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Abstract. We show the equivalence of a certain property of topological dynamical
systems $\Sigma=(X, G)$ and a particular structure of ideals in the corresponding crossed product
$ A(\Sigma)=C(X)\rangle\triangleleft G\alpha$ where $X$ is a compact 8et and $G$ is a discrete group. As an application,
we give a complete characterization for $A(\Sigma)$ to be simple.

\S 1. Introduction.

Throughout this paper, $X$ is a compact Hausdorff space, which is
not assumed to satisfy the second axiom of countability, and $G$ a discrete
group acting on $X$ as a group of $homeomorphi8ms$ . We denote by $A(\Sigma)$

the transformation group $C^{*}$-algebra associated with the topological dy-
namical system $\Sigma=(X, G)$ .

In the theory of transformation group $C^{*}- algebra8$ , we are interested
in the relationship between the structure of ideals in the $C^{*}$-algebra
$A(\Sigma)$ and the property of the dynamical system $\Sigma$ . In this paper we
prove the following: if each non-zero ideal in $A(\Sigma)$ has an inter8ection
with the subalgebra $C(X)$ of $A(\Sigma)$ , then Int $X^{t}$ is empty for all $t\neq e$ ,
and the converse implication holds if $G$ is amenable, where $C(X)$ i8 the
algebra of all $continuou8$ functions on $X$ and $X^{t}$ is the set of fixed
points for the action $t$ on $X$. In the theory of $C^{*}$-algebras, Olesen and
Peder8en [6: Theorem 2.5, $(i)\leftrightarrow(iv)$ ] proved a result corresponding to the
equivalence mentioned above for the $C^{*}$-dynamical systems $cons\ddagger 8tIng$ of
general $C^{*}$-algebras and actions of locally compact abelian groups. We
here note that $thi8$ equivalence first appeared in O’Donovan [4; Theorem
1.2.1] (cf. [6; Remark 4.8]). In contrast with their8, the pre8ent proof
is rather elementary and self-contained

As an application of our equivalence result, we can give a complete
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characterization for $A(\Sigma)$ to be simple; that is, $A(\Sigma)$ is simple if and only

if (1) the action of $G$ on $X$ is minimal, (2) $IntX^{t}=\emptyset$ for all $t\neq e$ , and
(3) $G$ is amenable. In the case of abelian groups, this chalacterization
for simplicity is derived from the results by Olesen and Pedersen [5:

Theorem 6.5], [6: Theorem 2.5]; besides, the sufficiency of these conditions
for $A(\Sigma)$ to be simple i8 essentially derived from the results by Elliott
[1: Theorem 3.2] and Kishimoto [3: Theorem 3.1].

\S 2. $Tran8formation$ group $C^{*}$-algebras.

For each $t$ in $G$ , its action on $X$ is denoted by $x\rightarrow t(x)$ . The orbit
of $x$ in $X$ and the i8otropy group for $x$ are denoted by $0(x)$ and $G_{x}$

$re8pectively$ . Let $\alpha_{t}$ be the canonical $*$-automorphism of $C(X)$ induced
by the action of $t$ ; that is, $\alpha_{t}(f)(x)=f(t^{-1}(x))$ for all $x$ in $X$. The
transformation $C^{*}$-algebra ( $=C^{*}$-crossed product) $A(\Sigma)$ contains a dense
$*$-algebra $K(G, C(X))$ of those functions of $G$ into $C(X)$ which vanish
outside a finite subset of $G$ . The element $f\delta_{t}$ in $K(G, C(X))$ means the
function defined by $(f\delta_{t})(t)=f$ and $(f\delta_{t})(s)=0$ for $s\neq t$ . Using this no-
tation, every function $a$ in $K(G, C(X))$ is written a8 follows:

$a=\sum_{teF}$ a $\delta_{t}$ , $(a_{t}eC(X))$ ,

where $F$ is a finite subset of $G$ . The multiplication and $*$-operation in
$K(G, C(X))$ are given by $f\delta_{t}g\delta_{\epsilon}=f\alpha_{t}(g)\delta_{t}$. and $(f\delta_{t})^{*}=\alpha_{t^{-1}}(\overline{f})\delta_{t^{-1}}$ , where the

bar means the complex conjugate. The $C^{*}$-algebra $C(X)$ is regarded as
a subalgebra of $A(\Sigma)$ by means of the embedding: $f\rightarrow f\delta_{\iota}$ , where $e$ is
the identity in $G$ . If $G$ is amenable, $A(\Sigma)$ coincides with the reduced
cros8ed product $A_{f}(\Sigma)$ . In this case, every element $a$ in $A(\Sigma)$ has a
formal expansion with Fourier coefficient;

$a\sim\sum_{t\in G}a_{t}\delta_{t}$
, $(a_{t}\in C(X))$ .

With $E$, we mean the conditional expectation: $a\rightarrow a,$ .

\S 3. Irreducible representations of $A(\Sigma)$ .
Since we shall make use of algebraic induced covariant representations

of $A(\Sigma)$ induced by isotropy groups, we briefly 8ketch their structure8.
Let $u$ be a unitary representation $s\rightarrow u$. of a subgroup $K$ of $G$ on a
Hilbert 8pace $\mathfrak{H}_{u}$ . We write the left coset space $G/K=\{r_{\alpha}K:\alpha\in\Gamma\}$ for

a set of repre8entatives $R=\{r_{\alpha}:\alpha\in\Gamma\}$ where $r_{0}=e$ . Let $\mathfrak{H}_{0}$ be the Hilbert
space with dim $\mathfrak{H}_{0}=card(G/K)$ . We put $\mathfrak{H}=\mathfrak{H}_{0}\otimes \mathfrak{H}_{u}$ . Then each vector
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$\xi$ in $\mathfrak{H}$ is expanded as $\sum_{\alpha e\Gamma}e_{\alpha}\otimes\xi_{\alpha}$ with respect to a fixed complete
orthonormal basis $\{e_{\alpha}:\alpha\in\Gamma\}$ in $\mathfrak{H}_{0}$ . We define a unitary representation
$L_{a}^{R}$ of $G$ induced by $u$ in the following way:

$ L_{u}^{R}(t)(e_{\alpha}\otimes\xi)=e_{\beta}\otimes u_{\epsilon}\xi$ ,

where $t\gamma_{\alpha}=\gamma_{\beta}s$ for $s$ in $K$. It is easy to show that $L_{u}^{R}$ is a unitary
representation of $G$ . We here remark that the underlying Hilbert space
for $L_{w}^{R}$ depends only on $\mathfrak{H}_{u}$ and the cardinal number of $G/K$, whereas in
the case of usual induced representation the underlying Hilbert space
depends more heavily on the unitary representation of $K$.

Now take a point $x$ in $X$ with the isotropy subgroup $G_{x}=$

$\{t\in G:t(x)=x\}$ . Taking $G_{x}$ as the above subgroup $K$, we may write
$0(x)=\{r_{\alpha}(x):\alpha\in\Gamma\}$ . Let $\pi_{x}^{R}$ be the representation of $C(X)$ on $\mathfrak{H}$ defined
by

$\pi_{x}^{R}(f)(e_{\alpha}\otimes\xi)=f(\gamma_{\alpha}(x))e_{\alpha}\otimes\xi$ , $(f\in C(X))$ .
Let $L_{u}^{R}$ be the representation of $G$ defined above for a unitary repre-
sentation $u$ of G. on $\mathfrak{H}_{u}$ Then we can see that the pair $(\pi_{x}^{R}, L_{u}^{R})$ is a
covariant representation of the $C^{*}$ -dynamical system $\{C(X), G, \alpha\}$ . We
denote by $\rho_{x,u}(=\pi_{x}^{R}\times L_{u}^{R})$ the representation of $A(\Sigma)$ defined by $\pi_{x}^{R}$ and
$L_{u}^{R}$ . It can be shown that the representation $\pi_{x,u}^{R}$ as well as $L_{u}^{R}$ does
not depend on the choice of the representatives $R=\{r_{\alpha}:\alpha\in\Gamma\}$ within
unitary equivalence (cf. [7: Proposition 4.1.2]).

