Automorphisms, Diffeomorphisms and Strong Morita Equivalence of Irrational Rotation C*-Algebras

Kazunori KODAKA

Keio University
(Communicated by Y. Ito)

Abstract. Let A_{θ} be an irrational rotation C^* -algebra by θ and $\operatorname{Aut}(A_{\theta})$ (resp. $\operatorname{Diff}(A_{\theta})$) be the group of all automorphisms (resp. diffeomorphisms) of A_{θ} . Let $\operatorname{Int}(A_{\theta})$ be the normal subgroup of $\operatorname{Aut}(A_{\theta})$ of inner automorphisms of A_{θ} and let $\operatorname{Int}^{\infty}(A_{\theta}) = \operatorname{Int}(A_{\theta}) \cap \operatorname{Diff}(A_{\theta})$. Let A_{η} be an irrational rotation C^* -algebra by η which is strongly Morita equivalent to A_{θ} . In the present paper we will show that $\operatorname{Aut}(A_{\theta})/\operatorname{Int}(A_{\theta})$ (resp. $\operatorname{Diff}(A_{\theta})/\operatorname{Int}^{\infty}(A_{\theta})$) is isomorphic to $\operatorname{Aut}(A_{\eta})/\operatorname{Int}(A_{\eta})$ (resp. $\operatorname{Diff}(A_{\eta})/\operatorname{Int}^{\infty}(A_{\eta})$) and that if A_{η} has a diffeomorphism of non Elliott type, so does A_{θ} .

§1. Preliminaries.

Let A_{θ} be an irrational rotation C^* -algebra by a rotation θ and $\operatorname{Aut}(A_{\theta})$ be the group of all automorphisms of A_{θ} . Let $\operatorname{Int}(A_{\theta})$ be the normal subgroup of $\operatorname{Aut}(A_{\theta})$ of all inner automorphisms of A_{θ} . Let A_{θ}^{∞} be the dense *-subalgebra of smooth elements of A_{θ} with respect to the canonical action of the two dimensional torus.

DEFINITION. Let $\alpha \in \operatorname{Aut}(A_{\theta})$. We say that α is a diffeomorphism of A_{θ} if $\alpha(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$. We denote by $\operatorname{Diff}(A_{\theta})$ the group of all diffeomorphisms of A_{θ} . Let $\operatorname{Int}^{\infty}(A_{\theta}) = \operatorname{Int}(A_{\theta}) \cap \operatorname{Diff}(A_{\theta})$.

Let A_{η} be an irrational rotation C^* -algebra by a rotation η . Rieffel [6] showed that A_{θ} and A_{η} are strongly Morita equivalent if and only if there is a $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Z})$ such that $\eta = \frac{a\theta + b}{c\theta + d}$ where $GL(2, \mathbb{Z})$ is the group of 2×2 matrices over \mathbb{Z} with determinant 1 or -1. Throughout the present paper we suppose that $\eta = \frac{a\theta + b}{c\theta + d}$ where $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Z})$. For any $n \in \mathbb{N}$ let M_n be the $n \times n$ matrix algebra over C and $M_n(A_{\theta})$ (resp. $M_n(A_{\theta}^{\infty})$) be the $n \times n$ matrix algebra over A_{θ} (resp. A_{θ}^{∞}). We identify $M_n(A_{\theta})$ with $A_{\theta} \otimes M_n$.

§ 2. Homomorphisms of $\operatorname{Aut}(A_n)/\operatorname{Int}(A_n)$ to $\operatorname{Aut}(A_\theta)/\operatorname{Int}(A_\theta)$.

By Rieffel [6, Proposition 2.1] there are a positive integer n and a projection $p \in M_n(A_n^\infty)$ such that A_θ is isomorphic to $pM_n(A_\eta)p$. Let Ψ be an isomorphism of A_θ onto $pM_n(A_\eta)p$ with $\Psi(A_\theta^\infty) = pM_n(A_\eta^\infty)p$. Such an isomorphism is constructed in Rieffel [6, Proposition 2.1]. For any $\alpha \in \operatorname{Aut}(A_\eta)$, $[(\alpha \otimes \operatorname{id}_{M_n})(p)] = [p]$ in $K_0(A_\eta)$. Then we can find a unitary element $w \in M_n(A_\eta)$ such that $(\alpha \otimes \operatorname{id}_{M_n})(p) = wpw^*$ by Rieffel [7, 2.5. Corollary]. Hence $(\operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_n})|_{pM_n(A_\eta)p}$ is in $\operatorname{Aut}(pM_n(A_\eta)p)$. Therefore we obtain an automorphism $\Psi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_n} \circ \Psi$ of A_θ . And if $\alpha \in \operatorname{Diff}(A_\eta)$, we can find a unitary element $w \in M_n(A_\eta^\infty)$ such that $(\alpha \otimes \operatorname{id}_{M_n})(p) = wpw^*$. Thus we obtain a diffeomorphism $\Psi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_n} \circ \Psi$ of A_θ .

LEMMA 1. Let p and Ψ be as above. Let $\alpha \in \operatorname{Aut}(A_{\eta})$. Let w_{j} (j=1,2) be unitary elements in $M_{n}(A_{\eta})$ such that $\beta_{j} = \Psi^{-1} \circ \operatorname{Ad}(w_{j}^{*}) \circ \alpha \otimes \operatorname{id}_{M_{n}} \circ \Psi$ (j=1,2) are automorphisms of A_{θ} . Then $\beta_{1}^{-1} \circ \beta_{2} \in \operatorname{Int}(A_{\theta})$.

PROOF.

$$\beta_1^{-1} \circ \beta_2 = \Psi^{-1} \circ (\alpha \otimes \mathrm{id}_{M_n})^{-1} \circ \mathrm{Ad}(w_1 w_2^*) \circ \alpha \otimes \mathrm{id}_{M_n} \circ \Psi$$
$$= \Psi^{-1} \circ \mathrm{Ad}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*)) \circ \Psi.$$

On the other hand clearly $(\mathrm{Ad}(w_j^*) \circ (\alpha \otimes \mathrm{id}_{M_n}))|_{pM_n(A_\eta)p}$ is an automorphism of $pM_n(A_\eta)p$. Thus $(\alpha \otimes \mathrm{id}_{M_n})(p) = w_jpw_j^*$. Hence

$$p = (\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_j)(\alpha \otimes \mathrm{id}_{M_n})^{-1}(p)(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_j^*).$$

Therefore we get

$$(\alpha \otimes \mathrm{id}_{M_n})^{-1}(p) = (\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_j^*)p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_j)$$

for j=1, 2. By the above equations we obtain that

$$(\alpha \otimes \mathrm{id}_{\mathtt{M}_n})^{-1}(w_1^*)p(\alpha \otimes \mathrm{id}_{\mathtt{M}_n})^{-1}(w_1) = (\alpha \otimes \mathrm{id}_{\mathtt{M}_n})^{-1}(w_2^*)p(\alpha \otimes \mathrm{id}_{\mathtt{M}_n})^{-1}(w_2) \ .$$

Thus

$$(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p = p(\alpha \otimes \mathrm{id}_{M_n})(w_1 w_2^*).$$

Therefore

$$p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p = (\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p \in pM_n(A_\eta) p$$

and

$$p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_2 w_1^*) \in pM_n(A_\eta)p$$
 .

