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Abstract. Let As be an irrational rotation C*-algebra by 6 and Aut(4s) (resp. Diff(4s))
be the group of all automorphisms (resp. diffeomorphisms) of As. Let Int(4s) be the normal
subgroup of Aut(4s) of inner automorphisms of As and let Int”(4g)=1Int(4s) NDiff(44s). Let
Ay be an irrational rotation C*-algebra by » which is strongly Morita equivalent to 4s. In
the present paper we will show that Aut(A4s)/Int(4s) (resp. Diff(4s)/Int>(Ag)) is isomorphic
to Aut(4»)/Int(4y) (resp. Diff(47)/Int*(4,)) and that if Ay has a diffeomorphism of non Elliott
type, so does As.

§1. Preliminaries.

Let A, be an irrational rotation C*-algebra by a rotation 6 and
Aut(A4,) be the group of all automorphisms of A4,. Let Int(A4,) be the
normal subgroup of Aut(4,) of all inner automorphisms of A,. Let Ay
be the dense *-subalgebra of smooth elements of A, with respect to the
canonical action of the two dimensional torus.

DEFINITION. Let a € Aut(4,). We say that e isa diﬁeomorphism of
A, if a(A7)=A7. We denote by Diff(4,) the group of all diffeomorphisms
of A,. Let Int~(4,)=Int(4,) NDiff(4,).

Let A, be an irrational rotation C*?algebra by a rotation 7. Rieffel
[6] showed that A, and A, are strongly Morita equivalent if and only if

there is a g=[a b € GL(2, Z) such that 7= 26 +b where GL(2, Z) is the
cd co+d

group of 2Xx2 matrices over Z with determinant 1 or —1. Throughout

the present paper we suppose that 7= ag:db 3]eGL(2, Z).
c

For any neN let M, be the nxn matrix algebra over C and M,(4,)
(resp. M,(A7)) be the mXxn matrix algebra over A, (resp. AF). We
identify M,(4,) with 4,QM,.
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where g= [a
¢
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§2. Homomorphisms of Aut(4,)/Int(4,) to Aut(A4,)/Int(A4,).

By Rieffel [6, Proposition 2.1] there are a positive integer n and a
projection p e M, (A7) such that A, is isomorphic to pM,(A4,)p. Let ¥ be
an isomorphism of A, onto pM,(A,)p with ¥(A7)=pM,(A7)p. Such an
isomorphism is constructed in Rieffel [6, Proposition 2.1]. For any
a € Aut(4,), [(a®id, ) P)]=[p] in K(A,). Then we can find a unitary
element we M,(A4,) such that (a®id, )(»)=wpw* by Rieffel [7, 2.5.
Corollary]. Hence (Ad(w*)oa®idy,)lox,wupy, 18 in Aut(pM,(A,)p). There-
fore we obtain an automorphism ¥ cAd(w*)ea®id, ¥ of A,. And
if acDiff(4,), we can find a unitary element we M,(A7) such that
(a®idy )(P) =wpw*. Thus we obtain a diffeomorphism ¥~'oAd(w*)eo
aQidy ¥ of A,.

LEMMA 1. Let p and ¥ be as above. Let x € Aut(A,). Let w; (3=1,2)
be unitary elements in M, (A,) such that B;=¥ e Ad(w;*)ca®id, ¥ (=1, 2)
are automorphisms of A,. Then Br'oB, € Int(Ay).

ProoF.

BrleB =¥ "o(a@idy,) o Ad(w,w,*)ca®)idy, ¥
=T o Ad((a®idy, ) (w,w, )T .

On the other hand clearly (Ad(w;*)- (a®1dyn))|,,,nuq),, is an automorphlsm
of pM,(A,)p. Thus (a®idy, )(p)=w;pw;*. Hence

p=(a®idy,) " (w)(aQidy,) (P)(a®idy,) " (w;*) .
Therefore we get
(a®idy,) ™ (P) = (a®id.,) ™ (w,;*)p(a®idy, )~ (w;)
for 7=1, 2. By the above equations we obtain thaf
(a®idy,) " (w,*)P(a®idy,) " (w,) = (a®id,,) ™ (w,*)p(a®idy,) " (w,) .
Thus
(a®idy, ) (ww,*)p=p(a®idy, ) (w,w,*) .

