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Introduction.

For a regular diffusion $X$ in $R$ starting from $0$ with generator
$\mathscr{L}=d/dm\cdot d/ds,$ $s(O)=0$ , and for any fixed $r>0$ , define

$\tau_{1}=\inf\{t>0:X(t)=r\}$ ,
$\tau_{2}=\sup\{t>0:X(t)=0, t<\tau_{1}\}$ .

Then Williams’s theorem ([4]) states that $\{X(\tau_{2}+t):0\leqq t\leqq\tau_{1}-\tau_{2}\}$ is iden-
tical in distribution to $\{\tilde{X}(t):0\leqq t\leqq\tau\sim\}$ , where $\tilde{X}$ is a diffusion process
starting from $0$ with generator $\mathscr{L}\tilde{f}=(1/s)\mathscr{L}(sf)$ and $\tilde{\tau}=\inf\{t>0:\tilde{X}(t)=r\}$ .
In the case where $X$ is a one-dimensional Brownian motion $B$ with $B(O)=0$ ,
$\tilde{X}$ is a Bessel process with index 3 (the radial part of a three-dimensional
Brownian motion) and Pitman [2] proved that

(1) $\{\tilde{X}(t), t\geqq 0\}^{d}=\{B(t)+2L(t), t\geqq 0\}$ , $L(t)=-\min_{0\leq u\leqq t}B(u)$ ,

where $‘‘=d$ ” means the equality in distribution,
In this paper we consider the case where $X$ is the one-dimensional

diffusion process defined by the stochastic differential equation (abbrevi-
ated: SDE)

(2) $X(t)=\int_{0}^{t}\sigma(X(u))dB(u)+\int_{0}^{t}b(X(u))du$ ,

and will prove that $\tilde{X}$ admits a representation similar to (1) (see Theorem
1.1’). The assumptions for the coefficients $\sigma$ and $b$ are that they are
Lipschitz continuous and $\sigma(x)>0,$ $\forall xeR$ . To state our result more pre-
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cisely, we consider the SDE of Skorohod type with reflecting boundary

condition at $0$ ($8ee$ \S 1 for precise formulation):

(3) $Y(t)=|_{0}\sigma(Y(u)+L(u))dB(u)+|_{0}^{t}b(Y(u)+L(u))du+L(t)$ .
It can be proved that this equation has a unique solution $(Y, L)$ (Prop-

osition 2.1). Put

(4) $\left\{\begin{array}{ll}Z(t)=Y(t)+L(t), & \\\tau=\inf\{t>0:Z(t)=r\}, & r>0.\end{array}\right.$

Then the main result in this paper is that the process $Z$ is a diffusion
process with generator $\mathscr{L}^{\wedge}\dot{f}=(1/s)\mathscr{L}(sf)$ and that $\{Z(t):0\leqq t\leqq\tau\}=d$

$\{X(\tau_{2}+t):0\leqq t\leqq\tau_{1}-\tau_{2}\}$ .
In \S 1 we state our problem and results precisely. In \S 2 we give

some preliminary re8u1ts on one-dimensional Skorohod equation8 and
equations with singular drift coefficients. The proof of the main result
is given in \S 3. In \S 4 we state some remarks.

\S 1. Formulation of the problem and the results.

Let $\sigma,$
$b:R\rightarrow R$ be Lipschitz continuous functions, namely, assume

that there exi8ts a positive constant $K$ such that

(1.1) $|\sigma(x)-\sigma(y)|+|b(x)-b(y)|\leqq K|x-y|$ , $\forall x,$ $yeR$ ;

we also assume $\sigma(x)>0,$ $\forall xeR$ . Let $X$ be the unique 8olution of the

SDE:

(1.2) $X(t)=\int_{0}^{\iota}\sigma(X(u))dB(u)+\int_{0}^{t}b(X(u))du$ , $t\geqq 0$ ,

where $B\equiv\{B(t):t\geqq 0\}$ is a one-dimensional Brownian motion starting

from $0$ defined on a probability space $(\Omega, \mathscr{G}^{-}P)$ . We denote the proper
reference family of $B$ by $(\mathscr{L}_{t}^{-})$ , i.e.,

$\mathscr{G}_{t}^{-}=\bigcap_{\epsilon>0}\sigma\{B(u):ue[0, t+\epsilon]\}$ .
Let $\mathscr{L}$ be the generator of $X$, i.e.,

