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Abstract. We show the equivalence of a certain property of topological dynamical
systems 2=(X, G) and a particular structure of ideals in the corresponding crossed product
A(2)=C(X)X G, where X is a compact set and G is a discrete group. As an application,
we give a cac;mplete characterization for A(X) to be simple.

§1. Introduction.

Throughout this paper, X is a compact Hausdorft space, which is
not assumed to satisfy the second axiom of countability, and G a discrete
group acting on X as a group of homeomorphisms. We denote by A(Y)
the transformation group C*-algebra associated with the topological dy-
namical system Y =(X, G).

In the theory of transformation group C*-algebras, we are interested
in the relationship between the structure of ideals in the C*-algebra
A(2) and the property of the dynamical system 3. In this paper we
prove the following: if each non-zero ideal in A(Y) has an intersection
with the subalgebra C(X) of A(X), then Int X* is empty for all t=e,
and the converse implication holds if G is amenable, where C(X) is the
algebra of all continuous functions on X and X’ is the set of fixed
points for the action ¢ on X. In the theory of C *-algebras, Olesen and
Pedersen [6: Theorem 2.5, (i)« (iv)] proved a result corresponding to the
equivalence mentioned above for the C*-dynamical systems consisting of
general C*-algebras and actions of locally compact abelian groups. We
here note that this equivalence first appeared in O’Donovan [4; Theorem
1.2.1] (cf. [6; Remark 4.8]). In contrast with theirs, the present proof
is rather elementary and self-contained

As an application of our equivalence result, we can give a complete
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characterization for A(Z) to be simple; that is, A(Y) is simple if and only
if (1) the action of G on X is minimal, (2) Int X*=0@ for all t+e, and
(8) G is amenable. In the case of abelian groups, this characterization
for simplicity is derived from the results by Olesen and Pedersen [5:
Theorem 6.5], [6: Theorem 2.5]; besides, the sufficiency of these conditions
for A(Z) to be simple is essentially derived from the results by Elliott
[1: Theorem 3.2] and Kishimoto [3: Theorem 3.1].

§2. Transformation group C*-algebras.

For each ¢t in G, its action on X is denoted by x—t(x). The orbit
of z in X and the isotropy group for x are denoted by O(x) and G.
respectively. Let a, be the canonical x-automorphism of C(X) induced
by the action of t; that is, a.(f)(@)=f('(x)) for all z in X. The
transformation C*-algebra (=C*-crossed product) A(Y) contains a dense
x-algebra K(G, C(X)) of those functions of G into C(X) which vanish
outside a finite subset of G. The element f§, in K(G, C(X)) means the
function defined by (f3,)(t)=f and (f9,)(8)=0 for s#t. Using this no-
tation, every function a in K(G, C(X)) is written as follows:

a=§v Cbgat ’ (a't € C(X)) ’

where F is a finite subset of G. The multiplication and x-operation in
K(G, C(X)) are given by f0.90,= fa.(9)0., and (f9,)*=a,-1(f)d,-1, where the
bar means the complex conjugate. The C*-algebra C(X) is regarded as
a subalgebra of A(Z) by means of the embedding: f—fo,, where e is
the identity in G. If G is amenable, A(J) coincides with the reduced
crossed product A,(2). In this case, every element ¢ in A(Y) has a
formal expansion with Fourier coefficient;

a~‘%’ .o, , (a; € C(X)) .
With E, we mean the conditional expectation: a —a,.

§3. Irreducible representations of A(Z).

Since we shall make use of algebraic induced covariant representations
of A(Y) induced by isotropy groups, we briefly sketch their structures.
Let % be a unitary representation s—wu, of a subgroup K of G on a
Hilbert space .. We write the left coset space G/K={r,K: a €I} for
a set of representatives R={r,: « € I'} where r,=e. Let 9, be the Hilbert
space with dim §,=card(G/K). We put $=9,9.. Then each vector
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§ in § is expanded as 3,.re,Q&, with respect to a fixed complete
orthonormal basis {¢,: €I’} in §,. We define a unitary representation
Li of G induced by % in the following way:

Li(t)(e.R8) = e,Qu.¢ ,

where tr,=r,s for s in K. It is easy to show that L} is a unitary
representation of G. We here remark that the underlying Hilbert space
for L7 depends only on £, and the cardinal number of G/K, whereas in
the case of usual induced representation the underlying Hilbert space
depends more heavily on the unitary representation of K.

