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§1. Introduction.

In the study of the fifth Painlevé equation we treated an equation of the form

)
x(xu') = ~;— tanh u cosh ™ 2u+ %x sinh 2u +—8— x% sinh 4u (D

(' =d/dx), where a, y € R, 5 <0. In [4] we studied an asymptotic behaviour of the solution
u=1uy(xX)=u(xg, Uy, Up; X) (xo=>0, uy, uy € R) as x— + oo satisfying an initial condition

Uo(xo)=uo , ug(xo)=up . 2
In this paper we consider a more general nonlinear equation of the form
v +vP(x, v)=0. 3)

Under some assumptions we prove that the solution v=V(x) satisfying an initial
condition as above can be prolonged over the interval x,<x< + o0, and we give an
asymptotic expression of V(x) as x— + c0. Analogous problems are studied in [1], [2]
and [3].

§2. Main result.

Let r and ¢ be positive constants. Consider an equation of the form
u” +u(l+x7pu)+x71 72 (x, u) =0 4)

satisfying the following conditions.
(A) pl(u) is a polynomial of degree 2n (=0)

pW)=1Io+ Aju+ - - + Ay u>"

where
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Ao€R if n=0,
Ags s Azu_1€ER, A,,>0 if n>1.

(B) f(x,u) and (0/0x) f(x, u) are real-valued continuous functions in the domain
D()={(x,u)eR?*; x>r, — 0 <u< + 0}

and have the properties:
(Bl) For every positive constant r', there exists a positive constant L(r') such that

0
| f(x, | <I(r'), gf(x, u) | < L(r')
for x>r, |u|<r'.
(B2) If we put
F(x, u)=2f vf(x, v)dv, (5)
0
“» 5 ’
G(xa u)=zj v—f(x, v)dv ’ (6)
o Ox : .
then there exist real constants a4, oy and B, such that

inf F(x,s)> —oa,u*—B,, ‘ @)

Isl<lul
inf (—G(x, s))= —ayu’—p, ®

Isl<|ul
for x>r, —o0o <u< + oo.
By condition (A), if we put
Pu)=2 f vp(v)dv , )
o
then there exist real constants «, and f, such that

| inf P(s)> —a,u*—B, (10)

Is|<|ul

| for —co<u< + 0.
Let u, and uy be real constants and let x, be a positive constant satisfying xo>r.
We denote by u= U(x) a solution of equation (4) satisfying

Ulxg)=uo,  Ulxo)=up. an

Then we have
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THEOREM 1. Assume that x,>r and that
doxg ttagxg T+ (1/2)( oy | Fa)e T Ixg i< (12)
Then the solution U (x) can be prolonged over x,<x < + 0, and satisfies
U(x)= Ry(p, x)cos(x+ A(p)log x + O (0, x)) , (13)
U'(x)= — R,(p, x)sin(x + A(p)log x+ O (0, x)) , (14)
R(p, x)=p+O0(x" ™), O, x)=0+0(x""9)  (i=0,1) |

as x— + 0. Here p=p(x,, uy, up) and 0=0(x,, uy, up) are integral constants satisfying
p=>0, 0<0<2n, and m(e) and A(p) are constants defined by

m(e)=min{l, ¢} (>0), (15)
A(p)=,goizj(zjjl)f”"p“ (€R). (16)

§3. Properties of U(x).

This and the next sections are devoted to the proof of Theorem 1. We start from
the following.

PROPOSITION 2. [f'the solution U(x) can be prolonged over the interval x, <x < + oo,
then | U(x)| is bounded for x,<x < + co.

Proofr. For x=>x,,
U'(x)+ U(x)+x"*Ux)p(Ux) +x~172Ux) f(x, U(x))=0. a7
Multiplying (17) by 2U’(x) and integrating between y and x, we have
U'(x)? — U'(y)
= —U(x)>? —x"1P(U(x))—x~ ' "*F(x, U(x))
+UQP+y ' PO +y~ ' T F(y, U(Y)

- r t2P(U()dt—(1 + a)fx t~27¢F (e, U(t))dt

y

+j t~17eG (e, U(2))dt (18)
y

for x>y >x, (cf. (5), (6) and (9)). Suppose that | U(x)| is not bounded for x> x,. Then
there exists a sequence {x,} such that

(Xo<) X < <x, <", X, =+ 00 ; (19)
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| U(xy) | = + 00 ; ‘ (20)
| UX)|<|U(x,)| for xo<x<x,. (21)

By (21), condition (B2) and (10), we have P(U()> —a,U(x,)>—B,, F(t, U()>
—a, U(x,)* =By, —G(t, U() > —a, U(x,)* — B, for xo<t<x,. Put x=x, (>y) in (18)
and observe that the integrands satisfy