A representation $(\rho, \mathfrak{H})$ of $A(\Sigma)$ is said to be discrete if there exists
a common eigenvector in $\mathfrak{H}$ for all $\rho(f)(f\in C(X))$ . In [7: Proposition
4.1.6], it was proved that an irreducible representation $\rho$ of $A(\Sigma)i_{8}$

discrete if and only if $\rho$ is unitarily equivalent to $\rho_{x,u}$ for a point $x$ in $X$

and an irreducible representation $u$ of $G_{x}$ . For $x$ in $X$, a representation
$u$ of $G_{x}$ and a unit vector $\xi$ in $\mathfrak{H}_{u}$ , we put

$\psi_{x,u,\xi}(a)=(\rho_{x,u}(a)(e_{0}\otimes\xi), e_{0}\otimes\xi)$ , (a $eA(\Sigma)$).

Since the representation of $A(\Sigma)$ associated with a state extension of the
evaluation state $\mu_{x}$ of $C(X)$ for a point $x$ is discrete, one can prove the
following proposition similar to [7: Proposition 4.1.6].

PROPOSITION 3.1. A state $\psi$ of $A(\Sigma)$ is an extension of a pure state
$\mu_{x}$ of $C(X)$ if and only if $\psi$ is of the form $\psi=\psi_{x,u,\xi}$ .

\S 4. Ideal structure and orbit structure.

In this section, we prove the main result stated before.



254 SHINZ\^O KAWAMURA AND JUN TOMIYAMA

THEOREM 4.1. The following condition (A) implies the condition (B).

If $G$ is amenable, the converse implieation holds.
(A) $I\cap C(X)\neq\{0\}$ for each non-zero ideal $I$ in $A(\Sigma)$ ,
(B) Int $ X^{t}=\emptyset$ for all $t\neq e$ , where Int $X^{t}$ means the interior of $X^{t}$ .
PROOF. $((A)\rightarrow(B))$ . Suppo8e that Int $ X^{t}\neq\emptyset$ for 8ome $t\neq e$ . Then

there exists a continuous function $f$ with $supp(f)$ contained in $X^{t}$ . Let
$I$ be the ideal generated by the element $f-f\delta_{t}$ in $A(\Sigma)$ . We shall $8how$

that $I\cap C(X)=\{0\}$ . For each $x$ in $X$, we take a state exten8ion $\varphi ae$ to
$A(\Sigma)$ of the point mea8ure $\mu_{x}$ such that $\varphi_{x}(\delta.)=1$ if $s$ belongs to $G_{g}$ and
$\varphi_{g}(\delta.)=0$ if $s$ does not belong to $G_{x}$ . Let $h$ and $g$ be continuous functions
on $X$. Since $\varphi_{x}(f\delta_{t})=\varphi_{x}(f)\varphi_{x}(\delta_{t})$ for $f$ in $C(X)$ , we have

$\varphi_{v}(h\delta_{f}(f-f\delta_{t})g\delta.)=\varphi_{x}(h\delta_{f}fg\delta.)-\varphi_{g}(h\delta_{f}f\delta g\delta.)$

$=\varphi_{g}(h\alpha,(fg)\delta_{f}.)-\varphi_{r}(h\alpha,(f)\alpha_{r\iota}(g)\delta_{t}.)$

$=\varphi_{r}(h\alpha,(fg))\varphi_{r}(\delta_{f}.)-\varphi_{g}(h\alpha,(f)\alpha_{t\iota}(g))\varphi_{x}(\delta_{tt\iota})$

$=h(x)f(r^{-\iota}(x))g(r^{-1}(x))\varphi_{g}(\delta_{f}.)-h(x)f(r^{-1}(x))g((rt)^{-1}(x))\varphi_{x}(\delta_{rt}.)$ .. . . . $(*)$