Hence for any $x \in A_{\theta}$

$$(\beta_1^{-1} \circ \beta_2)(x) = \Psi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) \Psi(x) (\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_2 w_1^*))$$

$$= \Psi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p \Psi(x) p (\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_2 w_1^*))$$

since $\Psi(x) \in pM_n(A_{\eta})p$. Since $(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1w_2^*)p$ and $p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_2w_1^*)$ are in $pM_n(A_{\eta})p$, $\Psi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1w_2^*)p)$ and $\Psi^{-1}(p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_2w_1^*))$ are in A_{θ} . Hence

$$(\beta_1^{-1} \circ \beta_2)(x) = \Psi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p) x \Psi^{-1}(p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_2 w_1^*))$$

for any $x \in A_{\theta}$. Furthermore

$$\begin{split} \varPsi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p) \varPsi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p)^* \\ = \varPsi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^*) p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_2 w_1^*)) \\ = \varPsi^{-1}(p(\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1 w_2^* w_2 w_1^*)) \\ = \varPsi^{-1}(p) \\ = 1. \end{split}$$

Similarly we obtain that $\Psi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1w_2^*)p)^*\Psi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1w_2^*)p) = 1$. Thus $\Psi^{-1}((\alpha \otimes \mathrm{id}_{M_n})^{-1}(w_1w_2^*)p)$ is a unitary element in A_θ . Hence $\beta_1^{-1} \circ \beta_2 \in \mathrm{Int}(A_\theta)$.

We will define the homomorphism $T_{\eta,\theta}(\Psi)$ of $\operatorname{Aut}(A_{\eta})/\operatorname{Int}(A_{\eta})$ to $\operatorname{Aut}(A_{\theta})/\operatorname{Int}(A_{\theta})$ as follows: For any $\alpha\in\operatorname{Aut}(A_{\eta})$

$$T_{\eta,\theta}(\Psi)([\alpha]) = [\Psi^{-1} \circ \operatorname{Ad}(w^*) \circ (\alpha \otimes \operatorname{id}_{M_n}) \circ \Psi]$$

where $[\alpha]$ denotes the class of α in $\operatorname{Aut}(A_{\eta})/\operatorname{Int}(A_{\eta})$ and w is a unitary element in $M_n(A_{\eta})$ such that $(\alpha \otimes \operatorname{id}_{M_n})(p) = wpw^*$. By Lemma 1 we can see easily that $T_{\eta,\theta}(\Psi)$ is well defined. And if $\alpha \in \operatorname{Diff}(A_{\eta})$, $\Psi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_n} \circ \Psi \in \operatorname{Diff}(A_{\theta})$ where w is a unitary element in $M_n(A_{\eta}^{\infty})$. Hence we can define in the same way the homomorphism $T_{\eta,\theta}(\Psi)$ of $\operatorname{Diff}(A_{\eta})/\operatorname{Int}^{\infty}(A_{\eta})$ to $\operatorname{Diff}(A_{\theta})/\operatorname{Int}^{\infty}(A_{\theta})$.

§3. An isomorphism of $Aut(A_n)/Int(A_n)$ onto $Aut(A_\theta)/Int(A_\theta)$.

Let m be a positive integer and q be a projection in $M_m(A_\theta^\infty)$ such that A_η is isomorphic to $qM_m(A_\theta)q$. Let Φ be an isomorphism of A_η onto $qM_m(A_\theta)q$ with $\Phi(A_\eta^\infty)=qM_m(A_\theta^\infty)q$. Hence we obtain an isomorphism $\Phi\otimes \mathrm{id}_{M_n}\circ \Psi$ of A_θ onto $(\Phi\otimes \mathrm{id}_{M_n})(p)M_{mn}(A_\theta)(\Phi\otimes \mathrm{id}_{M_n})(p)$ with $(\Phi\otimes \mathrm{id}_{M_n}\circ \Psi)(A_\theta^\infty)=(\Phi\otimes \mathrm{id}_{M_n})(p)M_{mn}(A_\theta^\infty)(\Phi\otimes \mathrm{id}_{M_n})(p)$ where we identify $M_m(A_\theta)\otimes M_n$ with $M_{mn}(A_\theta)$. Let τ_θ (resp. τ_η) be the unique tracial state on A_θ (resp. A_η)

or the non normalized trace on $M_m(A_\theta)$ (resp. $M_n(A_\eta)$) induced by the unique tracial state on A_θ (resp. A_η).

LEMMA 2. With the above notations

$$\tau_{\theta}((\varPhi \otimes \mathrm{id}_{M_n} \circ \varPsi)(1)) = \tau_{\theta}((\varPhi \otimes \mathrm{id}_{M_n})(p)) = 1.$$

PROOF. Since A_{θ} and A_{η} are strongly Morita equivalent, there is an $A_{\eta}-A_{\theta}$ -equivalence bimodule (i.e., imprimitivity bimodule) X. Let $\langle \ , \ \rangle_{A_{\theta}}$ and $\langle \ , \ \rangle_{A_{\eta}}$ be the A_{θ} and A_{η} -valued inner products on X respectively. By Rieffel [6, Proposition 2.1] there are 2n elements $\xi_1, \dots, \xi_n, \zeta_1, \dots, \zeta_n \in X$ such that

$$\sum_{k=1}^{n} \langle \xi_k, \zeta_k \rangle_{A_{\theta}} = 1$$
.

We consider X^n as an $M_n(A_\eta)-A_\theta$ -equivalence bimodule in the trivial way. Let $\xi=\{\xi_k\}_{k=1}^n$ and $\zeta=\{\zeta_k\}_{k=1}^n$ in X^n . Then $\langle \xi, \zeta \rangle_{A_\theta}=1$. Let $\bar{\xi}=\langle \zeta, \zeta \rangle_{M_n(A_\eta)}^{1/2}\xi$ where $\langle , \rangle_{M_n(A_\eta)}$ is the $M_n(A_\eta)$ -valued inner product on X^n . By Rieffel [6, Proposition 2.1] there is the automorphism $\alpha_\theta \in \operatorname{Aut}(A_\theta)$ such that

$$\Psi(x) = \langle \bar{\xi} \alpha_{\theta}(x), \, \bar{\xi} \rangle_{M_n(A_{\eta})}$$

for any $x \in A_{\theta}$. Hence $p = \Psi(1) = \langle \bar{\xi}, \bar{\xi} \rangle_{M_n(A_{\eta})}$. By Rieffel [6, Proposition 2.1] there are 2m elements $\mu_1, \dots, \mu_m, \nu_1, \dots, \nu_m \in X$ such that

$$\sum_{j=1}^{m} \langle \mu_j, \,
u_j
angle_{A_{\eta}} = 1$$
 .