.si? $=\frac{1}{2}\sigma(x)^{2}\frac{d^{2}}{dx^{2}}+b(x)\frac{d}{dx}=\frac{d}{dm}\frac{d}{ds}$ ,

where
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$m(dx)=2\sigma(x)^{-z}e^{\beta x}()dx$ ,

$s(x)=\int_{0}^{x}e^{-\beta ty)}dy$ , $\beta(x)=2\int_{0}^{x}b(u)/\sigma^{2}(u)du$ .
For any fixed $r>0$ , define

$\tau_{1}=\inf\{t>0:X(t)=r\}$ ,
$\tau_{2}=\sup\{t>0:X(t)=0, t<\tau_{1}\}$ .

We consider the SDE of Skorohod type

(1.3) $Y(t)=|_{0}^{t}\sigma(Y(u)+L(u))dB(u)$

$+\int_{0}^{t}b(Y(u)+L(u))du+L(t)$ , $t\geqq 0$ ,

where $Y$ and $L$ should be found under the conditions:

(1.4) $Y$ is $(\mathscr{G}_{t}^{-})$-adapted, continuous and $Y(t)\geqq 0,$ $\forall t\geqq 0$ ,

(1.5) $L$ is continuous, nondecreasing, $L(O)=0$ and

$L(t)=\int_{0}^{t}1_{(0\}}(Y(u))dL(u)$ .
In the above (and also in the sequel) $1_{(0\}}$ denotes the indicator function
of the set $\{0\}$ . It will be proved that the equation (1.3) can be solved
uniquely (Proposition 2.1). Put

(1.6) $Z(t)=Y(t)+L(t)$ , $t\geqq 0$ .
Then our main theorem is stated as follows.

THEOREM 1.1. Suppose that $\sigma$ and $b$ are Lipschitz continuous and
$\sigma(x)>0,$ $\forall xe$ R. Then, $Z$ is a diffusion process on $ R_{+}\equiv[0, \infty$ ) starting

from $0$ with generator $-\tilde{\mathscr{G}}$ and is identic$al$ in distribution to the unique
nonnegative solution of the SDE

(1.7) $ Z(t)=\int_{0}^{t}\sigma(Z(u))dB(u)+\int_{0}^{t}b(Z(u))du\sim$ , $t\geqq 0$

with the singular drift coefficient $ b\sim$ defined by

$b(x)=b(x)+\sigma(x)^{2}s^{\prime}(x)\sim/s(x)$ , $x>0$ .
By virtue of Williams’s theorem stated in the introduction, the above

theorem may be rephrased as follows.
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THEOREM 1.1’. $\{X(\tau_{2}+t):0\leqq t\leqq\tau_{1}-\tau_{2}\}$ is identical in distribution to
$\{Z(t):0\leqq t\leqq\tau\}$ , where $\tau=\inf\{t>0:Z(t)=r\}$ .

If $\sigma(x)\equiv 1$ and $b(x)\equiv 0$ , Theorem 1.1 is nothing but Pitman’s theorem
stated in the introduction. Furthermore, in case $\sigma(x)\equiv 1$ and $b(x)\equiv b$

$(con8tant),$ $X(t)$ is equal to $B(t)+bt$ and the solution of the Skorohod
equation (1.3) is written as $Y(t)=X(t)+L(t)$ , where $L(t)=$ -min $X(u)$

(see \S 2). Theorem 1.1 then implies that $X(t)-2$ min $X(u)$ is a $0\leqq u\leq tdiffusion$

process on $R_{+}$ with generator $\frac{1}{2}d^{2}/dx^{2}+b\cdot\coth(bx)\cdot d/dx0\xi u\leqq t$ (see Rogers and
Pitman [3]).

\S 2. One-dimensional Skorohod equations and equations with sin-
gular drifts.

In this section we 8tate some results on one-dimensional Skorohod
equations and equations with singular drifts.