(T2ZPU@0)+(1+ et 272F(t, U() — 1t~ 1 7°G(z, U(1))
> — Ulx)(opt ™2 +ay(1+e) 25+ aft™179)
—B 2+ (1 +e)~ 2" 41717y
(B=max{f,, B,}) for y<t<x,. We have
U'xn)? + U’ (1 —app ™t —oyp ™t o —ahe ™ (y ™0 — x,79)
<UD+ UG +y 'PUG)+y~ ' °F(p, U(y))
HIBIY ™ +y T T+ Ty (22)
for xo<y<x,. If we take y=y, so large that
1—apot—oyygt o=l e lyge>1/2,
then
U'(x)* +(1/2)U(x,)* < C(y0)

for n satisfying x,>y,, where C(y,) is a positive constant depending on y,. This
contradicts (20). Thus the boundedness of U(x) is proved.

We put y=x, in (18). Then each term in (18) is evaluated as follows. By Proposition
2 and condition (B1), we have
PUMX)=0(1), F(x,Ux)=0(1), G(x, Ux)=0(1)
for x> x,, and hence

fx t7175G (e, U(t))dt = J +w t175G(t, U(9)dt+ O(x ™)

X0 X0

and so on. Thus we have

PROPOSITION 3. If the solution U(x) can be prolonged over the interval x, < x < + o0,
then

U'(x)® + U(x)?>=c+ O(x~™®) (23)

Jor xo <x< + 00, where m(g) is a positive constant given by (15) and c is some nonnegative
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constant depending on x,, u, and u),.
Furthermore we have

PROPOSITION 4. If xo (>7r) satisfies (12), then the solution U(x) can be prolonged
over X< x< + 0.

PrOOF. Suppose that the prolongation of U(x) is possible for x,<x< T (< + o0)
but impossible for x > 7. There exists a sequence {£,} such that

Xo<f< <, < <T, &,-T; (24)
|UE)+IUE)]|—>+ 0. (25)

Then the sequence {| U(&,)|} is unbounded as &,— T.. In fact, if we suppose the boundedness
of {]U(&,)1}, then, by (18) (with y=x,), the sequence {| U'(£,)|} is also bounded as
&»— T, which contradicts (25). Hence there exists a subsequence {sy=¢&,v); N=1,2, -+ -}
such that

Xog<§1 < <sy<--<T, sy—T; (26)
| Ulsy) | > + o0 ; - 27)
[UX)|<|Ulsy)|  for xo<x<sy. (28)

Putting x=sy, y=2Xx, in (18), we have
U'(sy)” + Ulsy)*(1 — X0 ' — oy xq '~ — a6 ™ H(xg *—s5°))
<ug +ud+xg ' Plug)+ x5 TEF (X, Uo)
+Blg +xg ' T e X0

by the same argument as in the proof of Proposition 2. If x, satisfies (12), then
1 —ayxo ' —oy x5 ' T —aye " H(xg *— 55 %) >1o >0 for some positive constant 1,. Hence

UI(SN)Z +1oU(sy)* < Co

for N>1, where C, is some positive constant. This contradicts (27). Therefore U(x) is
prolonged over xy<x < + co.

§4. Asymptotic behaviour (Completion of the proof of Theorem 1).

The remainder part of the proof of Theorem 1 is divided into three steps.

4.1. By Propositions 3 and 4, the solution u= U(x) can be prolonged over the
interval x, <x < + o0 and satisfies

U(x)? +U'(x)*=c+O(x~™) (23)
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on the same interval. Since U(x) satisfies equation (4), using condition (B1), we have
U () +(1 +x" ' p(Ux)YU(x)=O0(x"*"°) (29)

for x>x,. We put x=it (i=,/—1). Then x>x, implies |#|>x, t€iR~, where
R~ ={s; s<0}.

PROPOSITION 5. There exists a 2 x 2 matrix T(t) such that

i) TO=I+0(t"1) for|t|=x,, teiR;

il) the functions y(t), z(t) defined by

(y(t)) _T (t)( U(it)+ iU’(it)) : 30)

z(?) U@i)—iU'(ir)
satisfy
YO=(1—yit " Yt)—it ™'y’ + Q(ND), (D) + Ot~ ~™®) (31)
)= —(L—yit™ Nz +it ™'y’ + Q(N0), 2(1))) + Ot~ * ~™®) (32)
("=djdt) for | t|= x4, teiR™, where
y=y(c)=.gogzj(Zj;‘l-l)z—zj—lcfeR, : "(33)
' =7'(c)= '21 /Izj—l(i.j)z—”cJ.ER 34)

and Q(y, z) is a polynomial in (y, z) expressed as
2n+1
0, 9= 3 ael*+2. (35)
PROOF. We put
x=it, 2U(in=Y(O+Z(», 2iV'(i=Y()—Z() .