If $r^{-1}(x)$ does not belong to $X^{\iota}$ , then $f(r^{-1}(x))=0$ . Otherwi8e we have
$(rt)^{-1}(x)=r^{-1}(x)$ . Thus we have $g(r^{-1}(x))=g((rt)^{-1}(x))$ , and $(rts)^{-1}(x)=$

$(rs)^{-1}(x)$ , namely $(rs)(rts)^{-1}$ belong8 to $G_{x}$ . Hence $\varphi_{x}(\delta_{f}.)=\varphi_{x}(\delta_{f}.)$ . There-
fore it follows that $(*)=0$ . Since each element $a$ in $I$ is approximated
by the finite combinations of the elements mentioned above, $\varphi_{x}(a)=0$ for
all $x$ in $X$. Thu8, if the element $a$ in $I$ belong8 to $C(X)$ , then $a=0$ .

$((B)\rightarrow(A))$ . Suppose that Int $ X^{t}=\emptyset$ for all $t\neq e$ and $G$ i8 amenable.
Let $I$ be an ideal in $A(\Sigma)$ such that $I\cap C(X)=\{0\}$ . Let $a$ be an element
in $I$. Since $G$ is amenable, $a$ has the expan8ion $ a\sim\sum_{teG}a_{t}\delta$ in $A(\Sigma)$ .
Fir8t we 8hall show that $a=E(a)=0$ , that $i8,$ $E(a)(x)=0$ for all $xeX$.
Let $q$ be the quotient map of $A(\Sigma)$ onto the quotient $C^{*}$-algebra $B=$

$A(\Sigma)/I$. The re8triction of $q$ to $C(X)$ is then a $*$-isomorphi8m of $C(X)$

onto $q(C(X))$ . Let $\nu$, be the pure state on $q(C(X))$ as8ociated with a
point $y$ in $X$, that is, $\nu,(q(f))=f(y)$ for $f$ in $C(X)$ . Let $\Psi$, be a pure
state extension to $B$ of $\nu,$ . Put $\psi_{v}=\Psi,\cdot q$ . Then $\psi$, i8 a pure state of
$A(\Sigma)$ with $\psi,(f)=f(y)$ for $f$ in $C(X)$ and

$\psi_{v}(a)=(\Psi_{u}\cdot q)(a)=0.$ $\cdots\cdots(i)$

Let $x(\in X)$ and $\epsilon(>0)$ be given. Then there exist a neighbourhood $U$

of $x$ such that

$|E(a)(x)-E(a)(y)|<\epsilon$ for all $y$ in $U$ . ... ..(ii)
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and an element $b=\sum_{teF}b_{t}\delta_{t}$ in $K(G, C(X))$ such that

$||a-b||<\epsilon$ ... ... (iii)

where $F$ is a finite 8ubset in $G$ . For the sub8et $F$ and the neighbourhood
$U$, there exi8ts a point $y$ in $U$ such that $t(y)\neq y$ for all $t$ in $F-\{e\}$ . In
fact, if $U$ were contained in $\bigcup_{teF-\{e\}}X^{t}$ , one of the sets $X^{t}’ s$ should
have an interior point, and this contradicts the assumption. Next let
us consider the following inequality:

$|E(a)(x)|\leqq|a_{6}(x)-a_{e}(y)|+|a_{e}(y)-b.(y)|$

$+|b_{e}(y)-\psi_{y}(b)|+|\psi_{y}(b)-\psi_{y}(a)|+|\psi_{y}(a)|$ .
We need to estimate only the third term of right hand side. For the
pure state $\psi_{y}$ , by Proposition 3.1 there exists an irreducible representation
of $A(\Sigma)$ of the form $\rho_{y,u}=\pi_{y}^{\ddagger i}\times L_{u}^{R}$ on $\mathfrak{H}_{0}\otimes \mathfrak{H}_{u}$ such that

$\psi_{y}(c)=(\rho_{y,u}(c)\xi_{e}, \xi_{e})$ , $(c\in A(\Sigma))$ ,

where $\xi_{e}$ is a unit vector in $e_{0}\otimes \mathfrak{H}_{u}$ Since $L_{u}^{R}(t)\xi_{e}$ and $\xi_{0}$ are orthogonal
for $teG,$ , we have the following:

$\psi_{y}(b)=(\rho_{y,u}(b)\xi_{l}, \xi_{e})=((\sum_{t\in F}\pi_{y}(b_{t}))L_{u}(t)\xi_{\iota}, \xi_{l})$

$=(\sum_{teG}b_{t}(t(y))L_{u}(t)\xi_{\iota}, \xi_{e})=(b_{e}(y)\xi_{6}, \xi_{\iota})=b_{\iota}(y)$ .
Therefore, combining thi8 with (i), (ii) and (iii), we have

$|E(a)(x)|\leqq 3\epsilon$ .
Since $\epsilon$ is arbitrary, it follow8 that $E(a)(x)=0$ , thu8 $E(a)=0$ . For each
$t$ in $G$ , since $a\delta_{t-1}$ belongs to the ideal $I$, we have $a_{t}=E(a\delta_{t-1})=0$ .
Hence $a=0$ . $\square $

REMARK 4.2. By virtue of [8: Propo8ition 4.1.4], we have that, when
$G$ is amenable, the condition (A) is equivalent to the fact that $C(X)$ i8
a maximal abelian subalgebra of $A(\Sigma)$ .

REMARK 4.3. Suppo8e that $G$ is amenable and the action of $G$ i8
topologically transitive. Then, in some cases, e.g., when the 8et
$\{t^{n}:n\in Z\}$ is infinite, the ideal $I$ generated by $f-f\delta_{t}$ in the proof of
the implication $(A)\rightarrow(B)$ turns out to be an essential ideal.

By Theorem 4.1, we get a complete characterization for $A(\Sigma)$ to be
simple.
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THEOREM 4.4. The $C^{*}$-algebra $A(\Sigma)$ is simple if and only if (1) the
action of $G$ on $X$ is minimal, (2) Int $ X^{t}=\emptyset$ for all $t\neq e$ , and (3) $G$ is
amenable.

As for the reduced transformation group $C^{*}$-algebra $A_{r}(\Sigma)$ for a non-
amenable group, it is to be noticed that in some cases the minimality
of the dynamical sy8tem is enough to imply it8 simplicity (cf. [2:
Theorem 1]).

REMARK 4.5. In the ca8e of abelian group, by Theorem 4.1 we can
get a complete characterization for $A(\Sigma)$ to be prime. Namely it follows
that $A(\Sigma)$ is prime if and only if (1) the action of $G$ is topologically
transitive, and (2) Int $ X^{t}=\emptyset$ for all $t\neq e$ . This characterization is of
course well known in the general theory of $C^{*}$-crossed product (cf. [5:
Theorem 5.8]). Now applying the above characterization, we can get a
prime group $C^{*}$ -algebra $C^{*}(G)$ associated with an amenable group $G$ , in
contrast with the fact that no group $C^{*}$-algebra of an amenable group
is simple. In fact, let $G$ be the semi-direct product $Z^{2}xZ$ a8sociated
with an action $\alpha=\left(\begin{array}{l}11\\12\end{array}\right)\in Aut(Z^{2})$ ; i.e., $(a, m)(b, n)=(a+\alpha^{m}(b), n+m)$ for

$(a, m),$ $(b, n)\in Z^{2}\times Z$. Let $\tilde{\alpha}=\left(\begin{array}{l}12\\11\end{array}\right)$ be the dual action on $T^{2}=\hat{Z}^{2}$ and $\Sigma$

the topological dynamical system $(T^{2}, G=\{\tilde{\alpha}^{n}:n\in Z\})$ . The group $C^{*}-$

algebra $C^{*}(G)$ is $then*$-i8omorphic to the transformation group $C^{*}$-algebra
$A(\Sigma)$ . Since the action $\tilde{\alpha}$ on $T^{2}$ is topologically transitive and the interior
of the set of fixed points for $\tilde{\alpha}^{n}(n\neq 0)$ is empty, $A(\Sigma)$ is prime, thus
$C^{*}(G)$ is prime, too.
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