Let $\ovalbox{\tt\small REJECT}$ (resp. $\mathscr{F}_{+}$) be the space of all $R$ (resp. $R_{+}$) valued continuous
functions defined on $R_{+}$ . For $we\mathscr{F}$ and $t\geqq 0$ the notation $||w\Vert_{t}$ stand8
for $\sup\{|w(u)| : 0\leqq u\leqq t\}$ . Given $we\mathscr{G}^{\prime}$ with $w(O)\geqq 0$ we call the equation

(2.1) $\eta(t)=w(t)+l(t)$ , $t\geqq 0$ ,

the Skorohod equation (for w) and the pair $(\eta, l)$ its solution if the
following conditions (2.2) and (2.3) are $8atisfied$ :

(2.2) $\eta\in SUZ_{+}$ ,

(2.3) $le$ f211, $l$ is nondecreasing, $l(O)=0$ and

$l(t)=\int_{0}^{t}1_{\{0\}}(\eta(u))dl(u)$ .
It is well known that there exists a unique solution of the Skorohod
equation (2.1) given by

(2.4) $\left\{\begin{array}{l}\eta(t)=w(t)-\min_{0\leq u\leq t}\{w(u)\wedge 0\}\\l(t)=-\{w(u)\wedge O\}\end{array}\right.$

$0\leqq u\leq t$

The following lemma is immediate from (2.4).

LEMMA 2.1. (i) Let $w_{i}e\mathscr{G}^{\prime}$ with $w_{i}(0)\geqq 0$ and $(\eta, l_{i})$ be the unique
solutions of the Skorohod equations

$\eta_{i}(t)=w_{i}(t)+l(t)$ , $t\geqq 0$ , $i=1,2$ ,
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respectively. Then we have

(2.5) $\left\{\begin{array}{ll}\Vert\eta_{1}-\eta_{2}\Vert_{t}\leqq 2\Vert w_{1}-w_{2}\Vert_{t} , & \\||l_{1}-l_{2}||_{t}\leqq\Vert w_{1}-w_{2}\Vert_{t} , & t\geqq 0.\end{array}\right.$

(ii) Let $(\eta, l)$ be the unique solution of (2.1). Then, for $ 0\leqq t_{1}<t_{2}<\infty$

we have

(2.6) $\left\{\begin{array}{l}|\eta(t_{2})-\eta(t_{1})|\leqq 2\max\{|w(u)-w(t_{1})| : t_{1}\leqq u\leqq t_{2}\}\\|l(t_{2})-l(t_{1})|\leqq\max\{|w(u)-w(t_{1})| : t_{1}\leqq u\leqq t_{2}\}\end{array}\right.$

PROPOSITION 2.1. The SDE (1.3) of Skorohod type has a unique
solution.

PROOF. We construct a solution of (1.3) by the iteration method.
Let $T>0$ be any finite fixed time and define a sequence of Skorohod
equations by

$Y_{0}(t)\equiv 0$ , $L_{0}(t)\equiv 0$ ,

$Y_{n}(t)=\int_{0}^{t}\sigma(Y_{n-1}(u)+L_{n-1}(u))dB(u)$

$+\int_{0}^{t}b(Y_{n-1}(u)+L_{n-1}(u))du+L_{n}(t)$ , $n\geqq 1$ .
By Lemma 2.1 (i), we have

(2.7) $E\{||Y_{n}-Y_{n-1}||_{t}^{2}+\Vert L_{n}-L_{n-1}||_{t}^{2}\}$

$\leqq 10E[\Vert\int_{0}\{\sigma(Y_{n-1}(u)+L_{n-1}(u))-\sigma(Y_{n-2}(u)+L_{n-2}(u))\}dB(u)\Vert_{t}^{2}]$

$+10E[\Vert\int_{0}\{b(Y_{n-1}(u)+L_{n-1}(u))-b(Y_{n-2}(u)+L_{n-2}(u))\}du\Vert_{t}^{2}]$

$\leqq 40K^{2}E\{\int_{0}^{t}\Vert Y_{n-1}+L_{n-1}-Y_{n-2}-L_{n-2}||_{u}^{2}du\}$

$+10K^{2}TE\{\int_{0}^{t}\Vert Y_{n-1}-Y_{n-2}+L_{n-1}-L_{n-2}\Vert_{u}^{2}du\}$

$\leqq(80+20T)K^{2}\int_{0}^{t}E\{||Y_{n-1}-Y_{n-2}||_{u}^{2}+||L_{n-1}-L_{n-2}||_{u}^{2}\}du$ .
On the other hand, by Lemma 2.1 (ii), it is easy to see that

$E\{||L_{1}||_{t}^{2}\}\leqq 8\sigma(0)^{2}t+2b(0)^{2}t^{2}$ ,
$E\{\Vert Y_{1}\Vert_{t}^{2}\}\leqq 32\sigma(0)^{2}t+8b(0)^{2}t^{2}$

