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1. Introduction.

Let $p$ be a prime number and let $R$ be a commutative Noetherian ring of ch $R=p$ .
We put $R^{0}=R\backslash \cup {}_{pe{\rm Min} R}P$ . Then for each ideal $I$ of $R$ the tight closure $I^{*}$ of $I$ is defined
as follows:

$I^{*}:$ $=$ {$x\in R|\exists c\in R^{O}$ such that $c\cdot x^{p}\in I^{[p]}$ for all $e\gg O$} ,

where $I^{[p]}$ denotes the ideal of $R$ generated by the elements $i^{p}(i\in I)$ . Notice that $I^{*}$ is
an ideal of $R$ and

$I\subset I^{*}\subset\overline{I}$ ,

where $T$ denotes the integral closure of $I$.
The notion of tight closure was introduced by Hochster and Huneke [3] and they

are now developing a marvellous theory on tight closures. For example using it they
gave a beautiful new proof of the Briangon-Skoda theorem in characteristic $p$ . See [4]
for the detail.

The purpose of the present paper is to prove the following

THEOREM (1.1). Let $R$ be a Cohen-Macaulay local ring ofch $R=p$ and suppose that
$Q^{*}=Q$ for some parameter ideal $Q$ ofR. Then for any $\mathfrak{p}\in SpecR$ andfor any parameter
ideal $J$ of $R_{p}$ we have $J^{*}=J$ in $R_{p}$ .

We say thata Noetherian local ringR of chR $=pisF- rationalifQ^{*}=Qforany$

parameter ideal $Q$ of $R$ (cf. [1]). With this terminology our theorem (1.1) guarantees
that every local ring of a Cohen-Macaulay F-rational local ring is again F-rational.
The ringR is called F-regular if I* $=IinR_{p}$ for any $\mathfrak{p}\in SpecRandforanyidealIof$

$R_{p}$ . When $R$ is a Gorenstein local ring, it is proved in [3, Proposition 5.1] tfiat $I^{*}=I$

for any ideal $I$ of $R$ once $Q^{*}=Q$ for some parameter ideal $Q$ of $R$ . Therefore as an
immediate consequence of Theorem (1.1) we get
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COROLLAY (1.2). Let $R$ be a Gorenstein local ring of ch $R=p$ and suppose that
$Q^{*}=Q$ for some parameter ideal $Q$ of R. Then $R$ is F-regular.

2. Proof of Theorem (1.1).

Let $R$ be a Noetherian ring of ch $R=p$ . The aim of this section is to prove Theorem
(1.1). We begin with the following

LEMMA (2.1). Let $f_{1},$ $f_{2},$ $\cdots,$ $f_{r}(r\geq 1)$ be a regular sequence in R. Let $I=$

$(f_{1}, f_{2}, \cdots, f_{r-1})R$ and $S=R[1/f_{r}]$ . Then we have

$I^{*}S=(IS)^{*}$

PROOF. Let $x\in R$ and assume that $x/1\in(IS)^{*}$ . We want to show that $x\in I^{*}$ . First
of all choose ce $R$ so that $c/1\in S^{0}$ and $(c/1)\cdot(x/1)^{\prime}\in F^{pl}S$ for all $e\gg O$ . Notice that we
may assume $c\in R^{0}$ . In fact, suppose $c\not\in R^{0}$ and put $\mathscr{F}=\{\mathfrak{p}\in{\rm Min} R|\mathfrak{p}\not\equiv c\}$ . Choose
$d\in\cap {}_{pe}P$ so that $d\not\in\bigcup_{pe{\rm Min} R\backslash },\mathfrak{p}$ . Then $d/1$ is nilpotent in $S$ and so replacing $d$ by a
suitable power of it, we may assume that $d/1=0$ in $S$. Then $c+d\in R^{0}$ and $c/1=(c+d)/1$
$inS$; thus we can takec inside of Ro.

Now let $e\gg O$ be an integer with $(c/1)\cdot(x/1)^{p}\in I^{[p]}S$. Then $ f_{r}^{k}\cdot(cx^{p})\in$

$I^{[p]}=(f_{1}^{p}, f_{2}^{p}, \cdots, f_{r-1}^{p})R$ for some $k>0$ and so we have that $c\cdot x^{p}\in I^{[p]}$ because
$f_{1}^{p},$ $\cdots,$ $f_{r-1}^{p},$ $f$: is an R-regular sequenoe. Hence $x\in I^{*}$ and we have $(IS)^{*}\subset I^{*}S$. As
the opposite inclusion is obvious, this completes the proof of (2.1).

The next result is a generalization of [4, (4.14) Proposition]. They proved it in the
case where $\#Ass_{R}R/I=1$ .