Now take a point 2 in X with the isotropy subgroup G,=
{teG: t(x)=x}. Taking G, as the above subgroup K, we may write
O@)={r.(x): a€I'}. Let 7nf be the representation of C(X) on © defined
by

T (f)(e.R8) = f(r.(x))e.®¢, (feC(X)).

Let L} be the representation of G defined above for a unitary repre-
sentation % of G, on §,. Then we can see that the pair (w?, LY) is a
covariant representation of the C*-dynamical system {C(X), G, a}. We
denote by p,.(=nFxLEF) the representation of A(2) defined by #nZ and
Lj. It can be shown that the representation w’., as well as LZ does
not depend on the choice of the representatives R={r,:ac'} within
unitary equivalence (cf. [7: Proposition 4.1.2]).

A representation (o, ) of A(Y) is said to be discrete if there exists
a common eigenvector in $ for all p(f) (feC(X)). In [7: Proposition
4.1.6], it was proved that an irreducible representation © of A(Y) is
discrete if and only if o is unitarily equivalent to Q.. for a point 2 in X
and an irreducible representation » of G,. For x in X, a representation
u of G, and a unit vector ¢ in 9., we put

Vau,e(@) = (0:,4(@)(6,R8), €R¢8) ,  (ae AQ)) .

Since the representation of A(Y) associated with a state extension of the
evaluation state g, of C(X) for a point z is discrete, one can prove the
following proposition similar to [7: Proposition 4.1.6]. ‘

PROPOSITION 3.1. A state o of A(3) is an extension of a pure state
L. of C(X) if and only if  is of the form Y=y 4 e

§4. Ideal structure and orbit structure.

In this section, we prove the main result stated before.
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THEOREM 4.1. The following condition (A) implies the condition (B).
If G is amenable, the converse tmplication holds.

(A) INC(X)#{0} for each non-zero ideal I in A(Z),

(B) Int X*=0Q for all t+e, where Int X* means the interior of X°.

PrOOF. ((A)—(B)). Suppose that Int X*# @ for some t+e. Then
there exists a continuous function f with supp(f) contained in X*. Let
I be the ideal generated by the element f—f9, in A(Z). We shall show
that INC(X)={0}. For each z in X, we take a state extension @, to
A(Z) of the point measure g, such that ¢,(3,)=1 if s belongs to G, and
.,(0,)=0 if s does not belong to G,. Let h and g be continuous functions
on X. Since ¢,(f3,)=2.(f)P.(:;) for f in C(X), we have

P, (hd,(f — £0.)98,)=P.(hd,f 90,) — P.(h.[.90,)
=@,(ha,(f9)5..) —P.(hat, ()t (9)0.:.)
=@,(hat,(f 9))P.(0r.) — Palhot,(f)r(9))P(0rss)
= h(x) £ (r~(2)) g (r (@) P.(5.,) — h(®) £ (r7(@)) g () (&) P2 (0res) -

If »~'(z) does not belong to X*, then f(r~*(x))=0. Otherwise we have
(rt)"(x)=r"'(x). Thus we have g(r Y (x)) = g((rt)(x)), and (rts)™'(z)=
(rs)~(x), namely (rs)(rts)™* belongs to G,. Hence Po(0,5) =P(0,:,). There-
fore it follows that (x)=0. Since each element a in I is approximated
by the finite combinations of the elements mentioned above, ¢,(a)=0 for
all 2 in X. Thus, if the element a in I belongs to C(X), then a=0.