Therefore, by a routine argument we see that $Y_{n}(t)$ and $L.(t)$ converge
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uniformly in $te[0, T]$ a8 $n$ tends to $\infty$ . If we denote the limits by $Y$

and $L$ respectively, and if we put

$W_{n}(t)=\int_{0}^{t}\sigma(Y_{n-1}(u)+L_{n-1}(u))dB(u)+\int_{0}^{t}b(Y_{n-1}(u)+L_{n-1}(u))du$ ,

$W(t)=\int_{0}^{t}\sigma(Y(u)+L(u))dB(u)+\int_{0}^{t}b(Y(u)+L(u))du$ ,

then $W_{n}\rightarrow W$ (uniformly in $te[0,$ $T]$) and

(2.8) $\left\{\begin{array}{l}Y_{n}(t)=W_{n}(t)-\min_{0\leq u\leq t}W_{n}(u)\\L_{n}(t)=W_{n}(u)\end{array}\right.$

$ 0\leqq u\leq\iota$

implie8 that (2.8) holds without suffix $n$ . Thu8 the pair $(Y, L)$ is a
solution of the SDE (1.3) of Skorohod type. The proof of the uniqueness
of the solution is also routine and so it is omitted. $\square $

REMARK 2.1. In the ca8e where $\sigma\equiv 1$ , we can also prove that the
equation (1.3) has a unique solution for every continuous function $B(t)$

with $B(O)=0$ .
Next, we consider an equation with a singular drift

(2.9) $\xi(t)=w(t)+\int_{0}^{t}\alpha(\xi(u))du$ , $t\geqq 0$ ,

where $w\in \mathscr{F}$ with $w(O)\geqq 0$ is given and $\alpha$ i8 a continuou8 function
defined on $(0, \infty)$ 8atisfying the following conditions:
(C. 1) $\lim_{x\downarrow 0}\alpha(x)=\infty$ ,

(C.2) $\alpha(x)$ is nonincreasing and $\alpha(x)\geqq 0,$ $\forall x>0$ ,

(C.3) for each $\epsilon>0$ , there exists a positive constant $K_{e}$ such that

$|\alpha(x)-\alpha(y)|\leqq K_{\iota}|x-y|$ for $x,$ $ ye[\epsilon, \infty$ ).

LEMMA 2.2 ([1]). For any given $we\mathscr{G}^{\prime}$ with $w(O)\geqq 0$ , the equation
(2.9) has a unique nonnegative solution. Furthermore, if $\xi$ is the non-
negative solution of

$\xi_{:}(t)=w_{i}(t)+\int_{0}^{t}\alpha(\xi_{:}(u))du$ , $t\geqq 0$ , $i=1,2$ ,

respectively, we have

(2.10) $||\xi_{1}-\xi_{2}||_{t}\leqq 2||w_{1}-w_{2}||$ .



PITMAN TYPE THEOREM 435

REMARK 2.2. McKean [1] treated (2.9) when $\alpha(x)=1/x$ . His method
can be applied to the above general case without any change.

PROPOSITION 2.2. There exists a unique nonnegative solution of the
SDE

(2.11) $Z(t)=\int_{0}^{t}\sigma(Z(u))dB(u)+\int_{0}^{t}(\alpha+b)(Z(u))du$ , $t\geqq 0$ .

PROOF. We construct a solution of (2.11) by the iteration method.
Let $T>0$ be any finite fixed time and define a sequence of equations by

$\left\{\begin{array}{ll}Z_{n}(t)=W_{n}( & )+\int_{0}^{t}\alpha(Z_{n}(u))du ,\\Z_{n}(t)>0 , & t\in[0, T], n=0,1, \cdots,\end{array}\right.$

where $W_{0}(t)\equiv 0$ and

$W_{n}(t)=\int_{0}^{t}\sigma(Z_{n-1}(u))dB(u)+\int_{0}^{t}b(Z_{n-1}(u))du$ , $n\geqq 1$ , $te[0, T]$ .
By Lemma 2.2, it is easy to see that

$E\{\Vert Z_{n}-Z_{n-1}||_{t}^{2}\}\leqq 8E[\Vert\int_{0}\{\sigma(Z_{n-1}(u))-\sigma(Z_{n-2}(u))\}dB(u)\Vert_{t}^{2}]$