Therefore

P(a®idy, ) (w,w,*)p = (a®idy, )" (w,w,*)p € PM,(A,)p

and
p(a®idy,) " (w,w*) € PM,(A,)p .




IRRATIONAL ROTATION C*-ALGEBRAS 417

Hence for any xz€ A,

(B Bo)(2) =¥ ((a®id,) ™ (w0, ") ¥ (2)(a®idy,) ™ (w0, *))
=T (aQidy,) ™ (ww, " )p¥ (€)P(a®idy,) ™ (ww, ™))

since ¥'(x)e€pM,(A,)p. Since (a®id,, ) M (w,w,*)p and p(a®idy,)  (w,w,*)
are in pM,(A)p, T '(a®idy,) (w,w,*)p) and ¥ (p(aQidy,) (w,w,*)) are
in A,. Hence

(B B)(®) =¥~ (a®idy,) ™ (w,w,*)P)2¥ ~(P(a®idy,) " (ww,*))
for any z€ A,. Furthermore

T~(a®idy,) " (w,w,*) D) ((a®id,,) " (w,w,*)p)*
=T ((a®idy,) " (w,w, ") p(a®idy,) " (w.w,*))
= w-l(p(a®id,un)_1(w1w2*w2w1 *»
=T (p)
=1.

Similarly we obtain that " ((a®id,,,) " (w,w,*)p)* ¥ ((a®id,, ) " (w,w,*)p) =
1. Thus 7 ((a®idy,) (w,w,*)p) is a unitary element in A,. Hence
o3, € Int(A,). ‘ . Q.E.D.

We will define the homomorphism 7,,%) of Aut(4,)/Int(4,) to
Aut(A,)/Int(4,) as follows: For any a € Aut(4,)

T, (D)) =T Ad(w*)*(a®idy,) 7]

where [«] denotes the class of o in Aut(4,)/Int(4,) and w is a unitary
element in M,(4,) such that (a®id,, )(»)=wpw*. By Lemma 1 we can
see easily that T, (¥) is well defined. And if «e€Diff(4,), T cAd(w*)o
a®id, ¥ € Diff(4,) where w is a unitary element in M,(A7). Hence we
can define in the same way the homomorphism T, «¥) of Diff(4,)/Int>(A4,)
to Diff(4,)/Int>(4,).

§3. An isomorphism of Aut(4,)/Int(4,) onto Aut(4,)/Int(4,).

Let m be a positive integer and q be a projection in M,(AJ) such
that A, is isomorphic to qM,(A,)g. Let ® be an isomorphism of A, onto
aM,(Azq with ©0(A47)=qM,(A7)q. Hence we obtain an isomorphism
ORid, ¥ of A, onto (PRid,,)(D)M,.(4)(@Rid,, )(p) With (ORid,, T)(A)=
(@Ridy, ) P) M, (AF)PRid, )(») where we identify M, (A,)Q@M, with
M.,.(Ag). Let 7, (resp. z,) be the unique tracial state on A, (resp. 4,)
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or the non normalized trace on M,(A,) (resp. M,(A,) induced by the
unique tracial state on A, (resp. 4,).

LEMMA 2. With the above notations

To(PQidy,, o T)(1)) =7,(PRidy, )(P)) =1 .

ProOF. Since A, and A, are strongly Morita equivalent, there is an
A,— Asequivalence bimodule (i.e., imprimitivity bimodule) X. Let ¢, ) 4,
and ¢, ),, be the A, and A,-valued inner products on X respectively.
By Rieffel [6, Proposition 2.1] there are 2n elements ¢&,,---,¢&,, &+, {, € X
such that

é G Ck>4,=1 .