We consider X^m as an $A_{\eta} - M_m(A_{\theta})$ -equivalence bimodule in the trivial way. Let $\mu = \{\mu_j\}_{j=1}^m$ and $\nu = \{\nu_j\}_{j=1}^m$ in X^m . Then $\langle \mu, \nu \rangle_{A_{\eta}} = 1$. Let $\bar{\mu} = \mu \langle \nu, \nu \rangle_{M_m(A_{\theta})}^{1/2}$ where $\langle , \rangle_{M_m(A_{\theta})}$ is the $M_m(A_{\theta})$ -valued inner product on X^m . By Rieffel [6, Proposition 2.1] there is the automorphism $\alpha_{\eta} \in \operatorname{Aut}(A_{\eta})$ such that

$$\Phi(x) = \langle \alpha_{\eta}(x)\overline{\mu}, \ \overline{\mu} \rangle_{M_{\mathbf{m}}(A_{\theta})}$$

for any $x \in A_{\eta}$. Let $p = \sum_{k,l=1}^{n} p_{kl} \otimes e_{kl}$ where $\{e_{kl}\}_{k,l=1}^{n}$ are matrix units of M_n and $p_{kl} \in A_{\eta}$. Then

$$(\Phi \otimes \mathrm{id}_{M_n})(p) = \sum_{k,l=1}^n \langle \alpha_{\eta}(p_{kl})\overline{\mu}, \overline{\mu} \rangle_{M_m(A_{\theta})} \otimes e_{kl}.$$

Hence

$$\begin{split} \tau_{\theta}((\boldsymbol{\Phi} \otimes \mathrm{id}_{\boldsymbol{M}_{n}})(\boldsymbol{p})) &= \sum_{k=1}^{n} \tau_{\theta}(\langle \alpha_{\eta}(\boldsymbol{p}_{kk}) \boldsymbol{\bar{\mu}}, \, \boldsymbol{\bar{\mu}} \rangle_{\boldsymbol{M}_{\boldsymbol{m}}(\boldsymbol{A}_{\boldsymbol{\theta}})}) \\ &= \sum_{k=1}^{n} \tau_{\theta}(\langle \alpha_{\eta}(\boldsymbol{p}_{kk}) \boldsymbol{\mu} \langle \boldsymbol{\nu}, \, \boldsymbol{\nu} \rangle_{\boldsymbol{M}_{\boldsymbol{m}}(\boldsymbol{A}_{\boldsymbol{\theta}})}^{1/2}, \, \boldsymbol{\mu} \langle \boldsymbol{\nu}, \, \boldsymbol{\nu} \rangle_{\boldsymbol{M}_{\boldsymbol{m}}(\boldsymbol{A}_{\boldsymbol{\theta}})}^{1/2} \rangle_{\boldsymbol{M}_{\boldsymbol{m}}(\boldsymbol{A}_{\boldsymbol{\theta}})}) \end{split}$$

$$\begin{split} &= \sum_{k=1}^{n} \tau_{\theta}(\langle \nu, \nu \rangle_{M_{m}(A_{\theta})}^{1/2} \langle \alpha_{\eta}(p_{kk})\mu, \mu \rangle_{M_{m}(A_{\theta})} \langle \nu, \nu \rangle_{M_{m}(A_{\theta})}^{1/2} \rangle_{M_{m}(A_{\theta})} \rangle_{$$

Furthermore by Rieffel [7, Proof of Theorem 1.4] we have the following equation;

$$\tau_{\theta}(\langle \xi, \zeta \rangle_{A_{\theta}}) = |c\theta + d|\tau_{\eta}(\langle \zeta, \xi \rangle_{A_{\eta}})$$

for any ξ , $\zeta \in X$ since $\eta = \frac{a\theta + b}{c\theta + d}$, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Z})$. Thus we obtain that

$$\begin{split} \tau_{\theta}((\varPhi \otimes \mathrm{id}_{M_n})(p)) &= \sum_{k=1}^n \sum_{j=1}^m |c\theta + d| \tau_{\eta}(\langle \nu_j, \; \alpha_{\eta}(p_{kk})\mu_j \rangle_{A_{\eta}}) \\ &= \sum_{k=1}^n \sum_{j=1}^m |c\theta + d| \tau_{\eta}(\langle \nu_j, \; \mu_j \rangle_{A_{\eta}} \alpha_{\eta}(p_{kk})) \\ &= \sum_{k=1}^n |c\theta + d| \tau_{\eta} \Big(\sum_{j=1}^m \langle \nu_j, \; \mu_j \rangle_{A_{\eta}} \alpha_{\eta}(p_{kk}) \Big) \\ &= \sum_{k=1}^n |c\theta + d| \tau_{\eta}(\alpha_{\eta}(p_{kk})) \\ &= |c\theta + d| \tau_{\eta}(p) \; . \end{split}$$

On the other hand

$$\begin{split} \tau_{\eta}(p) &= \tau_{\eta}(\langle\bar{\xi},\bar{\xi}\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\langle\zeta,\zeta\rangle_{M_{n}(A_{\eta})}^{1/2}\xi,\,\,\langle\zeta,\zeta\rangle_{M_{n}(A_{\eta})}^{1/2}\xi\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\zeta,\zeta\rangle_{M_{n}(A_{\eta})}^{1/2}\langle\xi,\,\xi\rangle_{M_{n}(A_{\eta})}\langle\zeta,\,\zeta\rangle_{M_{n}(A_{\eta})}^{1/2}) \\ &= \tau_{\eta}(\langle\zeta,\zeta\rangle_{M_{n}(A_{\eta})}^{1/2}\langle\xi,\,\xi\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\zeta,\zeta\rangle_{M_{n}(A_{\eta})}\xi,\,\xi\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\zeta,\xi\rangle_{M_{n}(A_{\eta})}\xi,\,\xi\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\zeta,\xi\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\zeta,\xi\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\zeta,\xi\rangle_{M_{n}(A_{\eta})}) \\ &= \tau_{\eta}(\langle\xi,\xi\rangle_{M_{n}(A_{\eta})}) \end{split}$$

Since we have that $\tau_{\theta}(\langle \xi, \zeta \rangle_{A_{\theta}}) = |c\theta + d|\tau_{\eta}(\langle \zeta, \xi \rangle_{A_{\eta}})$ for any $\xi, \zeta \in X$, we obtain that

$$egin{aligned} & au_{\eta}(p) = \sum\limits_{k=1}^{n} |c heta + d|^{-1} au_{ heta}(\left< \xi_k, \; \zeta_k \right>_{A_{ heta}}) \ &= |c heta + d|^{-1} au_{ heta}\Big(\sum\limits_{k=1}^{n} \left< \xi_k, \; \zeta_k \right>_{A_{ heta}} \Big) \ &= |c heta + d|^{-1} \; . \end{aligned}$$

Therefore we obtain that $\tau_{\theta}((\Phi \otimes id_{M_n})(p)) = 1$.

Q.E.D.