$+8E[\Vert\int_{0}\{b(Z_{n-1}(u))-b(Z_{n-2}(u))\}du\Vert_{t}^{2}]$

$\leqq 8K^{2}(4+T)E\{\int_{0}^{t}\Vert Z_{n-1}-Z_{n-2}\Vert_{u}^{2}du\}$ , $t\in[0, T]$ .
On the other hand, by using Lemma 2.2 again, we have

$E\{\Vert Z_{1}-Z_{0}||_{t}^{2}\}\leqq\{32\Vert\sigma(Z_{0})\Vert_{T}^{2}+8T||b(Z_{0})||_{T}^{2}\}t$ , $t\in[0, T]$ .
Therefore, by a routine argument we see that $Z_{n}(t)$ converges uniformly
in $te[0, T]$ as $n$ tends to $\infty$ . If we denote the limit by $Z$, it satisfie8
the equation

$\left\{\begin{array}{ll}Z(t)=\int_{0}^{t}\sigma(Z( & ))dB(u)+\int_{0}^{t}(\alpha+b)(Z(u))du,\\Z(t)\geqq 0, & t\in[0, T].\end{array}\right.$

The proof of the uniqueness of the solution is routine and so it is
omitted. $\square $

\S 3. Proof of Theorem 1.1.

Let $(Y(t), L(t))$ be the solution of (1.3) and put
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$\hat{W}(t)=\int_{0}^{t}\sigma s^{\prime}(Y(u)+L(u))dB(u)$ ,

$\hat{Y}(t)=s(Y(t)+L(t))-s(L(t))$ ,
$\hat{L}(t)=s(L(t))$ .

Before proving Theorem 1.1, we prepare two lemmas.

LEMMA 3.1. The equality

(3.1) $\hat{Y}(t)=\hat{W}(t)+\hat{L}(t)$ , $t\geqq 0$ ,

holds and is a Skorohod equation.

PROOF. Since $Zs=0,$ $It\hat{o}’ 8$ formula implies

(3.2) $s(Y(t)+L(t))=\int_{0}^{t}\sigma s^{\prime}(Y(u)+L(u))dB(u)+2\int_{0}^{t}s^{\prime}(Y(u)+L(u))dL(u)$ .

Noting that $L(t)=\int_{0}^{t}1_{\{0\}}(Y(u))dL(u)$ , we have

(3.3) $\int_{0}^{t}s^{\prime}(Y(u)+L(u))dL(u)=\int_{0}^{t}s^{\prime}(L(u))dL(u)$

$=s(L(t))=\hat{L}(t)$ .
Thus, from (3.2) and (3.3) we obtain (3.1). It is obvious that $\hat{Y}$ is
nonnegative and continuous, and $\hat{L}$ is nondecreasing and continuous.
Since $s(x)$ is strictly increasing, $Y(t)=0$ if and only if $\hat{Y}(t)=0$ and so we
have

$\hat{L}(t)=\int_{0}^{t}s^{\prime}(L(u))dL(u)$

$=\int_{0}^{t}1_{\{0\}}(Y(u))s^{\prime}(L(u))dL(u)$

$=\int_{0}^{t}1_{\{0\}}(\hat{Y}(u))s^{\prime}(L(u))dL(u)$

$=\int_{0}^{t}1_{\{0\}}(\hat{Y}(u))d\hat{L}(u)$ .
Thus, (3.1) is a Skorohod equation. This completes the proof of the
lemma. $\square $

Next, let $\psi$ be the increasing proce8s defined by

$\psi(t)=\int_{0}^{t}|\sigma s^{\prime}(Y(u)+L(u))|^{2}du$
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and $\phi(t)$ its inverse function $\psi^{-1}(t)$ . Put $\overline{W}(t)=\hat{W}(\phi(t)),\overline{L}(t)=\hat{L}(\phi(t))$ ,
$\overline{Y}(t)=\hat{Y}(\phi(t))$ and $\overline{Z}(t)=\overline{Y}(t)+\overline{L}(t)$ . It is easy to see that $\phi(t)$ is an $(F_{t})-$

stopping time and $\overline{W}(t)$ is a one-dimensional $(\mathscr{G}_{\phi(t)}^{-})$-Brownian motion and

$\phi(t)=\int_{0}^{t}|\sigma s^{\prime}(s^{-1}(\overline{Z}(u)))|^{-2}du$ .
LEMMA 3.2. $(\overline{Y},\overline{L})$ is the unique solution of the Skorohod equation:

(3.4) $\overline{Y}(t)=\overline{W}(t)+\overline{L}(t)$ , $t\geqq 0$ .
PROOF. Lemma 8.1 implies