We consider X" as an M,.(A,,)—A,-equivalence bimodule in the trivial way.
Let ¢={g)i-, and C={C}i-; in X" Then (& O,,=1. . Let §=, i y,¢
where <, du,u, i8 the M,(A,)-valued inner product on X". By Rieffel
[6, Proposition 2.1] there is the automorphism a, € Aut(4,) such that

T(x)=<Easx), & >M,.(A,)
for any x€ A,. Hence p=7(1)=, §>,nu,ﬁ. By Rieffel [6, Proposition 2.1]
there are 2m elements g, :--, tt,., v, -+, v, € X such that

.g{ <4u.i’ ”.1'>4,,=1 .

We consider X™ as an A,— M, (Ay)-equivalence bimodu_le in the trivial way.

Let p={p;}i-, and y={v;}}., in X™. Then (g, v),,=1. Let g=pul, V)i ag)

where <, Dy, wu, i8 the M,(A,)-valued inner product on X™. By Rieffel

[6, Proposition 2.1] there is the automorphism a,€ Aut(4,) such that
O(x) = (@), B xpiap |

for any x€ A,. Let p=33,., p.u®e, where {e,};,-, are matrix units of
M, and p, €A, Then

(¢®idun)(p) =k$=1 oy (D)L, ﬁ>umu,)®eu .

Hence
To(ORidu,)B) =33 7o PasVs B s i)

= ,‘Z;i Ta(<ay(pkk)/"<vs V>¥:,u,), 12673 U)iﬁ,u,))x,u,))
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—2_:. 7o(<v, ”>Mm(.40> {a (Pt /">M,,,(A,) Qy, U>M,,,(A,))

Il
iMs uM: uM: uMa uM= |

o( oty (D)t F‘>M,,,(A0)<V, P>M,,,,(Ao))

Il

0(<a77(pkk)l“’ ¢y, V>u,,,(49)>um(.4,))

o(<an(pkk)/"; Sty V) 420 s iag)

a(<av<pkk)["; V) s miag)

nMs

I

0(<av(pkk)#3! DJ> Ag/ ¢

Furthermore by Rieffel [7, Proof of Theorem 1.4] we have the following
equation;

28 ) =leB+dlz, (<G, &)

for any ¢ { e X since n= Zgig , aol; eGL(2, Z). Thus we obtain that
C

I
M

To((¢®idun)(p)) Z Ica‘i‘dlfv«”,ﬂ aay(pkk)ﬂ;;}A,;

&

i
-
<,
-

S le0+dlz, (s 15 1,00(Pe)

=

o0 +dlz( 3, s 1) (e

lc6 + diz,(at,(Prr)
co+dit,(p) .

i
M:

&
[

-
-

I Il
S M- uM:

On the other hand

7,(p) =7,(<§, §>Mn (4p)
=7, O} wldpS) &, O, (A,,)§>M,, (.4,,))
=7,(&, O, (4p) & Ou, (4p) & O 1/3,(4,,))
=7,(&, Ou, (4p) & Ou, (A;;))
=T7,({¢, Eu, apés Eu, (A,,))
=7,(K8C, & Ag & u, (Av))
=7,(&, O u, (A,,-))

=Tn<kz::1 & Ek>A,,) .
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Since we have that 7,(<¢ O))=lco+d|7,(<(, &,,) for any & (eX, we
obtain that

T(P) =3 60 +d| o< LD )

=1e0-+dI™7o( 3} 6w Coday)
=lco+d|™".

Therefore we obtain that 7,(#Qid, )(»))=1. Q.E.D.

LEMMA 3. Let ¢, be the monomorphism of A, into M,(A,) defined
by ¢o(x)=2QRe,, for any x € A, where {e }f;-, are matrixz units of M,(Ay).
Let ¢ be a monomorphism of A, into M (As) with ¢(As)=fM,(Ae)f where f
18 a projection in M,(A,) with t,(f)=1. Then there are an automorphism
B of Ay and a unitary element z€ M, (A,) such that ¢=Ad(z*)og,°..