LEMMA (2.2). Let I be an ideal of $R$ such that $Ass_{R}R/I\subset{\rm Max}$ R. Then

$I^{*}R_{p}=(IR_{p})^{*}$

for any $\mathfrak{p}\in Ass_{R}R/I$.
$PR\infty F$ . Let $\mathscr{F}=Ass_{R}R/I$ and let $I=\bigcap_{pe},I(\mathfrak{p})$ denote a primary decomposition

ofIwith $\sqrt{I(\mathfrak{p})}=\mathfrak{p}$ for each $\mathfrak{p}\in \mathscr{F}$ . Then we have that

$I^{*}\subset\bigcap_{pe\mathcal{F}}I(\mathfrak{p})^{*}=\prod_{pe5}I(\mathfrak{p})^{*}$ ,

because $I(\mathfrak{p})^{*}$ is again a p-primary ideal of $R$ . Let $\{x_{p}\}_{pe}$, be a family of elements of
$R$ such that $x_{p}\in I(\mathfrak{p})^{*}$ for each $\mathfrak{p}\in \mathscr{F}$ . Choose $c_{p}\in R^{O}$ so that $c_{p}\cdot x_{p}^{p}\in I(\mathfrak{p})^{[p]}$ for all $e\gg O$ .
Then since

$(c_{p}\prod_{pe\mathcal{F}}x_{p}^{p}$ ,

we see that $\prod_{pe},x_{p}\in(\prod_{pe},I(\mathfrak{p}))^{*}=I^{*}$ . Hence $\prod_{pe},I(\mathfrak{p})^{*}\subset I^{*}$ and so we get
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$I^{*}=\bigcap_{peF}I(\mathfrak{p})^{*}$

Now let $\mathfrak{p}\in \mathscr{F}$ . Then since $I^{*}R_{p}=I(\mathfrak{p})^{*}R_{p}$ and since $I(\mathfrak{p})^{*}R_{p}=(I(\mathfrak{p})R_{p})^{*}$ by [4, (4.14)
Proposition], we have $I^{*}R_{p}=(I(\mathfrak{p})R_{p})^{*}=(IR_{p})^{*}$ . Hence the result follows.

COROLLARY (2.3). Suppose that $R$ is a Cohen-Macaulay local ring of$\dim R=d\geq 1$

and let $f_{1},$ $f_{2},$ $\cdots,$ $f_{d-1}$ be a subsystem ofparameters of R. Let $I=(f_{1},f_{2}, \cdots,f_{d-1})R$ .
Then we have

$I^{*}R_{p}=(IR_{p})^{*}$

for any $\mathfrak{p}\in SpecR$ .
PROOF. Let $\mathfrak{m}$ be the maximal ideal of $R$ . We may assume that $I\subset \mathfrak{p}\doteqdot \mathfrak{m}$ . Hence

$\dim R/\mathfrak{p}=1$ . Choose $f_{d}eR$ so that $f_{1},$ $\cdots,f_{d-1},$ $f_{d}$ forms a system of parameters of $R$

and let $S=R[1/f_{d}]$ . Then by (2.1) we get $I^{*}S=(IS)^{*}$ . Notice that $\mathfrak{p}S$ is a maximal ideal
of $S$, because $\dim R/\mathfrak{p}=1$ and $f_{d}\not\in \mathfrak{p}$ . By the same reason we find $Ass_{S}S/IS\subset{\rm Max} S$ and
so it follows from (2.2) that $(IS)^{*}\cdot S_{pS}=((IS)\cdot S_{pS})^{*}$ . Hence we get $I^{*}R_{p}=(IR_{p})^{*}$ as
$I^{*}S=(IS)^{*}$ .

We note the following striking result of Fedder and Watanabe [1].

PROPOSITION (2.4) ([1, Proposition 2.2]). Let $R$ be a Cohen-Macaulay local ring
and assume that $Q^{*}=Q$ for some parameter ideal $Q$ of R. Then $R$ is F-rational.

PROOF OF THEOREM (1.1). Let $f_{1},$ $f_{2},$ $\cdots,$ $f_{d}$ be a system of parameters of $R$ and
put $Q_{k}=(f_{1}, f_{2}, \cdots, f_{k})R$ for $0\leq k\leq d$. Then because $R$ is F-rational by (2.4) and be-
cause $Q_{k}\subset Q_{k}+(f_{k+1}^{n}, \cdots, f_{d}^{n})R$ , we see

$Q:\subset[Q_{k}+(f_{k+1}^{n}, \cdots, f_{4}^{n})R]^{*}$

$=Q_{k}+(f_{k+1}^{n}, \cdots, f_{d}^{n})R$

for any integer $n\geq 1$ . Hence $Q_{k}^{*}=Q_{k}$ for all $0\leq k\leq d$.
Now let $\mathfrak{p}\in SpecR$ of $\dim R/\mathfrak{p}=1$ and choose a subsystem $f_{1},$ $f_{2},$ $\cdots,$ $f_{d-1}$ of

parameters of $R$ inside of $\mathfrak{p}$ . We put $I=(f_{1}, f_{2}, \cdots,f_{d-1})R$ . Then by (2.3) we see
$I^{*}R_{p}=(IR_{p})^{*}$ in $R_{p}$ . Consequently we have $(IR_{p})^{*}=IR_{p}$ because $I^{*}=I$ as we have
checked above. Since $IR_{p}$ is a parameter ideal of $R_{p}$ , we finally find by (2.4) that $R_{p}$ is
F-rational. Thus by the induction on $\dim R$ , we complete the proof of Theorem (1.1).

REMARK (2.5). A generalization of Theorem (1.1) and its consequences will be
given in the subsequent joint paper [2].
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