((B)—(A)). Suppose that Int X*'= for all t+e and G is amenable.
Let I be an ideal in A(3) such that ITNC(X)={0}. Let a be an element
in I. Since G is amenable, ¢ has the expansion a~>.q@:0, in A(2).
First we shall show that a,=E(a)=0, that is, E(a)(x)=0 for all ze X.
Let ¢ be the quotient map of A(Y) onto the quotient C*-algebra B=
A(3)/I. The restriction of ¢ to C(X) is then a *-isomorphism of C(X)
onto ¢(C(X)). Let v, be the pure state on q(C(X)) associated with a
point y in X, that is, »,(q(f)=S(y) for f in C(X). Let ¥, be a pure
state extension to B of v,. Put ¢,=¥,-q. Then +, is a pure state of
A(Z) with ¢ (f)=f() for f in C(X) and

v @)=T,-)a)=0. e (i)

Let (e X) and ¢ (>0) be | given. Then there exist a neighbourhood U
of z such that

|E(a)(x)— E(@)(y)|<e forall yinU = ------ (ii)
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and an element b=>3),., b0, in K(G, C(X)) such that
le—bll<e el (iii)

where F' is a finite subset in G. For the subset F' and the neighbourhood
U, there exists a point y in U such that t(y)s=y for all ¢t in F—{e}. In
fact, if U were contained in U,.y_., X!, one of the sets X's should
have an interior point, and this contradicts the assumption. Next let
us consider the following inequality:

|E(a)(@)| = |a.(r) —a.(y)| + |a.(y) — b.(y)]
+ Ib,,(y) —"l"v(b)l + l"/"v(b) - "/"v(a')l + ["#‘v(a')l .

We need to estimate only the third term of right hand side. For the
pure state yr,, by Proposition 3.1 there exists an irreducible representation
of A(2) of the form p,,=nfXx L% on $,Q9. such that

P¥y(€) = (0y,u()6es &) »  (c€ A(D)),

where £, is a unit vector in ¢,®9,. Since LZ(t)s, and £, are orthogonal
for t e G,, we have the following:

¥u(0) = (0,,.(0)&,, &)= (X, 7, (b)) Lu(®)ssy &0)
= (2 0EWNLu(®)é0r £)=(0(Y)Ewr £6)=s(Y) -

Therefore, combining this with (i), (ii) and (iii), we have
|E(a)(x)| =3¢ .

Since ¢ is arbitrary, it follows that E(a)(x)=0, thus E(a)=0. For each
t in G, since ad,_, belongs to the ideal I, we have a,= E(as,_,)=0.
Hence a=0. ]

REMARK 4.2. By virtue of [8: Proposition 4.1.4], we have that, when
G is amenable, the condition (A) is equivalent to the fact that C(X) is
a maximal abelian subalgebra of A(Y).

REMARK 4.3. Suppose that G is amenable and the action of G is
topologically transitive. Then, in some cases, e.g., when the set
{t:neZ)} is infinite, the ideal I generated by f—f5, in the proof of
the implication (A)— (B) turns out to be an essential ideal. '

By Theorem 4.1, we get a complete characterization for A(X) to be
simple.




256 SHINZO0 KAWAMURA AND JUN TOMIYAMA

THEOREM 4.4. The C*-algebra A(Y) ts simple i1f and only +f (1) the
action of G on X 18 minimal, (2) Int X*=@ for all t+e, and (3) G 1is
amenable.

As for the reduced transformation group C*-algebra A.(3) for a non-
amenable group, it is to be noticed that in some cases the minimality
of the dynamical system is enough to imply its simplicity (cf. [2:
Theorem 1)).

REMARK 4.5. In the case of abelian group, by Theorem 4.1 we can
get a complete characterization for A(Y) to be prime. Namely it follows
that A(Y) is prime if and only if (1) the action of G is topologically
transitive, and (2) Int X*=¢@ for all ¢#e. This characterization is of
course well known in the general theory of C*-crossed product (cf. [5:
Theorem 5.8]). Now applying the above characterization, we can get a
prime group C*-algebra C*(G) associated with an amenable group G, in
contrast with the fact that no group C*-algebra of an amenable group

is simple. In fact, let G be the semi-direct product Z*x Z associated

with an action a=(% i) € Aut(Z?; i.e., (a, m)(, n)=(a+a™b), n+m) for

(@, m), (b, n)e Z*xZ. Let &=G %) be the dual action on T?=2* and I

the topological dynamical system (T2 G={@":n€Z}). The group C*-
algebra C*(G) is then *-isomorphic to the transformation group C*-algebra
A(X). Since the action & on T is topologically transitive and the interior
of the set of fixed points for & (n+#0) is empty, A(Y) is prime, thus
C*(G) is prime, too.
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