0 --- 0 (—1)*
10.--0 0
0 1---0

U=|+ =« «+ov -
e e ees 0 0
0 0---1 0 |

and let I, be the unit element of M,.
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LEMMA 5. Let a€ Aut(4,). If there exist an n € N, a monomorphism
Pan Of Aginto an AF-algebra B(a"™) and a unitary element w.. such that
O™ (1)) = WnPan(X)WE fOr any x € Ay, there are a monomorphism P, of A,
into an AF-algebra B(a) and a unitary element w, such that p.la(x))=
W 0L()Ww) for any x € A,.

PROOF. Let B(a)=B(a")®M, and p, be a monomorphism of A, into
B(a) defined by p,(x) =D 0.(a’(x)) for each x € A,. Then for any xz € A,

Pula@) =8 pur(ai (@)

Oula®@) 0 e 0 0 -
0 Pul@@) -+
=, @wa)| oo T @wa)*
: cor Pula@) O
.0 0 0 0an()_

= Ad(T, @0 U (B purla(@))

since O, (a™(%)) = Weun0un(X)W . Q.E.D.

COROLLARY 6. Let o€ Aut(4,) with a(w)=fu and a(v)=e"*v where
S is a unitary element in C*(v) and te R. If t€Q, there are an AF-
algebra B(a), a monomorphism o, of A, into B(a) and a unitary element
w, € Bla) such that 0. (ca(x))=w.0.(x)w} for any € A,.

PROOF. Since t €@, there is an n € N such that a"(u)=gu and a™(v)=7v
where g is a unitary element in C*(v). By Proposition 4, « satisfies the
assumptions of Lemma 5. Therefore we obtain the conclusion. Q.E.D.

For any automorphism « of a C*-algebra we denote the Connes
spectrum by I'(a).

COROLLARY 7. Let aecAut(4,) with I'(a)&T. Then there are an
AF-glgebra B(a), a monomorphism p, of A, into B(a) and a unitary
element w, € B(a) such that o, (a(x))=w.0.(x)w} for any x € A,.

PrRoOF. By Pimsner and Voiculescu [7] we have a monomorphism p
of A, into an AF-algebra B,. And since I'(a)& 7T, there are an ne N
and a unitary element zc A, such that a"=Ad(z) and a(z)=2. Hence
pola™(x))=p(z)px)p(2)* for any xe A,. Thus a satisfies the assumptions
of Lemma 5. Therefore we obtain the conclusion. Q.E.D.
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Let % and ¥ € C(T?) be defined by #(g, {)=¢ and #(g, {)={ for any ¢,
eT. Then # and ¥ are generators of C(T?). For any geSL(2, Z) let

B, € Aut(C(T?) be defined by B,(#)=4%*%° and B,(?)=%"9* where g= g’g
and a, b, c,deZ. We note that 5, is induced by a toral automorphism of
T*. Forany s, teR let 3,,,, € Aut(C(T?) be defined by B, ,(#)=e>*# and

Bu.on(@)=e*"%5. Then we have the following lemma;

LEMMA 8. With the above motations the crossed product C(T?) X3 Z 18
quasidiagonal where &=F,°8,.1-

PROOF. Let ¢ be the Haar measure of T® with u(7?) =1 and let tr
be a faithful finite trace of C(7T?) defined by tr(x)=§ x dy for any x € C(T?).
T

Since g is two sided invariant and 8, is induced by a toral automorphism
of T? leaving g fixed, tr(@(z))=tr(z) for any zeC(T?). Hence if tr is
defined by tr(y)=tr(y(0)) for y €X(Z, C(T?), tr is a faithful finite trace
of C(T?*)x3Z. Thus C(T? x3z Z is quasidiagonal by Lemma 3. Q.E.D.

PROPOSITION 9. With the above motations let a= B,° B, € Aut(Ay)
where s, te R and g€ G. Then there are an AF-algebra B(a), a mono-
morphism p, of Ay into B(a) and a unitary element w,<c Bla) such that
0.a(x)) =w.0.(x)ws for any x € A,.

ProoF. By Corollaries 6 and 7 we can assume that t¢Q and I'(a)=
T. Since ge€(@G, there is an ne€Z such that g=|}’ (1)] Let v e Aut(4))

be defined by v(u)=e*"uv*=e****"""y*y and v(v)=wv. Then there are an
AF-algebra B(Y) and a monomorphism o, of A,%X;Z into B(Y) by Proposi-
tion 4. Let u, v and w be generators of A,%,Z with vu=e*%uv and
Y=Ad(w). Let %€ Aut(C(T?)) be defined by ¥=35,°8.4, i.€., (&) =4 and
¥@)=e""*9. Then by Lemma 8 and Pimsner [5, Theorem 9] there are
an AF-algebra B(¥) and a monomorphism p3 of C(T?) x;Z into B(¥). Let
%, ¥ and @ be generators of C(T*) x;Z with # v =% and ¥=Ad(%), and
let w,, v, and w, be generators of A,%,Z with v,u,=e**u,v, and a=
Ad(w,). We define a homomorphism p, of A,%x,Z into B(")QB(¥) as
follows;

Outha) = 0r(w) O3 (%) ,
loa('va) = pr(”)®p?(v~) ’
Po(Wa) = Or(W)QP7F(D)

Then we can easily see that
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0u(V) P o) = € 00 (Ua) 0e(Ver)
O Wa)0a(Ue) 0o W) * = € *00(U)00(Ve)"

and

pa(wa)loa(va)pa(wa)*=82Mtl0a(va) .

Hence the above definition of p, is well defined. Since I'(a)=T and A4,
is simple, A;X%X,Z is simple. Thus p, is injective. Q.E.D.

§4. The main theorem.

PROPOSITION 10. Let «cAut(4,) with a@)=fu* and a(v)=e"*v*
where f is a unitary element in C*(v) and t€ R. Then there are an
AF-algebra B(a), a monomorphism p, and a wunitary element w,€ B(a)
such that p.(a(x))=w.0.(x)wk for any x € A,.

PrOOF. We have that a*(u) € C*(v)u and a*(v)=v. Hence by Propo-
sition 4 and Lemma 5 we obtain the conclusion. Q.E.D.

THEOREM 11. Let a <€ Aut(4,) be defined by a(u)=e**uv* and a(v)=
ey, or a(w)=e*u*v" and a()=e""*v*, where s, tc R and ne€Z. Then
for any unitary element z in A, Ad()ca can be extended to an nner
automorphism of an AF-algebra.

Proor. By Propositions 9 and 10 this is clear. ‘- Q.E.D.

Before we state a corollary, we need some notations. Let A, be
the dense *-subalgebra of all smooth elements of A, with respect to the
canonical action of T? and let A,” be the x-subalgebra of finite linear
combinations of monomials in % and v.

COROLLARY 12. Let acAut(4,) be leaving imvariant a canonical
subalgebra isomorphic to C(T). If @ has the generic Diophantine property
and a(A,)=A,> or if a(AS)=A,", a can be extended to an imner auto-
morphism of an AF-algebra.

PROOF. By Elliott [3] and Brenken [1] « satisfies the assumptions of
Theorem 11. Hence we obtain the conclusion. : Q.E.D.
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