PROOF. Sinece 74(f)=7,(1Re,)=1, there is a unitary element z € M,(A4,)
such that zfz*=1RXRe,, by Rieffel [7, 2.5. Corollary]. For any x € M,(4y),
zfefz* = (1QRe)zxz*(1Qe,) € 1R e,) M (A)(1Re,;). Hence Ad(z) is an
isomorphism of fM,(A,)f onto (AXRe,)M,(A)(1Re,). Since ¢(A4,) =
(1Qe) M, (A)(1Re,) and ¢(A)=rM(A,)f, if geAut(4,) is defined by
B=6¢,'cAd(2)o¢, we obtain the conclusion. Q.E.D.

COROLLARY 4. Let ¢, be as above. Let ¢ be a monomorphism of A,
into M, (A, with ¢(A,)=fM,(A)f and ¢(A7)=f M (A7)f where f s a
projection in M (AF) with 7o f)=1. Then there are a diffeomorphism
B of A, and a unitary element z € M, (A7) such that ¢=Ad(z*)og,08.

PrOOF. We have the same result as Rieffel [7, 2.5. Corollary] for
As. Hence there is a unitary element z € M, (A7) such that zfz*=1Qe,;.
If we repeat the same discussion as Lemma 3, we obtain the automorphism
B of A, such that

B=¢5'oAd(2)°¢ .

Since ¢,(A7)=(1QRe,)M(A7)(1Re.,) and ¢(A7)=SFM(A7)f, B(AT)=A5.
Q.E.D.

LEMMA 5. Let ¢, ¢,, G and z be as in Lemma 3. Let ac Aut(4,)
and w be a wunitary element in M (A;) such that Ad(w*) a®id,, €
Aut(fM (Ay)f) with (a®id,)(f)=wfw*. Then there is a unitary element
a € A, such that
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§1e Ad(w*)oa®idy,op =G Ad(a)oaos .
PrROOF. By Lemma 3 we have ¢=Ad(2z*)og,°c8. Thus

670 AdW™)oa®idy, ¢ =B og; o Ad(2) Ad(w*) o a®idu, ° Ad(2*)ogeo 8
=B ogr e Ad2w* (a®idy,)(2*)) ca®id o o8 .

Since (¢_1°Ad(w*) °a®idyk°¢)(1) =1, Ad(zw*(a®idﬂk)(z*))(1®311) = 1®en°
Hence by an easy computation we can see that there are unitary
elements a € A, and be M,_,(A,) such that 2w*(a®idy,)(2*)=ab. There-
fore for any e A,

(37 Ad(w™*) o a®idy, o)) = (8 2¢; o Ad(atDb) o a®id x, 2 g0 B) (%)
=(B7"egs o Ad(aPb)aidy,)(B(®)Key)
=(B°¢5")((aDPb)(a-B)(x)Ke.)(a*Db*))
=(Begs N a(acB)(w)a*Re,,)
=(87"eAd(a)ea-B)(@) .

Thus we obtain the conclusion. Q.E.D.

COROLLARY 6. - Let ¢, ¢,, B3 and z be as in Corollary 4. Let a € Diff(A,)
and w be a wunitary element in M(A7) such that Ad(w*)ea®id,, €
Aut(f(M,(A40)f)) with (a®idy,)(f)=wfw* and (Ad(w*)ea®idy,)(fM(A5)f)=
SM,(AZ)f. Then there is a unitary element a € A5 such that

p e Ad(w*)oa®idy, cp=L""cAd(a) ag .
PrROOF. By Corollary 4 we have ¢=Ad(z*)°¢,c8. Thus
¢~ e Ad(w*)oa®idy, ¢ =B og; e Ad(2w*(a®idw,)(2*)) ca®idu, go°3 -

By the ass'umptions z, we M, (A7) and a € Diff(4,). Thus zw*(a®id,,)(z*) €

M. (A7). By the proof of Lemma 5 2w*(a®id,,)(2*)=ab. Hence in this

case a € A7 and be M,_,(Ay). Therefore we can obtain the conclusion.
Q.E.D.