LEMMA 3. Let ϕ_0 be the monomorphism of A_{θ} into $M_k(A_{\theta})$ defined by $\phi_0(x) = x \otimes e_{11}$ for any $x \in A_{\theta}$ where $\{e_{ij}\}_{i,j=1}^k$ are matrix units of $M_k(A_{\theta})$. Let ϕ be a monomorphism of A_{θ} into $M_k(A_{\theta})$ with $\phi(A_{\theta}) = fM_k(A_{\theta})f$ where f is a projection in $M_k(A_{\theta})$ with $\tau_{\theta}(f) = 1$. Then there are an automorphism β of A_{θ} and a unitary element $z \in M_k(A_{\theta})$ such that $\phi = \operatorname{Ad}(z^*) \circ \phi_0 \circ \beta$.

PROOF. Since $\tau_{\theta}(f) = \tau_{\theta}(1 \otimes e_{11}) = 1$, there is a unitary element $z \in M_k(A_{\theta})$ such that $zfz^* = 1 \otimes e_{11}$ by Rieffel [7, 2.5. Corollary]. For any $x \in M_k(A_{\theta})$, $zfxfz^* = (1 \otimes e_{11})zxz^*(1 \otimes e_{11}) \in (1 \otimes e_{11})M_k(A_{\theta})(1 \otimes e_{11})$. Hence Ad(z) is an isomorphism of $fM_k(A_{\theta})f$ onto $(1 \otimes e_{11})M_k(A_{\theta})(1 \otimes e_{11})$. Since $\phi_0(A_{\theta}) = (1 \otimes e_{11})M_k(A_{\theta})(1 \otimes e_{11})$ and $\phi(A_{\theta}) = fM_k(A_{\theta})f$, if $\beta \in Aut(A_{\theta})$ is defined by $\beta = \phi_0^{-1} \circ Ad(z) \circ \phi$, we obtain the conclusion. Q.E.D.

COROLLARY 4. Let ϕ_0 be as above. Let ϕ be a monomorphism of A_{θ} into $M_k(A_{\theta})$ with $\phi(A_{\theta}) = fM_k(A_{\theta})f$ and $\phi(A_{\theta}^{\infty}) = fM_k(A_{\theta}^{\infty})f$ where f is a projection in $M_k(A_{\theta}^{\infty})$ with $\tau_{\theta}(f) = 1$. Then there are a diffeomorphism β of A_{θ} and a unitary element $z \in M_k(A_{\theta}^{\infty})$ such that $\phi = \mathrm{Ad}(z^*) \circ \phi_0 \circ \beta$.

PROOF. We have the same result as Rieffel [7, 2.5. Corollary] for A_{θ}^{∞} . Hence there is a unitary element $z \in M_k(A_{\theta}^{\infty})$ such that $zfz^* = 1 \otimes e_{11}$. If we repeat the same discussion as Lemma 3, we obtain the automorphism β of A_{θ} such that

$$\beta = \phi_0^{-1} \circ \operatorname{Ad}(z) \circ \phi$$
.

Since $\phi_0(A_{\theta}^{\infty}) = (1 \otimes e_{11}) M_k(A_{\theta}^{\infty}) (1 \otimes e_{11})$ and $\phi(A_{\theta}^{\infty}) = f M_k(A_{\theta}^{\infty}) f$, $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$. Q.E.D.

LEMMA 5. Let ϕ , ϕ_0 , β and z be as in Lemma 3. Let $\alpha \in \operatorname{Aut}(A_{\theta})$ and w be a unitary element in $M_k(A_{\theta})$ such that $\operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \in \operatorname{Aut}(fM_k(A_{\theta})f)$ with $(\alpha \otimes \operatorname{id}_{M_k})(f) = wfw^*$. Then there is a unitary element $a \in A_{\theta}$ such that

$$\phi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi = \beta^{-1} \circ \operatorname{Ad}(a) \circ \alpha \circ \beta$$
.

PROOF. By Lemma 3 we have $\phi = \operatorname{Ad}(z^*) \circ \phi_0 \circ \beta$. Thus

$$\phi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi = \beta^{-1} \circ \phi_0^{-1} \circ \operatorname{Ad}(z) \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \operatorname{Ad}(z^*) \circ \phi_0 \circ \beta$$

$$= \beta^{-1} \circ \phi_0^{-1} \circ \operatorname{Ad}(zw^*(\alpha \otimes \operatorname{id}_{M_k})(z^*)) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi_0 \circ \beta.$$

Since $(\phi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi)(1) = 1$, $\operatorname{Ad}(zw^*(\alpha \otimes \operatorname{id}_{M_k})(z^*))(1 \otimes e_{11}) = 1 \otimes e_{11}$. Hence by an easy computation we can see that there are unitary elements $a \in A_\theta$ and $b \in M_{k-1}(A_\theta)$ such that $zw^*(\alpha \otimes \operatorname{id}_{M_k})(z^*) = a \oplus b$. Therefore for any $x \in A_\theta$

$$\begin{split} (\phi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi)(x) &= (\beta^{-1} \circ \phi_0^{-1} \circ \operatorname{Ad}(a \bigoplus b) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi_0 \circ \beta)(x) \\ &= (\beta^{-1} \circ \phi_0^{-1} \circ \operatorname{Ad}(a \bigoplus b) \circ \alpha \otimes \operatorname{id}_{M_k})(\beta(x) \otimes e_{11}) \\ &= (\beta \circ \phi_0^{-1})((a \bigoplus b)((\alpha \circ \beta)(x) \otimes e_{11})(a^* \bigoplus b^*)) \\ &= (\beta \circ \phi_0^{-1})(a(\alpha \circ \beta)(x)a^* \otimes e_{11}) \\ &= (\beta^{-1} \circ \operatorname{Ad}(a) \circ \alpha \circ \beta)(x) \ . \end{split}$$

Thus we obtain the conclusion.

Q.E.D.

COROLLARY 6. Let ϕ , ϕ_0 , β and z be as in Corollary 4. Let $\alpha \in \operatorname{Diff}(A_{\theta})$ and w be a unitary element in $M_k(A_{\theta}^{\omega})$ such that $\operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \in \operatorname{Aut}(f(M_k(A_{\theta})f))$ with $(\alpha \otimes \operatorname{id}_{M_k})(f) = wfw^*$ and $(\operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k})(fM_k(A_{\theta}^{\omega})f) = fM_k(A_{\theta}^{\omega})f$. Then there is a unitary element $\alpha \in A_{\theta}^{\omega}$ such that

$$\phi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi = \beta^{-1} \circ \operatorname{Ad}(a) \circ \alpha \circ \beta$$
.

PROOF. By Corollary 4 we have $\phi = \operatorname{Ad}(z^*) \circ \phi_0 \circ \beta$. Thus

$$\phi^{-1} \circ \operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi = \beta^{-1} \circ \phi_0^{-1} \circ \operatorname{Ad}(zw^*(\alpha \otimes \operatorname{id}_{M_k})(z^*)) \circ \alpha \otimes \operatorname{id}_{M_k} \circ \phi_0 \circ \beta.$$

By the assumptions $z, w \in M_k(A_\theta^\infty)$ and $\alpha \in \operatorname{Diff}(A_\theta)$. Thus $zw^*(\alpha \otimes \operatorname{id}_{M_k})(z^*) \in M_k(A_\theta^\infty)$. By the proof of Lemma 5 $zw^*(\alpha \otimes \operatorname{id}_{M_k})(z^*) = a \oplus b$. Hence in this case $\alpha \in A_\theta^\infty$ and $b \in M_{k-1}(A_\theta^\infty)$. Therefore we can obtain the conclusion.