By (23), the functions | Y(7)| and | Z(r)| are-bounded for | ¢|> x,, t€iR ™. Then relation
(23) becomes

U'(x)? + U(x)? = Y()Z(1) = c + O(t~™®) . (36)
Note that, by (36),

1 n
P(—z—(Y(t)+Z(t)))'—i—(Y(t)+Z(t))= i A2TFT Y () + Z ()
k=0

=WY(O)+Z®)+y"+QY(), Z(1) + O~ ™*), (37
where y and y’ are the constants given by (33) and (34), and Q(y, z) is a polynomial

O
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satisfying (35). Using (37), we derive from (29) that

(Y(t)> _ M t)< Y(t)) _( it~y + QY (), Z(N + 0™ ‘"'“’)) (38)
Z(1) z@w) \—it" '+ QY (), Z@)+ 0@~ "))’

where

1

1—vyit~ — it 1 )

yittt —(—yit™Y)/)’

The eigenvalues =+ x(f) of M(¢) satisfy y(f)=1—yit~* + O(t~?) as | t|—> + 00. Choosing a
2x2 matrix T()=I+0(@"Y) so that T()M(1)T(f)” ' =diag[x(s), —x(f)] and putting

A0, 2(8) = T (Y(#), Z(t)), we have relations (31) and (32). Thus the proposition is
proved.

mo=(

4.2. For teiR™, we put
It)={r=is; —o<s<—|t|}.

PROPOSITION 6. If N=0 or N>2, then

e " y(t)Ndr=0("1), j e "t z(t)Vdr=0(""1),
I'(t)

e

ra

»

et’t—yi—ly(‘t)Nd‘t=0(t‘1) , J\ ett—vi~1z(t)Nd.r=0(t"1)
r(

JI)

for |t|=xq, teiR™.
PrOOF. If N>2, then, by (31) and the boundedness of y(t),
=y @)+ 0T

for | T|=x,, T€iR™. Using this relation and integrating by parts, we have

N
J e " y(tNdr = f e gv1 4 (&)——)d‘t + J‘ Oo(t™%)dr
re D)) &t \ N re)

=—1—J e T y()Ndr+ 0t~ Y)
rGe

for | t|=x,, t€iR ™, which implies the first estimate for N> 2. When N=0, we have

j e”t”i‘ldt=j. (—j—e"‘)c”i'ldr
@) r@ dr

=(yi—1) e " 2dr+ 0t H)=0(1"1)
I'(t)
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for [1|>Xx,, teiR™. Other estimates can be obtained in a similar way.

4.3. Multiplying (31) by e™*#"', we have
d . ‘ .
= €I =9()= —ieT TN+ QD) AN+ O™ M)
Integrating between 7, = —x,i and ¢ (€iR~), and using Propositions 5 and 6, we have

e”'ty(t) —c} =ft g(T)dT=J g(T)dT—f g(t)de
I(to) re

to

=ci+0(t™"®),

namely
W) =(c; + Oz~ ™)e's™ " (39
for | ¢£|=x,, teiR™, where ¢}, ¢} and ¢, are some complex constants. Similarly
Z(t)=(c, + O(t ™ ™@))e ¢ (40)

for|t|=x,,t€iR™, where c, is some complex constant. Furthermore, by (36) and (30),
YOZ@O)=yO)z2)+ Ot YH)=c+O0(t~™®),
which implies
cic=c20. @1)

From (39), (40) and (30), it follows that
Ux)=U (it)=%((1 +O(t™ D) +(1+ Ot~ 1))z(2))

= Cy(x)cos(x +ylog x) — C,(x) sin(x +y log x)
for x> x,, where
Ci(x)=¢&+¢,+O0(x~m®), Cy(x)=i¢, — &)+ O(x~ ™),
¢1=(c1/2)exp(—vilog(—9),  &y=(c/2)exp(yilog(—1).
Since U(x) is a real-valued function for x> x,,
U(x)=Re U(x)=(Re C,(x)) cos(x +ylog x) — (Re C,(x)) sin(x + y logx), 42)
Im U(x)=0 (43)
for x> x,. It follows from (43) that

Reé,=Reé,=a, Imé,=—Imé,=b.
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Note that & ¢, =a®>+b*>=c,c,/4=c/4, and put p=c'/? (=0). Then, from (42), we can
derive

U(x)= R(p, x) cos(x + A(p) log x + @ (0, x))
with
Ro(p, X)=((Re C;(x))* +(Re Cp(x))*)"/?
=2(a®+b>+ O(x ")V =p + O(x ™),
(0, x)=0+ O(x~™®)

for x>x,, where 0 is a real constant satisfying 0<6 <2n, and A(p)=7(p?) (cf. (33)).
The asymptotic expression of U’(x) can be obtained in a similar way. Thus the proof
of Theorem 1 is completed.

