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§1. Introduction.

Let G be a compact abelian group and G~ the dual of the group G.
For f in LYG), f~ denotes the Fourier transform of f. Then it is well
known that functions in L*G) with positive Fourier coefficients that are
pth (1<p=<2) power integrable near the identity in G have Fourier
coefficients in [% where ¢q=p/(p—1). When p=2, this result was proved
by N. Wiener for G=T, the circle group, (cf. [B]) and by M. Rains for
compact abelian groups (see [R]). For 1<p<2 it was shown by J. M.
Ash, M. Rains and S. Vagi (see [ARV]). Recently, H. Miyazaki proved
that the same result also holds for central functions on SU(2) (see [M]).
In this paper, applying the technique used in [ARV], we shall prove
that the similar result holds for central and zonal functions on compact
semisimple Lie groups. :

When G is a compact abelian group, the characters X, (« € G") satisfy
XXs=%s (@, B€G™), and thus, (fg) =fF"*g~; this property plays an
impertant role in the proof of [ARV]. However, when G is an arbitrary
compact group, the charaeters and the spherical functions on G don’t
satisfy such a simple formula; actually, the Clebsch-Gordan formula for
characters and the addition formula for spherical functions offer the
replacement. Then applying the same argument in [ARV], we can obtain
an analogy on compact non abelian groups.

§2. Notation.

Let U be a compact semisimple Lie group and 7 U a maximal torus
of U. Let u and t denote the Lie algebras of U and T respectively, g,
and t, the complexifications. The Haar measures du and dt are normalized

by S dqu dt=1. Let U"~ denote the set of all equivalence classes of
U T
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irreducible (finite dimensional) unitary representations of U: they are
parametrized by the dominant integral forms x\ on t,. If A€ U", let =,
denote a member of the class )\ acting on the d,-dimensional Hilbert
space V; and X, the character of n,. Then the Fourier series of fe L'(U)
is given by (cf. [H], p. 507 and [W], p. 205)

(2.1) Fa~ 3, di Tr(Aum(w)
where A, is the Fourier coefficient of f defined by
2.2) A= Svf(u)m(u‘*)du .

If f is a central function, that is, f(vuv™)=f(w) for all u, ve U, (2.1)
and (2.2) take the form

fw)~ 3, %)

2.3) and
=] rentwsdu.

Especially, the characters X; form a complete orthonormal system in
Li(U), the space of central functions in L*(U). For 2=<g<co let

(2.4) 1 = 3, A5 I

Let u=%f+p* be a Cartan decomposition of u defined by an involution
¢ and K the analytic subgroup of U with Lie algebra t (cf. [H], p. 187).

The Haar measure dk is normalized by S dk=1. Let Uz denote the set

K
of all equivalence classes of irreducible unitary representations of U of
class one with respect to X. Then the spherical function +, on U cor-
responding to )\ € Uz is given by (cf. [H], p. 417)

(2.5) () = Xxxl(u‘lk)dk :

Then the Fourier series of f in L'(U//K), the space of K-biinvariant L'
functions on U, is given by (see (2.1))

(2.6) Sy~ >, daf " O)ya(u) ,

IGUK

where f~()\) is defined by (2.3): it also can be defined by
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@7 o=\ rawedu.

Especially, the spherical functions d¥*y; form a complete orthonormal
system in L*(U//K) (ef. [H], p. 507). For 2=q< let

(2.8) Hf"Hb,q=(2§]&dzlf"(h)|“)”" .
Since |X;|=d; (e U") and [¢4/<1 (A € Uz), it follows from (2.3) and
(2.7) that
fFI=dilfll,  for . f e Li(U)
(2.9) and
V= Ifll. for feLU//K).

Therefore, as in the case of the euclidean Fourier transform, the Riesz-
Thorin interpolation theorem (cf. [RS], p. 27) between (2.9) and the
Plancherel formula tells us that the Fourier transforms given by (2.8)
and (2.7) respectively satisfy the Hausdorff-Young theorem:

Let 1<p=2 and 1/p+1/g=1. Then there exist constants C, and
C,>0 such that

(2.10a) 1/ =Gl fll,  for feLi(U)
(2.10b) 157 he=Clifll,  for feL*(UJ/K).

§3. Fourier series of products.
We denote the Fourier series of the products XX, and vy, as
LX,=2> A, (X,
3.1) and
V=2 B (),

We note that XX, is the character of the tensor product =,x=, and
thus, the decomposition into irreducible components «, deduces that
XiXy=Xo+++++Xs,. Therefore, we easily see the following

LEmMmA 3.1. A,,(0)=0 for all ye U™
Next we shall prove the positivity of B,,(v). First we note that

LEMMA 3.2. For )€ Ux there exist C* functions 4, 1=1=d;) on U
Sfor which
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Pa(x~'Y) =ls§d1 2 () " (¥) (@, yeU).