$\left\{\begin{array}{l}\hat{Y}(t)=\hat{W}(t)-\min_{0\leqq u\leqq t}\hat{W}(u)\\\hat{L}(t)=\hat{W}(u)\end{array}\right.$

$0\leqq u\leq t$

Thus, since $\phi$ is strictly increasing, we have

$\left\{\begin{array}{l}\overline{Y}(t)=\overline{W}(t)-mIn\overline{W}(u)\\\overline{L}(t)=-\min_{0\leqq u\leq t}^{\frac{0}{W}}(u)\leqq u\leqq t\end{array}\right.$

This completes the proof of Lemma 3.2. $\square $

PROOF OF THEOREM 1.1. Since $\overline{W}$ is a Brownian motion and $(\overline{Y},\overline{L})$ is
the unique solution of the Skorohod equation (3.4), by Pitman’s theorem
$\overline{Z}$ is a Bessel process with index 3 and is the unique nonnegative solution
of the SDE

(3.5) $\overline{Z}(t)=\overline{B}(t)+\int_{0}^{t}\frac{1}{\overline{Z}(u)}du$ , $t\geqq 0$ ,

where $\overline{B}\equiv\{\overline{B}(t):t\geqq 0\}$ is a one-dimensional Brownian motion starting from
$0$ . We denote the proper reference family of $\overline{B}$ by $(\mathscr{G}_{t}^{-})-$ . Since $\psi(t)$ is
the inverse function of $\phi(t)=\int_{0}^{t}|\sigma s’(s^{-1}(\overline{Z}(u)))|^{-2}du,$ $\psi(t)$ is an $(\mathscr{G}_{t}^{-})-$-stopping

time. Noting that $Z(t)=s^{-1}(\overline{Z}(\psi(t))),$ $\{(s^{-1}(x)\}^{\prime}=1/s^{\prime}(s^{-1}(x))$ and $\{s^{-1}(x)\}^{\prime}=$

$-s^{\prime\prime}(s^{-1}(x))/s^{\prime}(s^{-1}(x))^{3}$ , by It\^o’s formula we have

(3.6) $Z(t)=\int_{0}^{\psi^{(t)}}\frac{1}{s(s^{-1}(\overline{Z}(u)))}d\overline{B}(u)$

$+\int_{0}^{\psi^{(t)}}\{\frac{1}{s(s^{-1}(\overline{Z}(u)))\overline{Z}(u)}-\frac{s^{\prime\prime}(s^{-1}(\overline{Z}(u)))}{2s^{\prime}(s^{-1}(\overline{Z}(u)))^{3}}\}du$

$=\int_{0}^{t}\sigma(Z(u))d\hat{B}(u)+\int_{0}^{t}b(Z(u))du\sim$ ,
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where $\hat{B}$ is the $(\ovalbox{\tt\small REJECT}_{\psi_{(t)}}^{-})$-Brownian motion defined by

$\hat{B}(t)=\int_{0}^{\psi^{(t)}}\frac{1}{\sigma s’(s^{-1}(\overline{Z}(u)))}d\overline{B}(u)$ .
It is easy to see that we can take $\delta>0$ so that $\alpha(x)=\sigma^{2}s(x\wedge\delta)/s(x\wedge\delta)$

satisfies the conditions $(C.1)\sim(C.3)$ in \S 2. Then $ b_{r}(x)\wedge=b(x\wedge r)\wedge$ is a Lip-
schitz continuous function for each $r(>\delta)$ , where $ b(x)=b(x)-\alpha(x)\wedge\sim$ . If
we put

$\tau^{(r)}=\inf\{t>0:Z(t)=r\}$ ,

from (3.6) $Z$ satisfies the SDE

(3.7) $ Z(t)=\int_{0}^{t}\sigma(Z(u))d\hat{B}(u)+\int_{0}^{\iota}(\alpha+b_{r})(Z(u))du\wedge$ ,

for $0\leqq t\leqq\tau^{(r)}$ . Since (3.7) has a unique nonnegative solution for each
$r(>\delta)$ by Proposition 2.2 and $\tau^{(r)}\rightarrow\infty$ a.s. as $ r\rightarrow\infty$ , we see that $Z$ is
the unique nonnegative solution of the SDE

(3.8) $ Z(t)=\int_{0}^{t}\sigma(Z(u))d\hat{B}(u)+\int_{0}^{t}b(Z(u))du\sim$ .