§5. Example L.

We give an example to which Theorem 1 is applicable. Consider an equation of
the form

u” +u(l+x"*u?—x" 23 sin(u?)=0. (44)
Using our theorem we can show the existence of an oscillatory solution. If we put e=1,

p(u)=u?, then conditions (A), (B) and (B1) are satisfied for every r>0. Since

F(x, u)=2 Ju (—v*sin(v3))dv
0

4
- —i— u? cos(u?)— 3 j v cos(v®)dv

(4]
2 4
> (cos(u®)— Nu?> ——u?
3 (cos(u’)—1) 3
for ue R, equation (44) satisfies condition (B2) with a; =4/3, «; =0, B, =0. Inequality
(10) is valid for a, =B, =0. Therefore, by Theorem 1, if x,>(4/3)/2, then the solution
u=U(x) of equation (44) satisfying (11) is expressible in the form

Ux)=(p+0(x" 1)) cos<x+—z—p2 logx+60+ O(x_l))

as x— + 0o, where p = p(x,, g, ) and 0= 0(x,, u,, uj) are integral constants satisfying
p=>0,0<60<2m.
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§6. Example II.
Consider an equation of the form
u”+x"u +u(gou)+x"1g,(w)+x"1"%g,(x, u)=0. (45)

In order to apply Theorem 1 we impose the following conditions corresponding to (A),
(B), (B1) and (B2) respectively.
(C) go(w) and g,(u) are expressed as

go)=1+Au* + > +*Opo(u) , (46)
- g1 =p+u*h,(u), 47)

* where A is a nonnegative constant, p is a real constant and hy(u) and h,(u) are real-valued

continuous functions for — oo <u< + o0.
(D) The function

h(x, v) = x™~¢(p 2 * Do (x~ 12p) 4 p2eh, (x = 120) + g,(x, X~ V20) +(1/4)xm@ 1

(m(e)=min{1, &}) and its derivative (8/0x)h(x, v) are real-valued continuous functions in
D(r) (e(x, v)) with the properties:

(D1) For every positive constant r', there exists a positive constant L'(r’) such
that

| h(x, | <L), |ih(x, )
ox

<L'(r')

fdr x>r, |v|<r’;
(D2) If we put

H(x,v)=2 f ’ wh(x, wydw , (48)
0

K(x, v)=2 J: w % h(x, wydw , 49)

then there exist real constants o, o’y and B such that

inf H(x, s)> —azv’>—f;, (50)
Isl<|v]
inf (—K(x, s))= —a’50>—B, 63))
Isl<|v]|

Jor x>r, —oc0<v< + 00.
By u= V(x) we denote a solution of equation (45) satisfying
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Vixo)=vo,  V(xo)=100, (52)
where x, (>r), vy and vy are arbitrary real constants. Then we have
PROPOSITION 7. Assume that x,>r and that
O3xg 1 T™E L (1/2) (| oy | +o3)m(e)  txg ™ <1 .
Then the function V(x) can be prolonged over xo, <x< + oo and satisfies
V(x)=So(p, x)x ™12 cos(x + x(p) log x + ¢o(6, X)) , (53)
V'(x)= —S;(p, x)x~ /% sin(x + x(p) log x + ¢,(0, X)) , (54)
Sip, X)=p+O0(x"™®), P06, x)=0+ O(x~™®) i=0,1)

as x— +o0o. Here p=p(xy, vy, Vo) and 0=0(x,, vy, vy) are integral constants satisfying
p=>0, 0<0<2n, and x(p) is a constant defined by

u 3
=47 1p2.
x(p) 5 t3 0

Proor. If we put u=x"'/2p, equation (45) becomes
v"+vH(x,v)=0,
where
H(x, v)=go(x~120)+x " 1g,(x " 20)+x "1 "2g,(x, x 2v)+(1/4)x~ 2.
By condition (C), H(x, v) is written in the form
H(x, v)=14+x"Y(A0% +u)+x~"™Oh(x, v)

with |

h(x, v) =x"O "2 +p (x~12p) 4 p2%h (x ™ 20) + g(x, x " VP0)+ (1/4)x";“” -1

Since A is a nonnegative constant, using condition (D), we can easily verify that the
polynomial Av?+ u and the function h(x, v) satisfy conditions (A), (B), (B1) and (B2).
Furthermore the constant a, in (10) can be taken to be 0. Therefore the conclusion
follows from Theorem 1.
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