Q.E.D.

Now recall that Ψ is an isomorphism of A_{θ} onto $pM_n(A_{\eta})p$ with $\Psi(A_{\theta}^{\infty}) = pM_n(A_{\eta}^{\infty})p$ where p is a projection in $M_n(A_{\eta}^{\infty})$ and that Φ is an isomorphism of A_{θ} onto $qM_m(A_{\theta})q$ with $\Phi(A_{\eta}^{\infty}) = qM_m(A_{\theta}^{\infty})q$ where q is a projection in $M_m(A_{\theta}^{\infty})$. Furthermore $\Phi \otimes \mathrm{id}_{M_n} \circ \Psi$ is an isomorphism of A_{θ} onto $(\Phi \otimes \mathrm{id}_{M_n})(p)M_{mn}(A_{\theta})(\Phi \otimes \mathrm{id}_{M_n})(p)$ with $(\Phi \otimes \mathrm{id}_{M_n} \circ \Psi)(A_{\theta}^{\infty}) = (\Phi \otimes \mathrm{id}_{M_n})(p) \times M_{mn}(A_{\theta}^{\infty})(\Phi \otimes \mathrm{id}_{M_n})(p)$.

Let Φ_0 be the monomorphism of A_{θ} into $M_{mn}(A_{\theta})$ defined by $\Phi_0(x) = x \otimes e_{11}$ for any $x \in A_{\theta}$ where $\{e_{ij}\}_{i,j=1}^{mn}$ are matrix units of M_{mn} .

LEMMA 7. With the above notations there are a diffeomorphism β_{θ} of A_{θ} and a unitary element $z_{\theta} \in M_{mn}(A_{\theta}^{\infty})$ such that

$$\Phi \otimes \mathrm{id}_{M_n} \circ \Psi = \mathrm{Ad}(z_{\theta}^*) \circ \Phi_0 \circ \beta_{\theta}$$
.

PROOF. This is clear by Lemma 2 and Corollary 4.

Q.E.D.

LEMMA 8. Let Φ , Ψ and β_{θ} be as above. Let $\alpha \in \operatorname{Aut}(A_{\theta})$ and w be a unitary element in $M_{mn}(A_{\theta})$ such that $\operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_{mn}} \in \operatorname{Aut}((\Phi \otimes \operatorname{id}_{M_n})(p) \times M_{mn}(A_{\theta})(\Phi \otimes \operatorname{id}_{M_n})(p))$ with $(\alpha \otimes \operatorname{id}_{M_{mn}})((\Phi \otimes \operatorname{id}_{M_n})(p)) = w(\Phi \otimes \operatorname{id}_{M_n})(p)w^*$. Then there is a unitary element $\alpha \in A_{\theta}$ such that

$$\Psi^{-1} \circ (\Phi \otimes \mathrm{id}_{M_n})^{-1} \circ \mathrm{Ad}(w^*) \circ \alpha \otimes \mathrm{id}_{M_{m_n}} \circ (\Phi \otimes \mathrm{id}_{M_n}) \circ \Psi = \beta_{\theta}^{-1} \circ \mathrm{Ad}(a) \circ \alpha \circ \beta_{\theta}.$$

In particular if $\alpha \in \operatorname{Diff}(A_{\theta})$ and w is a unitary element in $M_{mn}(A_{\theta}^{\infty})$ such that $\operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_{mn}} \in \operatorname{Aut}((\Phi \otimes \operatorname{id}_{M_n})(p) M_{mn}(A_{\theta})(\Phi \otimes \operatorname{id}_{M_n})(p))$ with $(\alpha \otimes \operatorname{id}_{M_m})((\Phi \otimes \operatorname{id}_{M_n})(p)) = w(\Phi \otimes \operatorname{id}_{M_n})(p)w^*$, then there is a unitary element $\alpha \in A_{\theta}^{\infty}$ such that

$$\varPsi^{-1} \circ (\varPhi \otimes \mathrm{id}_{M_n})^{-1} \circ \mathrm{Ad}(w^*) \circ \alpha \otimes \mathrm{id}_{M_{m_n}} \circ (\varPhi \otimes \mathrm{id}_{M_n}) \circ \varPsi = \beta_{\theta}^{-1} \circ \mathrm{Ad}(a) \circ \alpha \circ \beta_{\theta} \ .$$

PROOF. This is clear by Lemma 5 and Corollary 6.

Q.E.D.

For any isomorphism Φ of A_{η} onto $qM_{m}(A_{\theta})q$ with $\Phi(A_{\eta}^{\infty}) = qM_{m}(A_{\theta}^{\infty})q$ we define the homomorphism $T_{\theta,\eta}(\Phi)$ of $\operatorname{Aut}(A_{\theta})/\operatorname{Int}(A_{\theta})$ to $\operatorname{Aut}(A_{\eta})/\operatorname{Int}(A_{\eta})$ as follows;

$$T_{\theta,v}(\Phi)([\alpha]) = [\Phi^{-1} \circ \operatorname{Ad}(w_{\theta}^*) \circ \alpha \otimes \operatorname{id}_{M_{m}} \circ \Phi]$$

where $\alpha \in \operatorname{Aut}(A_{\theta})$ and w_{θ} is a unitary element in $M_{m}(A_{\theta})$ such that $(\alpha \otimes \operatorname{id}_{M_{m}})(q) = w_{\theta}qw_{\theta}^{*}$. Similarly for any isomorphism Ψ of A_{θ} onto $pM_{n}(A_{\eta})p$ with $\Psi(A_{\theta}^{\infty}) = pM_{n}(A_{\eta}^{\infty})p$ we define the homomorphism $T_{\eta,\theta}(\Psi)$ of $\operatorname{Aut}(A_{\eta})/\operatorname{Int}(A_{\eta})$ to $\operatorname{Aut}(A_{\theta})/\operatorname{Int}(A_{\theta})$. And since $\Phi(A_{\eta}^{\infty}) = qM_{m}(A_{\theta}^{\infty})q$ and $\Psi(A_{\theta}^{\infty}) = pM_{n}(A_{\theta}^{\infty})p$, $T_{\theta,\eta}(\Phi)$ and $T_{\eta,\theta}(\Psi)$ can be also considered as a homomorphism of $\operatorname{Diff}(A_{\theta})/\operatorname{Int}^{\infty}(A_{\theta})$ to $\operatorname{Diff}(A_{\eta})/\operatorname{Int}^{\infty}(A_{\eta})$ and a homomorphism of $\operatorname{Diff}(A_{\eta})/\operatorname{Int}^{\infty}(A_{\theta})$ respectively.