Now recall that ¥ is an isomorphism of A, onto »M,(A4,)p with
V(A7)=pM,(A7)p where p is a projection in M,(A>) and that @ is an
isomorphism of A, onto ¢M,(A,)q with @(AX)=qM,(As)q where ¢ is a
projection in M,(Ay). Furthermore OKid, ¥ is an isomorphism of A,
onto (O®idy,)(0) My (A)@Ridy,)p) With (BRidy,-T)A7)=(0Rid,,)(p)x
Mo(A7)(ORids, )(P). | |

Let @, be the monomorphism of A, into M,,(A4,) defined by @,(x)=
2Qe, for any x€ A, where {e;}I7_, are matrix units of M,,,.
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LEMMA 7. With the above motations there are a diffeomorphism S,
of A, and a unitary element z,€ M, (A7) such that

ORid,, ¥ =Ad(2s*) oDy .
PrOOF. This is clear by Lemma 2 and Corollary 4. Q.E.D.

LEMMA 8. Let @, ¥ and B3, be as above. Let a € Aut(4,) and w be a
unitary element in M, (A4,) such that Ad(w*)ea®idy,, , € Aut(PRid,,)(p) X
M, . (A)@ORid, )(») with (a®idy,,,)(PRid,,)(P))=w(@Ridy, ) P)w*. Then
there 18 a unitary element a € A, such that

o (0Rid,,)™ °Ad(w*) ca®id,,, o (PRid,, ) ¥ =B Ad(a)-a °By

In particular if «€Diff(4y) .and w is a wunitary element in M, (A7)
such that Ad(w*)ea®idy,, € Aut(PQidy,)(P)M,..(A)(@Ridy,)(p)) with
(a®idy,, ) (PR)id, )(P) =w(@Rid,, )(P)w*, then there is a unitary element
a € A7 such that

T o(0Ridy, ) e Ad(w*) ca®idy,, , o (PRidy, ) ¥ =G5 cAd(a)oaBs .
PROOF. This is clear by Lemma 5 and Corollary 6. Q.E.D.

For any isomorphism @ of A, onto qM,(A,q with @(A7)=qM,(A7)q
we define the homomorphism T, ,(®) of Aut(A4,)/Int(4,) to Aut(A,)/Int(4,)
as follows;

Ty, @)([a]) =[P Ad(w5*) - aid,,,P]

where a € Aut(4,) and w, is a unitary element in M,(A4,) such that
(a®id,, )(@) = wsqw,*. Similarly for any isomorphism ¥ of A, onto
pM,(A,)p with T(AF)=pM,(A;)p we define the homomorphism T, @)
of Aut(4,)/Int(4,) to Aut(4,)/Int(4,). And since @(A7)=gM,(A7)q and
T(AD)=pM(A7)Dp, T, (@) and T,,(¥) can be also considered as a homo-
morphism of Diff(A4,)/Int~(4,) to Diff(4,)/Int*(4,) and a homomorphism
of Diff(A4,)/Int(4,) to Diff(A4,)/Int~(4,) respectively.

LEMMA 9. Let &, ¥ and B, be as in Lemma 7. Let T,, and T,,
be as above. Then -

(T,,6(B5")° Ty, ®))([a]) =[a]
for any o € Aut(4,) (resp. a € Diff(4,)).

PROOF. .For any « € Aut(4,)
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(T,6F 85" To,,(D))[a])
=[BT e Ad(w,*) e (P e Ad(w,*)ca®id,,,, °P)R)idy, ¥ o B5']
=[Bp¥ e Ad(w,*) o0 'Ridy cAd(we*R1,)ca®id,,, - PRid,, ¥ B5']
- =[BT (0Rid,y,) T Ad((ORidy, ) (W, ) (we* R 1,)) caRidy,,,
o(PR)idy,) T 851 ,
where w, is a unitary element in M,(A7) such that (a®id,, )(q)=w.qws*
and w, is a unitary element in M,(A7) such that ((@7'cAd(w,*)e
a@id,, - P)Rid, )(p)=w,pw,*. By Lemma 8 there is a unitary element
as €Ay (or ay,€ A7 if a€Diff(4,)) such that v
T (0Ridy,) e Ad((P®idy, ) (w,* ) (w,* R L)) ca®idy,,,  (PRidy, ) o ¥
= g5 o Ad(as)oaBy -

Hence we obtain that
(T,,6T°B5%)° Ty, (@))[a]) =[Ad(as)oal=[a] . Q.E.D.

Let ¥, be the monomorphism of A, into M, (A, defined by ¥ (x)=
xQe,, for any x€ A,.

LEMMA 10. Let @, ¥ and B, be as in Lemma 9 and let ¥, be as
above. Then there are a diffeomorphism B, of A, and a unitary element
z2,€ M, .(A7) such that

(w°ﬁf;l)®idum°¢=Ad(zv*)°wo°ﬁﬂ .
Proor. This is clear by Lemma 2 and Corollary 4. Q.E.D.

LEMMA 11. Let @, ¥, B, and B, be as in Lemma 10. Let
ac€Aut(4,) and w be a unitary element in M,,(A,) such that
Ad(w*) c a®idy,,, € Aut(((¥ - 87") ®id,, ) (@) M, .(A)(T - B7) Rid,, )(q) with
(@®idy,, ) (T L) Ridy, ) (@) = w((T - Br)Ridy, ) (@w*. Then there is a
unitary element a € A, such that

(@7 (Boo ¥ MRidy,,) c Ad(w™*) eca®id,,, o (T L7 )Ridy, o 0)=B; o Ad(a) o B, .
In particular if acDiff(A,) and we M, (AY), a€ A,
Proor. This is clear by Lemma 5 and Corollary 6. Q.E.D.

LEMMA 12. Let T,, and T,, be as before. Let @, ¥, B, and B8, be
as in Lemma 11. Then

(T, (@71 Ty, o(¥ o B ))[aD =[a]
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Sor any a € Aut(A,) (resp. a € Diff(4,)).
PrROOF. For any a € Aut(4,)

(T,,(@°B7")° T, o(F=B5))([al)
=[B,oP e Ad(w)*)o(Beo¥ o Ad(w,*) o @id,, ¥~ 87 ) Ridy,, P> B7"]
=[By0P 7 o(Boo ¥ ) Ridy,, e Ad((T 87" )Ridy,, ) (ws* N w,* R 1))
ca®idy,,, o ¥ 87)Ridy, P°8;'] .

By Lemma 11 there is a unitary element a,€ A, (or a,€ A7 if a€Diff(4,))
such that

07'o(Beo ¥ )Qidy,, o Ad((T B85 ) Ridu,,) (we™ N w,* R 1,))
ca®idy, o(ToR")Ridy, o0)= ;' Ad(a,)oao B, -

Hence we obtain that

(To,v(@°ﬁv—1)° Tv,a(w'°50_1))([a]) = [Ad(aq)%!] = [a] . Q.E.D.

THEOREM 13. If A, and A, are strongly Morita equivalent,
Aut(A,)/Int(A4,) (resp. Dift(A4,)/Int>(A4,)) is isomorphic to Aut(A4,)/Int(A4,)
(resp. Diff(A4,)/Int~(A,)).

PrOOF. This follows from Lemmas 9 and 12. Q.E.D.

§4. Non generic numbers not satisfying the result of Elliott.

DEFINITION. Let # be an irrational number. We say that 6 s
generic if there are r>1 and C>0 such that

lezﬁnﬂ — 1] —2___6;
nf

for any integer 0, that is, not a Liouville number.
For any s, te R let a,, be the diffeomorphism of A, defined by

a,n(u)=e"*u and a,,(®)=e""*v where u and v are generators of A,

with uv=e*"yu. For any g=l:g’ 3} e SL(2, Z) let o, be the diffeomorphism

of A, defined by a,(u)=u"r* and a,(v)=u’»* where SL(2, Z) is the group
of all 2X 2 matrices over Z with determinant 1.
Now we will state the result of Elliott.

THEOREM (Elliott [2]). Let 6 be a generic irrational number. For
any ac€Diff(A,) there are a unitary element we Ay, ge SL(2, Z) and s,
t € R such that a=Ad(w)eaoa,,)-
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In this section we will show that if A, has a diffeomorphism not
satisfying the above theorem, so does A, if § € GL(2, Z)n. We use the
notations as before. For «eDiff(4,) let %, be the trace of Ay X Z
induced by 7, and let %,, be the homomorphism of K(Ay;x,Z) into R
induced by %,. And similarly we define 7, and 7,,.

LEMMA 14. Let aeDiff(4,) with a,=id on K,(A,) and %, (K(A, X%, Z))=
Z+Z7Z7n. Let B be a diffeomorphism of A, such that

B=T "' Ad(w,*)oa®id, ¥

where w, is a unitary element in M, (AY) with (aid, ) (D) =w,pw,*.
Then B.=id on K,(Ay) and %o (K(Ay X, Z))=Z+ Z6.

PrROOF. By the definition of B, B,=id on K,(4,). Since 7,00 is a
tracial state on A, and A, has the unique tracial state, To=1U(7,°¥)
where t is a positive number. However by the proof of Lemma 2 7s(1)=
Uz, o)) =tz (p)=tlcd+d|™*. Hence t=|cd+d|. Thus 7o = |c0+d|(z, 7).
Let w and v be unitary elements in A, with wv=e*"yu. Since gB,=id
on K,(A,), there is a piecewise continuously differentiable path &:[0, 1]—
U.(4,) such that n(0)=1RI, and h()=pRw)u*RI, where U,(A4,) is the
unitary group of M,(A4,). Hence ¥®id,k: [0, 1] - U(pR1I)M,.(A)(PRL,))
is a piecewise continuously differentiable path from »®I, to (Ad(w,*)e
a®idy YT (w)¥(u)*QI, where U(pRIL,)M,.(A)(PpRI,)) is the unitary group
of (PRI)M,.(A)PRIL,). Let h:][0, 1]— U,.(4,) be the piecewise continu-
ously differentiable path from 1X1I,, to (Ad(wv*)oa®1dun)(¢‘(u))¢'(u)*®lk+
1®1I,,—pRI, defined by i(t)= T Ridy (@) +1RQ1,,—pRI,. Then since

T (KA, X, Z))=Z+ Z0,

1 *
_%_S (h(t) h(t))dt L+1p
by Pimsner [5] where I, and I,€ Z. Therefore
1 *
5= \.7 S (h(t) k(t))dt

=5 | Jo0 + dl(e, T @idu) ()Lt )t

== oo+ die, Rty L ety )ae

=led+d|(l,+1,7) .
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Since 7= Zg:g , we obtain that
1 (% (hy
— Sor,(h(t) - h(t))dt
. af+b
_[c¢9+dl(l1+l2co+d>

—leo-+dll,+1, 10T g rbye Z+ 20 .
c+d

If we repeat the same discussion for v € 4,, by Pimsner [5], 75, (K,(A4s%: Z )=
Z+Z86. Q.E.D.

We showed in [3] that there are a non generic irrational number 7
and « €Diff(4,) satisfying the following conditions;

1) a,=id on K,(4,),

2) ?ﬂ*(Ko(A,)XaZ))=Z+Zﬁ,

3) I'a)=T,
where I'(a) is its Connes spectrum. The above a does not satisfy the
result of Elliott.

COROLLARY 15. Let 7 be as above and 1}=g0=% where g=
C
[g Y1eGL(, Z). Then there is a BeDifi(A) satisfying the above con-

ditions.

PrOOF. Let aeDiff(4,) be as above. Let g=¥"'eAd(w,) a®id,, ¥
where w, is a unitary element in M,(A7) with (a®id,, )(P) =w,pw,*.
Then we can see by Theorem 13 that I'(8)=T since I'(a)=T. And we
obtain by Lemma 14 that g,=id on K,(4,) and 7. (K(AsXs Z))=Z+ Z8.

Q.E.D.
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