It is then an easy matter to check that $Z$ is a diffusion proce8s 8tarting
from $0$ with generator $\tilde{\mathscr{L}}$ . The proof of Theorem 1.1 is finished. $\square $

\S 4. Remarks.

In our original proof of Theorem 1.1 we employed a limit procedure
by establishing first a discrete time version of Pitman’s theorem for
birth and death chains. The possibility of the present proof given in
\S 3 was suggested by Prof. S. Watanabe, and also by Prof. H. Tanaka
including some details. Although our first proof is longer than the
present one, it will be worth while giving a key part of the first one,
namely, a theorem of Pitman type for birth and death chains.

For each $x\in Z$, let $p(x)$ , $q(x)$ be given positive numbers with
$p(x)+q(x)=1$ and put $r(x)=q(x)/p(x)$ ,

$a(x, u)=\left\{\begin{array}{ll}1, & ue[0, p(x)],\\-1, & ue(p(x), 1],\end{array}\right.$

for $u\in[0,1]$ . Next, let $U(i),$ $i=1,2,$ $\cdots$ be a sequence of i.i. $d$ . random
variables with the uniform distribution on $[0,1]$ . Then
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(4.1) $x(k)=\sum_{=1}^{k}a(x(i-1), U(i))$ , $k\in Z_{+}\equiv\{0,1,2, \cdots\}$ ,

is a birth and death chain with transition function

$p(x, y)=\left\{\begin{array}{ll}p(x), & y=x+1,\\q(x), & y=x-1,\\0 , & otherwise.\end{array}\right.$

Consider the equation

(4.2) $y(k)=\sum_{i=1}^{k}a(y(i-1)+l(i-1), U(i))+l(k)$ , $k\in Z_{+}$ ,

under conditions

(4.3) $y(k)\geqq 0$ , $keZ_{+}$ ,

(4.4) $l$ is nonincreasing, $l(O)=0$ and
$l(k+1)>l(k)$ only when $y(k+1)=0$ .

The equation (4.2) together with (4.3) and (4.4) is considered as a discrete
time version of Skorohod’s equation. The existence and $uniquenes8$ of
the solution of (4.2) is clear, indeed, if we define $(y, l)$ by $(y(O), l(O))=(O, 0)$

and

(4.5) $\left\{\begin{array}{l}y(k+1)=\{y(k)+a(y(k)+l(k), U(k+1))\}\\l(k+1)=l(k)+1_{\{0\}}(y(k))1_{\{-1\}}(a(y(k)+l(k), U(k+1)))\end{array}\right.$

$keZ_{+}$ , inductively, $(y, l)$ is the unique solution of (3.2). Put $z(k)=$

$y(k)+l(k),$ $k\in Z_{+}$ . Then we have the following theorem.

THEOREM 4.1. $\{z(k), k\in Z_{+}\}$ is a Markov chain on $Z_{+}with$ transit,ion

function
$p^{H}(x, y)=h(x)^{-1}p(x, y)h(y)$ , $x,$ $y\in Z_{+}$ ,

where

$h(x)=\left\{\begin{array}{ll}1, & x=0,\\1+ \sum_{j=1}\prod_{i=0}^{x}\gamma(i)j-1, & x=1,2,3, \cdots\end{array}\right.$

SKETCH OF PROOF. By (4.5) we see that $\{(z(k), l(k)), k\in Z_{+}\}$ is a
Markov chain on $\{(x_{1}, x_{2})\in Z_{+}\times Z_{+} : x_{1}\geqq x_{2}\}$ with transition function
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(4.6) $\hat{p}((x_{1}, x_{2}),$ $(y_{1}, y_{2}))=\left\{\begin{array}{l}p(x_{1}, y_{1})y_{2}=x_{2}\\p(x_{1}, y_{1})r(x_{1})x_{1}=x_{2}\\(y_{1}, y_{2})=(x_{1}+1, x_{2}+1)\\0\end{array}\right.$

Thus, we can calculate the probability of events $\{z(k)=a_{k}, 0\leqq k\leqq m\}$ ,
$m\in Z_{+},$ $a_{k}eZ_{+},$ $k=0,1,$ $\cdots,$ $m$ , and consequently obtain

$P(z(k)=a_{k}, 0\leqq k\leqq m)=\prod_{k=1}^{n}p^{H}(a_{k-1}, a_{k})$ . $\square $
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