LEMMA 9. Let Φ , Ψ and β_{θ} be as in Lemma 7. Let $T_{\eta,\theta}$ and $T_{\theta,\eta}$ be as above. Then

$$(T_{n,\theta}(\Psi \circ \beta_{\theta}^{-1}) \circ T_{\theta,n}(\Phi))([\alpha]) = [\alpha]$$

for any $\alpha \in \operatorname{Aut}(A_{\theta})$ (resp. $\alpha \in \operatorname{Diff}(A_{\theta})$).

PROOF. For any $\alpha \in \operatorname{Aut}(A_{\theta})$

$$\begin{split} &(T_{\eta,\theta}(\varPsi\circ\beta_{\theta}^{-1})\circ T_{\theta,\eta}(\varPhi))([\alpha])\\ &=[\beta_{\theta}\circ\varPsi^{-1}\circ\mathrm{Ad}(w_{\eta}^{*})\circ(\varPhi^{-1}\circ\mathrm{Ad}(w_{\theta}^{*})\circ\alpha\otimes\mathrm{id}_{M_{m}}\circ\varPhi)\otimes\mathrm{id}_{M_{n}}\circ\varPsi\circ\beta_{\theta}^{-1}]\\ &=[\beta_{\theta}\circ\varPsi^{-1}\circ\mathrm{Ad}(w_{\eta}^{*})\circ\varPhi^{-1}\otimes\mathrm{id}_{M_{n}}\circ\mathrm{Ad}(w_{\theta}^{*}\otimes I_{n})\circ\alpha\otimes\mathrm{id}_{M_{mn}}\circ\varPhi\otimes\mathrm{id}_{M_{n}}\circ\varPsi\circ\beta_{\theta}^{-1}]\\ &=[\beta_{\theta}\circ\varPsi^{-1}\circ(\varPhi\otimes\mathrm{id}_{M_{n}})^{-1}\circ\mathrm{Ad}((\varPhi\otimes\mathrm{id}_{M_{n}})(w_{\eta}^{*})(w_{\theta}^{*}\otimes I_{n}))\circ\alpha\otimes\mathrm{id}_{M_{mn}}\\ &=[\beta_{\theta}\circ\varPsi^{-1}\circ(\varPhi\otimes\mathrm{id}_{M_{n}})^{-1}\circ\mathrm{Ad}((\varPhi\otimes\mathrm{id}_{M_{n}})(w_{\eta}^{*})(w_{\theta}^{*}\otimes I_{n}))\circ\alpha\otimes\mathrm{id}_{M_{mn}}\\ &\circ(\varPhi\otimes\mathrm{id}_{M_{n}})\circ\varPsi\circ\beta_{\theta}^{-1}]\;, \end{split}$$

where w_{θ} is a unitary element in $M_{m}(A_{\theta}^{\infty})$ such that $(\alpha \otimes \mathrm{id}_{M_{m}})(q) = w_{\theta}qw_{\theta}^{*}$ and w_{η} is a unitary element in $M_{n}(A_{\eta}^{\infty})$ such that $((\Phi^{-1} \circ \mathrm{Ad}(w_{\theta}^{*}) \circ \alpha \otimes \mathrm{id}_{M_{m}} \circ \Phi) \otimes \mathrm{id}_{M_{n}})(p) = w_{\eta}pw_{\eta}^{*}$. By Lemma 8 there is a unitary element $a_{\theta} \in A_{\theta}$ (or $a_{\theta} \in A_{\theta}^{\infty}$ if $\alpha \in \mathrm{Diff}(A_{\theta})$) such that

$$\Psi^{-1} \circ (\Phi \otimes \mathrm{id}_{M_n})^{-1} \circ \mathrm{Ad}((\Phi \otimes \mathrm{id}_{M_n})(w_\eta^*)(w_\theta^* \otimes I_n)) \circ \alpha \otimes \mathrm{id}_{M_{m_n}} \circ (\Phi \otimes \mathrm{id}_{M_n}) \circ \Psi$$

$$= \beta_\theta^{-1} \circ \mathrm{Ad}(\alpha_\theta) \circ \alpha \circ \beta_\theta .$$

Hence we obtain that

$$(T_{n,\theta}(\Psi \circ \beta_{\theta}^{-1}) \circ T_{\theta,n}(\Phi))([\alpha]) = [\mathrm{Ad}(\alpha_{\theta}) \circ \alpha] = [\alpha].$$
 Q.E.D.

Let Ψ_0 be the monomorphism of A_{η} into $M_{mn}(A_{\eta})$ defined by $\Psi_0(x) = x \otimes e_{11}$ for any $x \in A_{\eta}$.

LEMMA 10. Let Φ , Ψ and β_{θ} be as in Lemma 9 and let Ψ_{0} be as above. Then there are a diffeomorphism β_{η} of A_{η} and a unitary element $z_{\eta} \in M_{mn}(A_{\eta}^{\infty})$ such that

$$(\Psi \circ \beta_{\theta}^{-1}) \otimes \mathrm{id}_{M_{m}} \circ \Phi = \mathrm{Ad}(z_{\eta}^{*}) \circ \Psi_{0} \circ \beta_{\eta}$$
.

PROOF. This is clear by Lemma 2 and Corollary 4. Q.E.D.

LEMMA 11. Let Φ , Ψ , β_{θ} and β_{η} be as in Lemma 10. Let $\alpha \in \operatorname{Aut}(A_{\eta})$ and w be a unitary element in $M_{mn}(A_{\eta})$ such that $\operatorname{Ad}(w^*) \circ \alpha \otimes \operatorname{id}_{M_{mn}} \in \operatorname{Aut}(((\Psi \circ \beta_{\theta}^{-1}) \otimes \operatorname{id}_{M_m})(q) M_{mn}(A_{\eta})((\Psi \circ \beta_{\theta}^{-1}) \otimes \operatorname{id}_{M_m})(q))$ with $(\alpha \otimes \operatorname{id}_{M_{mn}})(((\Psi \circ \beta_{\theta}^{-1}) \otimes \operatorname{id}_{M_m})(q)) = w((\Psi \circ \beta_{\theta}^{-1}) \otimes \operatorname{id}_{M_m})(q)w^*$. Then there is a unitary element $\alpha \in A_{\eta}$ such that

$$(\Phi^{-1}\circ(\beta_{\theta}\circ \Psi^{-1})\otimes \mathrm{id}_{M_{m}})\circ\mathrm{Ad}(w^{*})\circ\alpha\otimes\mathrm{id}_{M_{mn}}\circ((\Psi\circ\beta_{\theta}^{-1})\otimes\mathrm{id}_{M_{m}}\circ\Phi)=\beta_{\eta}^{-1}\circ\mathrm{Ad}(a)\circ\alpha\circ\beta_{\eta}.$$

In particular if $\alpha \in \text{Diff}(A_{\eta})$ and $w \in M_{mn}(A_{\eta}^{\infty})$, $\alpha \in A_{\eta}^{\infty}$.

PROOF. This is clear by Lemma 5 and Corollary 6. Q.E.D.