PrROOF. Let {e; 1s5i<d;} be an orthonormal system of V,, where we
take e, as a K-fixed vector of V,. Then +(u)=(m(w)e, e¢,) (we U), and

the desired relation is obvious if we let 4 (u)=(m:(u)e, €,) A=S1=d,;).
Q.E.D.

LeEMMA 3.3. B, (»)=0 for all ve Uk.

PROOF. The proof is similar in the case of non compact symmetrie
spaces given by [FK]. Since (f*g)"(\)=s"(\g"~(\) for f, g€ LNU//K), it
follows that

(Fra, 9= 5, 4 WIT"OF

for all fe LY(U//K) and g € C=(U//K). Especially, f~(\)=0 for all ) if
and only if (f*g, 9)=0 for all g € C~(U//K). Therefore, it is enough to
prove that ((vr.)*g, 9)=0 for all geC~(U//K). Then we see from
Lemma 3.2 that

@apdeg, 9=\| 4o, )o@ 9w dady
= 2
154,5sd;

LEMMA 3.4. A, A)=B;(\)=1.

Svg(x“‘)«lm(x)n/r,,,-(x)dx ng . Q.E.D.

PrOOF. Since X,=+,=1, this is clear from the definition (3.1).
Q.E.D.

§4. Main result.
Let & be a neighborhood of the origin of U and let

(4.1) B,= UuEu? and E,=KSK.

welU
For a funetion f on U and a neighborhood & of U we denote by f: the
function on U which coincides with f on 5 and vanishes outside of Z.
Then we can obtain the following

THEOREM 4.1. Let 1<p=2 and q=p/(p—1). Let E; and =, be as

above.
(1) If fe LiU) has nonnegative Fourier coefficients and fs, € L*(U),

then {[f " |lse<eo.
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(2) If feLYUJ//K) has mnonnegative Fourier -coefficients and,
Jfe, € LP(U), then ||f7|], < .

The proof of the theorem will be done as in [R] and [ARV] after
we find a function satisfying the following lemma. For a funection &
on U we let

(4.2) ha() = Svh(vuv“)dv and  h,(u)= S SKXKh(kluch)dkldkz :

LEMMA 4.2. There exists a function h in C2(U) such that
(1) supphyC &, (resp. supp h,C5,),
(2) [hlle<oo,
(8) R~(\)=0 for all xe U (resp. € Uz),
(4) h°(0)=1,
where the Fourier coefficient h™(\) is defined by (2.3) (resp. (2.7)).

PROOF. We choose a neighborhood W of the origin of U with
(WW-),c&,., Then we can find a C~ function g on U such that

suppgC W, ||gll.<eco and S g(u)du=1. Then the desired function is given
[ 25

by h=gx*(9™), where g~(w)=g(u™)~ (w e U); actually, (1), (2) and (4) are

clear and (8) follows from

00 =| vavg(”y'l)g~(y)ls§dz (mi(@)e,, ) dady
= S vag(w)gr(y'l)‘1s f,\;‘saz (ma(w)e., €;)™(m(Y)e,, e5)~dady

>

1g4,j54d;

Il

| g@ @@, e)da| 20,

where {e;; 1=<¢=<d;} is an orthonormal system of V,.

We note that +,(u)=(w;(n)e,, e,) (u € U), where ¢, is a K-fixed vector
of U. Therefore, if we choose a neighborhood W of the origin of U
with (WW~™"),C&,, the case of a zonal function %, follows from the same
argument as above. Q.E.D.

THE PROOF OF THEOREM 4.1. (1) Let % be the function obtained
in Lemma 4.2 such that supp h, < Z,. Since h;(\)=(h, X)=~r"(\), it follows
from (3.1) that

(h @)= 5, FO(DALw) -

Here we recall that f~(\)=0 by the assumption on f, A" (¢)=0 and
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R~(0)=1 by Lemma 4.2 (3), (4), and A, (»)=0 and A,o(») 1 by Lemmas
3.1 and 3.4. Especially, we see that

(Fh)~ )2 ()

for all ye U"*. Therefore, noting (2.10a), we can deduce that

1 llae=1(FRD" lla,a
SCllf Pl

SGlhllollfall, <o .

(2) Let h be the function obtained in Lemma 4.2 such that
supp b, 5,. Since h;(\)=(h, ¥;)=h"(\), it follows from (3.1) that

(fh)"0)= ,‘Zeu;,d‘d"d”_ LT OVR (1) By (v) -

Then, by repeating the argument in the previous case, the rest of the
proof follows from Lemma 3.3, Lemma 3.4 and (2.10b).
This completes the proof of the theorem. Q.E.D.
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