LEMMA 12. Let $T_{\theta,\eta}$ and $T_{\eta,\theta}$ be as before. Let Φ , Ψ , β_{θ} and β_{η} be as in Lemma 11. Then

$$(T_{\theta,\eta}(\varPhi\circ\beta_\eta^{-1})\circ T_{\eta,\theta}(\varPsi\circ\beta_\theta^{-1}))([\alpha])\!=\![\alpha]$$

for any $\alpha \in \operatorname{Aut}(A_{\eta})$ (resp. $\alpha \in \operatorname{Diff}(A_{\eta})$).

PROOF. For any $\alpha \in \operatorname{Aut}(A_n)$

$$\begin{split} &(T_{\theta,\eta}(\varPhi \circ \beta_{\eta}^{-1}) \circ T_{\eta,\theta}(\varPsi \circ \beta_{\theta}^{-1}))([\alpha]) \\ &= [\beta_{\eta} \circ \varPhi^{-1} \circ \operatorname{Ad}(w_{\theta}^{*}) \circ (\beta_{\theta} \circ \varPsi^{-1} \circ \operatorname{Ad}(w_{\eta}^{*}) \circ \alpha \otimes \operatorname{id}_{M_{n}} \circ \varPsi \circ \beta_{\theta}^{-1}) \otimes \operatorname{id}_{M_{m}} \circ \varPhi \circ \beta_{\eta}^{-1}] \\ &= [\beta_{\eta} \circ \varPhi^{-1} \circ (\beta_{\theta} \circ \varPsi^{-1}) \otimes \operatorname{id}_{M_{m}} \circ \operatorname{Ad}(((\varPsi \circ \beta_{\theta}^{-1}) \otimes \operatorname{id}_{M_{m}})(w_{\theta}^{*})(w_{\eta}^{*} \otimes I_{n})) \\ &\circ \alpha \otimes \operatorname{id}_{M_{m,n}} \circ (\varPsi \circ \beta_{\theta}^{-1}) \otimes \operatorname{id}_{M_{m,n}} \circ \varPhi \circ \beta_{\eta}^{-1}] \ . \end{split}$$

By Lemma 11 there is a unitary element $a_{\eta} \in A_{\eta}$ (or $a_{\eta} \in A_{\eta}^{\infty}$ if $\alpha \in \text{Diff}(A_{\eta})$) such that

$$\begin{array}{c} \Phi^{-1} \circ (\beta_{\theta} \circ \Psi^{-1}) \bigotimes \mathrm{id}_{M_{\boldsymbol{m}}} \circ \mathrm{Ad}(((\Psi \circ \beta_{\theta}^{-1}) \bigotimes \mathrm{id}_{M_{\boldsymbol{m}}})(w_{\theta}^{*})(w_{\eta}^{*} \otimes I_{n})) \\ \circ \alpha \bigotimes \mathrm{id}_{M_{\boldsymbol{m}n}} \circ ((\Psi \circ \beta_{\theta}^{-1}) \bigotimes \mathrm{id}_{M_{\boldsymbol{m}}} \circ \Phi) = \beta_{\eta}^{-1} \circ \mathrm{Ad}(a_{\eta}) \circ \alpha \circ \beta_{\eta} \end{array}.$$

Hence we obtain that

$$(T_{\theta,\eta}(\Phi \circ \beta_{\eta}^{-1}) \circ T_{\eta,\theta}(\Psi \circ \beta_{\theta}^{-1}))([\alpha]) = [\mathrm{Ad}(a_{\eta}) \circ \alpha] = [\alpha].$$
 Q.E.D.

THEOREM 13. If A_{θ} and A_{η} are strongly Morita equivalent, $\operatorname{Aut}(A_{\theta})/\operatorname{Int}(A_{\theta})$ (resp. $\operatorname{Diff}(A_{\theta})/\operatorname{Int}^{\infty}(A_{\theta})$) is isomorphic to $\operatorname{Aut}(A_{\eta})/\operatorname{Int}(A_{\eta})$ (resp. $\operatorname{Diff}(A_{\eta})/\operatorname{Int}^{\infty}(A_{\eta})$).

PROOF. This follows from Lemmas 9 and 12.

Q.E.D.

§ 4. Non generic numbers not satisfying the result of Elliott.

DEFINITION. Let θ be an irrational number. We say that θ is generic if there are r>1 and C>0 such that

$$|e^{2\pi i n\theta} - 1| \ge \frac{C}{n^r}$$

for any integer $n \neq 0$, that is, not a Liouville number.

For any $s, t \in R$ let $\alpha_{(s,t)}$ be the diffeomorphism of A_{θ} defined by $\alpha_{(s,t)}(u) = e^{2\pi i s}u$ and $\alpha_{(s,t)}(v) = e^{2\pi i t}v$ where u and v are generators of A_{θ} with $uv = e^{2\pi i \theta}vu$. For any $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{Z})$ let α_s be the diffeomorphism of A_{θ} defined by $\alpha_s(u) = u^a v^c$ and $\alpha_s(v) = u^b v^d$ where $SL(2, \mathbb{Z})$ is the group of all 2×2 matrices over \mathbb{Z} with determinant 1.

Now we will state the result of Elliott.

THEOREM (Elliott [2]). Let θ be a generic irrational number. For any $\alpha \in \text{Diff}(A_{\theta})$ there are a unitary element $w \in A_{\theta}^{\infty}$, $g \in SL(2, \mathbb{Z})$ and s, $t \in \mathbb{R}$ such that $\alpha = \text{Ad}(w) \circ \alpha_g \circ \alpha_{(s,t)}$.

In this section we will show that if A_{η} has a diffeomorphism not satisfying the above theorem, so does A_{θ} if $\theta \in GL(2, \mathbb{Z})\eta$. We use the notations as before. For $\alpha \in \mathrm{Diff}(A_{\theta})$ let $\widetilde{\tau}_{\theta}$ be the trace of $A_{\theta} \times_{\alpha} \mathbb{Z}$ induced by τ_{θ} and let $\widetilde{\tau}_{\theta*}$ be the homomorphism of $K_0(A_{\theta} \times_{\alpha} \mathbb{Z})$ into \mathbb{R} induced by $\widetilde{\tau}_{\theta}$. And similarly we define $\widetilde{\tau}_{\eta}$ and $\widetilde{\tau}_{\eta*}$.

LEMMA 14. Let $\alpha \in \text{Diff}(A_{\eta})$ with $\alpha_* = \text{id on } K_1(A_{\eta})$ and $\tilde{\tau}_{\eta*}(K_0(A_{\eta} \times_{\alpha} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\eta$. Let β be a diffeomorphism of A_{θ} such that

$$\beta = \Psi^{-1} \circ \operatorname{Ad}(w_n^*) \circ \alpha \otimes \operatorname{id}_{M_n} \circ \Psi$$

where w_{η} is a unitary element in $M_{\eta}(A_{\eta}^{\infty})$ with $(\alpha \otimes \mathrm{id}_{M_{\eta}})(p) = w_{\eta}pw_{\eta}^{*}$. Then $\beta_{*} = \mathrm{id}$ on $K_{1}(A_{\theta})$ and $\widetilde{\tau}_{\theta*}(K_{0}(A_{\theta} \times_{\beta} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$.

PROOF. By the definition of β , $\beta_*=\operatorname{id}$ on $K_1(A_\theta)$. Since $\tau_{\eta}\circ \Psi$ is a tracial state on A_θ and A_θ has the unique tracial state, $\tau_{\theta}=t(\tau_{\eta}\circ \Psi)$ where t is a positive number. However by the proof of Lemma 2 $\tau_{\theta}(1)=t(\tau_{\eta}\circ \Psi)(1)=t\tau_{\eta}(p)=t|c\theta+d|^{-1}$. Hence $t=|c\theta+d|$. Thus $\tau_{\theta}=|c\theta+d|(\tau_{\eta}\circ \Psi)$. Let u and v be unitary elements in A_θ with $uv=e^{2\pi i\theta}vu$. Since $\beta_*=\operatorname{id}$ on $K_1(A_\theta)$, there is a piecewise continuously differentiable path $h\colon [0,1]\to U_k(A_\theta)$ such that $h(0)=1\otimes I_k$ and $h(1)=\beta(u)u^*\otimes I_k$ where $U_k(A_\theta)$ is the unitary group of $M_k(A_\theta)$. Hence $\Psi\otimes\operatorname{id}_k\circ h\colon [0,1]\to U((p\otimes I_k)M_{kn}(A_\eta)(p\otimes I_k))$ is a piecewise continuously differentiable path from $p\otimes I_k$ to $(\operatorname{Ad}(w_\eta^*)\circ \alpha\otimes\operatorname{id}_{M_n})(\Psi(u))\Psi(u)^*\otimes I_k$ where $U((p\otimes I_k)M_{kn}(A_\eta)(p\otimes I_k))$ is the unitary group of $(p\otimes I_k)M_{kn}(A_\eta)(p\otimes I_k)$. Let $\widetilde{h}\colon [0,1]\to U_{kn}(A_\eta)$ be the piecewise continuously differentiable path from $1\otimes I_k$ to $(\operatorname{Ad}(w_\eta^*)\circ \alpha\otimes\operatorname{id}_{M_n})(\Psi(u))\Psi(u)^*\otimes I_k+1\otimes I_{kn}-p\otimes I_k$ defined by $\widetilde{h}(t)=(\Psi\otimes\operatorname{id}_{M_k})(h(t))+1\otimes I_{kn}-p\otimes I_k$. Then since $\widetilde{\tau}_{\eta*}(K_0(A_\eta\times_\alpha Z))=Z+Z\theta$,

$$rac{1}{2\pi i}\!\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1}\! au_{\scriptscriptstyle \eta}\!\!\left(\widetilde{h}(t)^*\!rac{d}{dt}\widetilde{h}(t)
ight)\!\!dt\!=\!l_{\scriptscriptstyle 1}\!+\!l_{\scriptscriptstyle 2}\eta$$

by Pimsner [5] where l_1 and $l_2 \in \mathbb{Z}$. Therefore

$$egin{aligned} &rac{1}{2\pi i}\int_{_0}^1 & au_ heta \Big(h(t)^* rac{d}{dt}h(t)\Big)dt \ &= rac{1}{2\pi i}\int_{_0}^1 &|c heta+d|(au_\eta\circ \Psi igotimes \mathrm{id}_{M_k})\Big(h(t)^* rac{d}{dt}h(t)\Big)dt \ &= rac{1}{2\pi i}\int_{_0}^1 &|c heta+d| au_\eta\Big(\widetilde{h}(t)^* rac{d}{dt}\widetilde{h}(t)\Big)dt \ &= |c heta+d|(l_1+l_2\eta) \;. \end{aligned}$$

Since $\eta = \frac{a\theta + b}{c\theta + d}$, we obtain that

$$egin{aligned} &rac{1}{2\pi i}\int_0^1\!\! au_{ heta}\!\!\left(h(t)^*\!\!rac{d}{dt}h(t)
ight)\!\!dt \ &=|c heta+d|\!\!\left(l_1\!+\!l_2rac{a heta+b}{c heta+d}
ight) \ &=|c heta+d|l_1\!+\!l_2rac{|c heta+d|}{c heta+d}(a heta+b)\in Z\!+\!Z\! heta \;. \end{aligned}$$

If we repeat the same discussion for $v \in A_{\theta}$, by Pimsner [5], $\tilde{\tau}_{\theta*}(K_0(A_{\theta} \times_{\beta} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$.

We showed in [3] that there are a non generic irrational number η and $\alpha \in \text{Diff}(A_{\eta})$ satisfying the following conditions;

- 1) $\alpha_* = \text{id on } K_1(A_\eta),$
- 2) $\tilde{\tau}_{\eta*}(K_0(A_{\eta}\times_{\alpha} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$,
- 3) $\Gamma(\alpha) = T$,

where $\Gamma(\alpha)$ is its Connes spectrum. The above α does not satisfy the result of Elliott.

COROLLARY 15. Let η be as above and $\eta = g\theta = \frac{a\theta + b}{c\theta + d}$ where $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Z})$. Then there is a $\beta \in Diff(A_{\theta})$ satisfying the above conditions.

PROOF. Let $\alpha \in \operatorname{Diff}(A_{\eta})$ be as above. Let $\beta = \Psi^{-1} \circ \operatorname{Ad}(w_{\eta}) \circ \alpha \otimes \operatorname{id}_{\mathfrak{M}_{n}} \circ \Psi$ where w_{η} is a unitary element in $M_{n}(A_{\eta}^{\infty})$ with $(\alpha \otimes \operatorname{id}_{\mathfrak{M}_{n}})(p) = w_{\eta}pw_{\eta}^{*}$. Then we can see by Theorem 13 that $\Gamma(\beta) = T$ since $\Gamma(\alpha) = T$. And we obtain by Lemma 14 that $\beta_{*} = \operatorname{id}$ on $K_{1}(A_{\theta})$ and $\widetilde{\tau}_{\theta*}(K_{0}(A_{\theta} \times_{\beta} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$. Q.E.D.

References

- [1] A. Connes and M. A. Rieffel, Yang-Mills for non-commutative two-tori, *Proc. Conf. Operator Algebras and Math. Phys. Univ. Iowa* (1985), Contemporary Math., **62** (1987), 237-266.
- [2] G. A. Elliott, The diffeomorphism group of the irrational rotation C*-algebra, C. R. Math. Rep. Acad. Sci. Canada, 8 (1986), 329-334.
- [3] K. Kodaka, A diffeomorphism of an irrational rotation C^* -algebra by a non generic rotation, preprint.
- [4] G.K. Pedersen, C*-Algebra and their Automorphism Groups, Academic Press, 1979.
- [5] M.V. PIMSNER, Ranges of traces on K_0 of reduced crossed products by free products, Lecture Notes in Math., 1132 (1983), 374-408, Springer.

- [6] M. A. RIEFFEL, C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
- [7] ——, The cancellation theorem for projective modules over irrational rotation C^* -algebras, Proc. London Math. Soc. (3), 47 (1983), 285-302.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN