Tokyo J. Math. Vol. 14, No. 2, 1991

Commuting Involutions of Semisimple Groups

Tadashi NAGANO and Jiro SEKIGUCHI

University of Electro-Communications and Sophia University

Introduction.

In Oshima and Sekiguchi [OS1], a class of (non-Riemannian) symmetric spaces called those of " K_{e} -type" or " \mathfrak{l}_{e} -type" were introduced and analysis on such symmetric spaces were developed. It is an interesting problem to obtain a geometric characterization of symmetric spaces of \mathfrak{l}_{e} -type. On the other hand, B.-Y. Chen and T. Nagano [CN] studied totally geodesic submanifolds of compact symmetric spaces by using the $(M_{+}(p), M_{-}(p))$ -method. There is a similarity between the classification in [OS1, Appendix, Table 2] and [CN, p. 415, Tables I–III]. The motivation of our study is to clarify this similarity.

We are going to explain the results of this paper briefly. In this paper, a symmetric space means a coset space G/G^{σ} , where G is a connected semisimple Lie group, σ is an involution of G and $G^{\sigma} = \{g \in G ; \sigma(g) = g\}$. And G and G^{σ} are not necessarily compact. Then, due to Berger [B], there is a Cartan involution θ of G commuting with σ . Moreover, $X = G/G^{\sigma}$ is regarded as a vector bundle over $M = G^{\theta}/G^{\theta,\sigma}$ ($G^{\theta,\sigma} = G^{\theta} \cap G^{\sigma}$). For an involution τ of X, Y denotes the fixed point set of τ in X and N denotes the fixed point set of $\tau \mid M$ in M. Then Y is a symmetric space, N is a compact symmetric space and Y is a vector bundle over N. For the involution τ of X, we can choose an involution of G commuting with σ . We note here that studying N in Y is regarded as a generalization of the $(M_+(p), M_-(p))$ -method of Chen-Nagano [CN]. There arises naturally a pair of involutions of G from the symmetric space X and its symmetric spaces X, Y, M, N defined from a pair of involutions of G.

In this paper, we restrict our attention to studying a commuting pair of involutions of G in the following two cases: (1) the case where $X = G/G^{\sigma}$ is a complexification of $M = G^{\theta}/G^{\theta,\sigma}$ (then $X \simeq TM$, the tangent bundle to M as G^{θ} -space) and (2) the case where $X \simeq T^*M$, the cotangent bundle to M (then M is called a symmetric R-space which was studied in Nagano [N]). As a corollary of the case (1), we can give a geometric characterization of symmetric pairs of f_{ε} -type. As the main result of the study of the

Received November 21, 1990

case (2), we get an analogue of Borel embedding for a certain class of symmetric spaces (Theorem 4). A result similar to Theorem 4 was obtained by B. O. Makarevič [M].

§1. Let G be a connected real semisimple Lie group with finite center and let g be its Lie algebra. In this paper, we denote an involution of G and the induced involution of g by the same letter for the sake of simplicity.

Let θ, σ, τ be involutions of G commuting with each other. Denote $g^{\pm \alpha} = \{x \in g; \alpha(x) = \pm x\}$ for $\alpha \in \{\theta, \sigma, \tau\}$, denote $g^{\pm \alpha, \pm \beta} = g^{\pm \alpha} \cap g^{\pm \beta}$ for $\alpha, \beta \in \{\theta, \sigma, \tau\}$ and denote $g^{\pm \theta, \pm \sigma, \pm \tau} = g^{\pm \theta} \cap g^{\pm \sigma} \cap g^{\pm \tau}$. In the group case, denote $G^{\alpha} = \{x \in G; \alpha(x) = \pm x\}$ for $\alpha \in \{\theta, \sigma, \tau\}$, denote $G^{\alpha,\beta} = G^{\alpha} \cap G^{\beta}$ for $\alpha, \beta \in \{\theta, \sigma, \tau\}$ and denote $G^{\theta,\sigma,\tau} = G^{\theta} \cap G^{\sigma} \cap G^{\tau}$.

For an involution σ of g, (g, g^{σ}) is a symmetric pair. M. Berger [B] introduced the associated pair and the dual pair of (g, g^{σ}) . In this paper, following the notation in [OS2, §1(1.2)–(1.4)], $(g, g^{\sigma})^a$ and $(g, g^{\sigma})^d$ are the associated pair and the dual pair of (g, g^{σ}) , respectively. Moreover, we use the notation $(g, g^{\sigma})^{ad}$, $(g, g^{\sigma})^{da}$, $(g, g^{\sigma})^{ada}$, $(g, g^{\sigma})^{ada}$, $(=(g, g^{\sigma})^{dad})$ as in [OS2].

In the subsequent discussion, we frequently assume the existence of a Cartan involution commuting with given commuting involutions. This assumption is a consequence of the next lemma.

LEMMA 1. If σ , τ are involutions of g commuting with each other, there is a Cartan involution θ of G commuting with both σ , τ .

After establishing this lemma, we are pointed out by T. Kobayashi that Lemma 1 is a special case of a more genral statement (cf. [H]).

§2. Let τ be an involution of G and let θ be a Cartan involution of G commuting with τ . Assume that G^{τ} is not compact. Then, due to [B], G/G^{τ} is regarded as a vector bundle over $G^{\theta}/G^{\theta,\tau}$. We explain this fact for later use. First introduce an equivalence relation "~" on $G^{\theta} \times g^{-\theta,-\tau}$ as follows:

 $(k, x) \sim (k', x')$ if and only if $k(\exp x)G^{\tau} = k'(\exp x')G^{\tau}$.

From the definition, we find that $(k, x) \sim (k', x')$ if and only if there is $m \in G^{\theta, \tau}$ such that $k' = km, x' = \operatorname{Ad}(m^{-1})x$. Then the relation "~" actually becomes an equivalence relation and $(G^{\theta} \times g^{-\theta, -\tau})/\sim \simeq G/G^{\tau}$. Now write [k, x] for the equivalence class of (k, x). Defining $\pi([k, x]) = kG^{\theta, \tau}$, we find that π is a projection from G/G^{τ} to $G^{\theta}/G^{\theta, \tau}$ and in this way, G/G^{τ} is a vector bundle over $G^{\theta}/G^{\theta, \tau}$. From the definition, π is G^{θ} -equivariant.

Now let θ , σ , τ be involutions of G commuting with each other. Assume that θ is a Cartan involution of G. Then we have the following diagram of inclusions and projections:

320

COMMUTING INVOLUTIONS

DIAGRAM 1

Remark to the above diagram: G^{θ} is a maximal compact subgroup of G. The symmetric space G/G^{τ} is a vector bundle over $G^{\theta}/G^{\theta,\tau}$ as explained before. The symmetric spaces G/G^{τ} and $G/G^{\theta\tau}$ are mutually associated (cf. [B], [OS2, p. 437]). Both $G^{\theta\sigma}/G^{\theta\sigma,\tau}$ and $G^{\sigma}/G^{\sigma,\tau}$ are regarded as closed subspaces of G/G^{τ} and $G^{\theta,\sigma}/G^{\theta,\sigma,\tau}$ is regarded as a closed subspace of $G^{\theta}/G^{\theta,\tau}$. Moreover $G^{\theta\sigma}/G^{\theta\sigma,\tau}$ and $G^{\sigma}/G^{\sigma,\tau}$ are vector bundles over $G^{\theta,\sigma}/G^{\theta,\sigma,\tau}$.

In the sequel, we shall treat the case where G has a complex structure and both σ , τ are holomorphic involutions of G in §3 and the case where $G^{\theta}/G^{\theta,\tau}$ is a symmetric R-space in §4.

§3. In this section, we always assume that g is a complex semisimple Lie algebra and G is a corresponding connected complex semisimple Lie group. The purpose of this section is to obtain a geometric characterization of a symmetric space of $\mathfrak{l}_{\varepsilon}$ -type introduced in [OS1].

If θ is a Cartan involution of G, G^{θ} is a maximal compact subgroup of G and g^{θ} is a compact real form of g.

In the sequel of this section, σ , τ are *C*-linear involutions of g such that θ , σ , τ commute with each other. Then all the involutions $\theta\sigma$, $\theta\tau$, $\theta\sigma\tau$ are *R*-linear involutions of g but not *C*-linear involutions. This implies that $g^{\theta\sigma}$, $g^{\theta\tau}$, $g^{\theta\sigma\tau}$ are real forms of g. On the other hand, it follows from the assumption that

$$g = g^{\theta} \oplus g^{-\theta}, \qquad g^{-\theta} = \sqrt{-1} g^{\theta}.$$

Moreover, it follows from the definition that $(g^{\theta\sigma}, g^{\theta\sigma,\tau})$ and $(g^{\theta\sigma}, g^{\theta\sigma,\theta\tau})$ are mutually associated.

PROPOSITION 2. Let g be a complex semisimple Lie algebra, let θ be its Cartan involution and let σ , τ be **C**-linear involutions of g. Assume that θ , σ , τ are mutually commutative. Then we have the following diagram.

PROOF. First show that $(g^{\theta\sigma}, g^{\theta\sigma,\tau})$ is a dual of $(g^{\theta\tau}, g^{\theta\tau,\sigma})$. Since

 $g^{\theta\tau} = g^{\theta\tau,\sigma,\tau} \oplus g^{\theta\tau,\sigma,-\tau} \oplus g^{\theta\tau,-\sigma,\tau} \oplus g^{\theta\tau,-\sigma,-\tau}$

is a direct sum decomposition, we find from the definition of a dual symmetric pair that the dual of $(g^{\theta\tau}, g^{\theta\tau,\sigma})$ is

$$(g^{\theta\tau,\sigma,\tau} \oplus \sqrt{-1}g^{\theta\tau,\sigma,-\tau} \oplus \sqrt{-1}g^{\theta\tau,-\sigma,\tau} \oplus g^{\theta\tau,-\sigma,-\tau}, g^{\theta\tau,\sigma,\tau} \oplus \sqrt{-1}g^{\theta\tau,-\sigma,\tau})$$
$$= (g^{\theta\sigma}, g^{\theta\sigma,\tau}).$$

Other cases are shown by a similar argument.

REMARK. (i) Among the six symmetric pairs appearing in Diagram 2, four symmetric pairs appear in Diagram 1. Changing the roles of τ and σ in Diagram 1, different four symmetric pairs of Diagram 2 appear in Diagram 1.

(ii) In general, any symmetric pair is expressed in the form $(g^{\theta\tau}, g^{\theta\tau,\sigma})$ for some complex semisimple Lie algebra g and its involutions θ , τ , σ with the conditions of this section. We will explain this more precisely. Any symmetric pair has the form (g_0, g_0^{σ}) , where g_0 is a real semisimple Lie algebra and σ is its involution. Take a Cartan involution θ of g_0 commuting with σ and denote by g the compexification of g_0 . Extend σ to g as a *C*-linear involution. Then $g_u = g_0^{\theta} \oplus \sqrt{-1}g_0^{-\theta}$ is a compact real form of g and θ coincides with the restriction to g_0 of the conjugation of g with respect to g_u . Noting this, denote by θ the conjugation of g. Then clearly σ and θ commute with each other. Since the conjugation of g with respect to g_0 commutes with both θ , σ , there is a *C*-linear involution τ of g such that $\theta\tau$ is the conjugation of g with respect to g_0 . It is obvious that τ commutes with both θ , σ . Then $(g_0, g_0^{\sigma}) = (g^{\theta\tau}, g^{\theta\tau,\sigma})$.

In the sequel, we shall explain the $(M_+(p), M_-(p))$ -method due to Chen-Nagano [CN] which is one of the methods of geometric constructions of pairs of commuting involutions of g. Let τ be a holomorphic involution of G and let θ be a Cartan involution of G commuting with τ . Then $M = G^{\theta}/G^{\theta,\tau}$ is a compact symmetric space. Take any point p of M. If $p = g_0 G^{\theta,\tau}$ for some $g_0 \in G^{\theta}$, the automorphism s_p of M defined by $s_p(gG^{\theta,\tau}) = g_0\tau(g_0^{-1})\tau(g)G^{\theta,\tau}$ ($\forall g \in G^{\theta}$) is an involutive isometry of M with respect to G^{θ} -invariant Riemannian metric. This implies that the automorphism τ_p of G^{θ} defined by $\tau_p(g) = g_0\tau(g_0^{-1})\tau(g)\tau(g_0)g_0^{-1}$ ($\forall g \in G^{\theta}$) is an involution of G^{θ} and $\tau_p(g)s_p(q) = s_p(gq)$ for any $g \in G^{\theta}$, $q \in M$.

Put $o = eG^{\theta,\tau} \in M$ and consider a closed geodesic (=circle) \mathscr{C} passing through o. Then there is $x_0 \in g^{\theta,-\tau}$ with the conditions (i) $\mathscr{C}(t) = \exp(tx_0)G^{\theta,\tau}$ ($0 \le t \le 1$), (ii) $\mathscr{C}(t) \neq \mathscr{C}(t')$ if $0 \le t < t' < 1$, (iii) $\mathscr{C}(0) = \mathscr{C}(1) = o$. For the geodesic \mathscr{C} , $p = \mathscr{C}(\frac{1}{2})$ is the antipodal point to o. Put $g_0 = \exp(\frac{1}{2}x_0)$. Since, by definition, $\tau(g_0) = \exp(\frac{1}{2}\tau(x_0)) = \exp(-\frac{1}{2}x_0) = g_0^{-1}$, we find that $g_0\tau(g_0)^{-1} = g_0^2 \in G^{\theta,\tau}$. This implies that $g_0^2 = \tau(g_0^2) = g_0^{-2}$. Therefore $g_0^4 = e$.

Let $M_+(p) = G^{\theta,\tau}p$ be the $G^{\theta,\tau}$ -orbit of p in M. Since p is the antipodal point to o of the geodesic \mathscr{C} , it follows that $s_p s_o = s_o s_p$. Since both $\tau_p \tau$ and $\tau \tau_p$ are continuous maps of G^{θ} and since $\tau \tau_p(e) = \tau_p \tau(e)$, we find that $\tau_p \tau(g) = \tau \tau_p(g)$ for any $g \in G^{\theta}$.

THEOREM 3. Let G, θ , τ , M be as above. Moreover τ_p is the involution of G corresponding to the antipodal point $p = g_0 G^{\theta,\tau}$ to o with respect to a circle passing through o. By definition, $\sigma = \tau_p = \operatorname{Ad}(g_0^2) \circ \tau$ is a holomorphic involution of G. Then θ , σ , τ commute with each other and the symmetric pair $(g^{\theta\sigma}, g^{\theta\sigma,\tau})$ is of $\mathfrak{k}_{\varepsilon}$ -type in the sense of [OS2, (1.2)]. In particular, $(g^{\theta\sigma}, g^{\theta\sigma,\tau})$ is self-dual and $(g^{\theta\sigma\tau}, g^{\theta\sigma,\tau})$ is self-associated.

PROOF. We keep the notation before the theorem. Put $g(t) = \exp(tx_0)$. Then $\mathscr{C}(t) = g(t)G^{\theta,\tau}$, $g_0 = g(1/2)$, $g_0^4 = e$. Since x_0 is semisimple, there is a maximal abelian subspace a of $g^{\theta,-\tau}$ containing x_0 . Then $\tau\sigma(x) = x$ for any $x \in a$. This implies that a is contained in $g^{\theta,-\tau,-\sigma}$. On the other hand, we have $\operatorname{Ad}(g_0)g^{\theta\tau} = g^{\theta\sigma}$, $\operatorname{Ad}(g_0)\tau = \sigma \operatorname{Ad}(g_0)$, $\operatorname{Ad}(g_0)\sigma = \tau \operatorname{Ad}(g_0)$. Therefore, noting that $\sqrt{-1}g^{\theta} = g^{-\theta}$, we find that $\sqrt{-1}a$ is a maximal abelian subspace of $g^{\theta\sigma,-\sigma}$ and that $\sqrt{-1}a$ is contained in $g^{\theta\sigma,-\tau,-\sigma}$. Since $g^{\theta\sigma} = g^{\theta\sigma,\sigma} \oplus g^{\theta\sigma,-\sigma}$ is a Cartan decomposition of $g^{\theta\sigma}$, the totality of the roots of $g^{\theta\sigma}$ with respect to $\sqrt{-1}a$ becomes the restricted root system of $g^{\theta\sigma}$ which we denote by Σ . Moreover, for any root $\alpha \in \Sigma$, denote by $g^{\theta\sigma}(\sqrt{-1}a, \alpha)$ the root space of $g^{\theta\sigma}$ belonging to α . Then, for each root $\alpha \in \Sigma$, there is a real number $\varepsilon(\alpha)$ such that $\tau(x) = \varepsilon(\alpha)\sigma(x)$ for any $x \in g^{\theta\sigma}(\sqrt{-1}a, \alpha)$. From the definition, $\varepsilon(\alpha)^2 = 1$. On the other hand, it is clear from the definition that for any $x \in g^{\theta\sigma}$ such that $[x, a] = 0, \tau(x) = \sigma(x)$ holds. Therefore, from [OS2, (1.9.3), (1.12)], we find that $(g^{\theta\sigma}, g^{\theta\sigma,\tau})$ is a symmetric pairs of \mathfrak{k}_e -type. The rest of the statements follow from the properties of symmetric pairs of \mathfrak{k}_e -type (cf. [OS2]).

Now we explain the converse of the theorem.

Let σ be a *C*-linear involution of g and let θ be a Cartan involution of g commuting with σ . Then clearly, $g^{\theta\sigma}$ is a real form of g. Let a be a maximal abelian subspace of $g^{\theta\sigma, -\sigma}$ and let Σ be the root system of $(g^{\theta\sigma}, a)$. For a signature $\varepsilon: \Sigma \to \{1, -1\}$ (cf. [OS2]), define an involution τ of g by

$$\tau(x) = \begin{cases} \sigma(x) & \text{if } x \in g^{\theta\sigma}, [x, \alpha] = 0, \\ \varepsilon(\alpha)\sigma(x) & \text{if } x \in g^{\theta\sigma}(\alpha, \alpha), \alpha \in \Sigma, \end{cases}$$

where $g^{\theta\sigma}(\mathfrak{a}, \alpha)$ is the root space of $g^{\theta\sigma}$ belonging to α . Then τ is uniquely extended to a *C*-linear involution of g. For the involution τ , we find from [OS1, Lemma 1.3] that

TADASHI NAGANO AND JIRO SEKIGUCHI

there is $x_0 \in a$ such that $\sigma\tau(x) = \operatorname{Ad}(\exp(ix_0))(x)$ for any $x \in g$. If $G = \operatorname{Int} g$, then θ , σ , τ are lifted to involutions of G. Put $M = G^{\theta}/G^{\theta,\tau}$. Then $\mathscr{C}(t) = \exp(tix_0)$ ($t \in \mathbb{R}$) is a circle passing through $o = eG^{\theta,\tau}$ and if p is the antipodal point to o, it follows that $\sigma | G^{\theta} = \tau_n$.

From the discussions above, a geometric characterization of symmetric spaces of f_{ϵ} -type is obtained at least in Lie algebra case. In particular, it clarifies the relation between [OS1, Appendix, Table 2] and [CN, p. 415, Tables I–III].

§4. In this section, we treat the case where $G^{\theta}/G^{\theta,\tau}$ is a symmetric *R*-space. To explain our situation more precisely, let *G* be a connected real semisimple Lie group and let θ, τ be commuting involutions of *G*. Assume that θ is a Cartan involution. In the sequel, we always assume that there is a parabolic subgroup *P* of *G* such that $P = G^{\tau}N$ is its Levi decomposition for the unique unipotent radical *N*. This assumption implies that $G/P \simeq G^{\theta}/G^{\theta,\tau}$. On the other hand, it follows from [N, Th. 4.4] that G/G^{τ} is isomorphic to the cotangent bundle to $G^{\theta}/G^{\theta,\tau}$ as *G*-space. Noting this, we denote by π_P the natural projection of G/G^{τ} to G/P. In section 2, we already explained that G/G^{τ} onto $G^{\theta}/G^{\theta,\tau}$. We stress here the difference between π and π_P . The latter is *G*-equivariant whereas the former is only G^{θ} -equivariant.

Now let us review the results of [N] briefly. Let g be the Lie algebra of G. Then there is a unique element z of $g^{-\theta,\tau}$ (up to signature) such that $g_0 = g^{\tau}$, $g_{-1} \oplus g_1 = g^{-\tau}$, where $g_d = \{x \in g; [z, x] = dz\}$ ($\forall d \in \mathbf{R}$). The element z has the following properties:

$$[z, [z, x]] = x \quad (\forall x \in g^{-\tau}),$$

$$[z, g_{\pm 1}] = g_{\pm 1},$$

$$g_{\pm 1} = \{x \pm [z, x]; x \in g^{\theta, -\tau}\}.$$

THEOREM 4. Let G, θ , τ be as above and moreover assume that G/G^{τ} is irreducible. If σ_0 is an involution of G^{θ} commuting with τ , the following hold:

(i) There is a unique involution σ of G such that $\sigma | G^{\theta} = \sigma_0, \sigma(z) = z$ and that σ commutes with both θ, τ .

(ii) $G^{\sigma} \cap P$ is a parabolic subgroup of G^{σ} and $G^{\sigma}/G^{\sigma,\tau}$ is isomorphic to the cotangent bundle over $G^{\theta,\sigma}/G^{\theta,\sigma,\tau} \simeq G^{\sigma}/G^{\sigma} \cap P$ as G^{σ} -space. Similarly, $G^{\sigma\tau} \cap P$ is a parabolic subgroup of $G^{\sigma\tau}$ and $G^{\sigma\tau}/G^{\sigma,\tau}$ is isomorphic to the cotangent bundle over $G^{\theta,\sigma\tau}/G^{\theta,\sigma,\tau} \simeq G^{\sigma\tau}/G^{\sigma\tau} \cap P$ as $G^{\sigma\tau}$ -space.

(iii) Let $\iota: G^{\theta\sigma}/G^{\theta\sigma,\tau} \to G/G^{\tau}$ and $\iota': G^{\theta\sigma\tau}/G^{\theta\sigma,\tau} \to G/G^{\tau}$ be natural inclusions. Then $\pi_P \circ \iota$ (resp. $\pi_P \circ \iota'$) is a bijective $G^{\theta\sigma}$ -equivariant (resp. $G^{\theta\sigma\tau}$ -equivariant) map and both $\operatorname{Im}(\pi_P \circ \iota)$ and $\operatorname{Im}(\pi_P \circ \iota')$ are open subsets of $G^{\theta}/G^{\theta,\tau}$.

(iv) Regard $G^{\theta,\sigma}/G^{\theta,\sigma,\tau}$ and $G^{\theta,\sigma\tau}/G^{\theta,\sigma,\tau}$ as closed subsets of $G^{\theta}/G^{\theta,\tau}$. Then $G^{\theta\sigma}/G^{\theta\sigma,\tau}$ (resp. $G^{\theta\sigma\tau}/G^{\theta\sigma,\tau}$) is isomorphic to the cotangent bundle over $G^{\theta,\sigma}/G^{\theta,\sigma,\tau}$ (resp. $G^{\theta,\sigma\tau}/G^{\theta,\sigma,\tau}$) as $G^{\theta,\sigma}$ -space (resp. $G^{\theta,\sigma\tau}$ -space).

324

PROOF. (i) First note that it is sufficient to show the case where the action of G on G/G^{τ} is effective. In fact, suppose that (i) is true for the effective action case. In general, let G_1 be the quotient group of G which acts on G/G^{τ} effectively. Then (i) is true for G_1 . So there is an involution σ' of G_1 with the conditions mentioned in (i). Let σ be the induced involution of g from σ' . Noting the Cartan decomposition $G = G^{\theta} \exp(g^{-\theta})$, define an involution σ of G by $\sigma(k \cdot \exp x) = \sigma(k) \exp \sigma(x)$ for any $k \in G^{\theta}$, $x \in g^{-\theta}$. Then σ is the required involution on G.

For this reason, we assume that G acts on G/G^{τ} effectively for a moment. Define σ by

$$\sigma(x) = \begin{cases} \sigma_0(x) & (x \in \mathfrak{g}^{\theta}) \\ [z, \sigma_0([z, x])] & (x \in \mathfrak{g}^{-\theta, -\tau}) \end{cases}$$

Then we find that σ is a linear transformation of the vector space $V = g^{\theta,\tau} \oplus g^{\theta,-\tau} \oplus g^{-\theta,-\tau}$. We find from the property of z mentioned above that σ^2 is the identity transformation of V. Now, using σ , define an automorphism φ' of $G^{\theta} \times g^{-\theta,-\tau}$ by

$$\varphi'(k, x) = (\sigma_0(k), \sigma(x)) \qquad (\forall (k, x) \in G^{\theta} \times g^{-\theta, -\tau}).$$

Since φ' preserves the equivalence relation \sim on $G^{\theta} \times g^{-\theta, -\tau}$ (see §2), it follows that φ' induces an automorphism φ of $(G^{\theta} \times g^{-\theta, -\tau})/\sim \simeq G/G^{\tau}$. It is clear from the definition that φ^2 is the identity automorphism of G/G^{τ} . Put $\sigma(g) = \varphi g \varphi^{-1}$ for any $g \in G$. Then $\sigma(g)$ is an automorphism of G/G^{τ} . Therefore both G and $\sigma(G)$ are subgroups of the automorphism group of G/G^{τ} . This combined with Kobayashi-Nomizu [KN] gives $\sigma(G) = G$. This implies that σ is an involution of G. From the definition, we find that $\sigma | G^{\theta} = \sigma_0$ and that σ commutes with θ, τ . From the choice of z, it follows that $\sigma(z) \in g^{-\theta,\tau}$, moreover, $\sigma(z)$ is contained in the center of g^{τ} . Since G/G^{τ} is irreducible, the center c of g^{τ} is one or two dimensional. In the case where dim c = 2, g^{τ} is complex semisimple and c = Cz. But eigenvalues of $ad(\sigma(z))$ are 1, -1. Hence $\sigma(z) \in Rz$. On the other hand, if dim c = 1, then clearly, c = Rz. We have thus found that $\sigma(z) = cz$ for some $c \in R$. Since $\sigma^2 = 1$, it follows that $c^2 = 1$. In the case where c = -1, we have $\theta\sigma(z) = z$. Therefore, in this case, we take $\theta\sigma$ instead of σ . Then we can take such a σ that $\sigma(z) = z$ holds. We have thus proved (i).

(ii) Since $z \in g^{\sigma}$, $g^{\sigma} \cap g_0 = g^{\sigma,\tau}$, $g^{\sigma,-\tau} = g^{\sigma} \cap g_{-1} \oplus g^{\sigma} \cap g_1$, it follows that $G^{\sigma} \cap P$ is a parabolic subgroup of G^{σ} . The rest follows from properties of symmetric *R*-spaces.

(iii) First show that $\pi_P \circ \iota$ is injective. For this purpose, take $g \in G^{\theta\sigma}$ and assume that $\pi_P(\iota(gG^{\theta\sigma,\tau})) = eP$. Since $P = G^{\tau}N$, there are $h \in G^{\tau}$ and $n \in N$ such that g = hn. Let \overline{N} be the opposite of N. Since $\theta\sigma(g) = g$, it follows that $hn = \theta\sigma(hn) = \theta\sigma(h)\theta\sigma(n)$. Then $\theta\sigma(h) \in G^{\tau}$ and $\theta\sigma(n) \in \overline{N}$. These imply that $h = \theta\sigma(h)$, n = e. Hence $g = h \in G^{\tau} \cap G^{\theta\sigma}$ and the injectivity of $\pi_P \circ \iota$ follows.

Next we will show that $\text{Im}(\pi_P \circ i)$ is open. Put $o = eG^{\tau}$. This is regarded as an element of $G^{\theta\sigma}/G^{\theta\sigma,\tau}$. Moreover we need the identifications

 $T_o(G^{\theta\sigma}/G^{\theta\sigma,\tau}) \simeq g^{\theta\sigma}/g^{\theta\sigma,\tau}$,

 $T_o(G/G^{\tau}) \simeq g/g^{\tau} ,$ $T_{\pi_P(o)}(G/P) \simeq g/g^{\tau} \oplus g_1^{-\tau} .$

(Here we assumed that $\operatorname{Lie}(N) = \mathfrak{g}^{\tau} \oplus \mathfrak{h}^{-\tau}$.) Then

$$(\pi_P \circ \iota)_* (x \mod g^{\theta \sigma, \tau})$$

= $(\pi_P)_* (x \mod g^{\tau})$
= $\frac{1}{2} (x - [z, x]) \mod g^{\tau} \oplus g_1^{-\tau}$

On the other hand, from the property of z, the maps

$$g^{\theta,\sigma,-\tau} \longrightarrow g_{-1}^{-\tau,\sigma}, \qquad x \mapsto \frac{1}{2} (x - [z, x]),$$
$$g^{-\theta,-\sigma,-\tau} \longrightarrow g_{-1}^{-\tau,-\sigma}, \qquad x \mapsto \frac{1}{2} (x - [z, x])$$

are linear isomorphisms. Noting that

$$g^{\theta\sigma}/g^{\theta\sigma,\tau} \simeq g^{\theta,\sigma,-\tau} \oplus g^{-\theta,-\sigma,-\tau}$$
$$g/g^{\tau} \oplus g_{1}^{-\tau} \simeq g_{-1}^{-\tau,\sigma} \oplus g_{-1}^{-\tau,-\sigma},$$

we find that if $x \in g^{\theta, \sigma, -\tau}$, $y \in g^{-\theta, -\sigma, -\tau}$, then

 $(\pi_P \circ \iota)_{\star}(x + y \mod g^{\theta \sigma, \tau})$

$$= \frac{1}{2} \{ (x - [z, x]) + (y - [z, y]) \} \mod \mathfrak{g}^{\tau} \oplus \mathfrak{g}_{1}^{-\tau} .$$

Then we find that $(\pi_P \circ \iota)_* T_o(G^{\theta\sigma}/G^{\theta\sigma,\tau}) = T_{\pi_P(o)}(G/P)$. Since $\pi_P \circ \iota$ is $G^{\theta\sigma}$ -equivariant, it follows that the image of $\pi_P \circ \iota$ is an open subset of $G/P \simeq G^{\theta}/G^{\theta,\tau}$.

(iv) If M is a C^{∞} -manifold, and L is its closed submanifold, then

 $0 \longrightarrow T_L^*M \longrightarrow T^*M | L \longrightarrow T^*L \longrightarrow 0$

is an exact sequence. Consider the case where $M = G^{\theta}/G^{\theta,\tau}$ and $L = G^{\theta,\sigma}/G^{\theta,\sigma,\tau}$. Then it follows from (ii) that

$$T^*M \simeq G/G^{\tau} \simeq (G^{\theta} \times g^{-\theta, -\tau})/\sim ,$$

$$T^*L \simeq G^{\sigma}/G^{\sigma, \tau} \simeq (G^{\theta, \sigma} \times g^{-\theta, -\sigma, -\tau})/\sim .$$

On the other hand, since $g^{-\theta, -\tau} = g^{-\theta, -\sigma, -\tau} \oplus g^{-\theta, \sigma, -\tau}$, we have

$$T_L^*M \simeq (G^{\theta,\sigma} \times g^{-\theta,\sigma,-\tau})/\sim \simeq G^{\theta\sigma}/G^{\theta\sigma,\tau}$$
.

COMMUTING INVOLUTIONS

Similar argument goes well for the case where $L = G^{\theta \sigma \tau} / G^{\theta \sigma, \tau}$.

REMARK. (i) Theorem 4, (ii) is regarded as an extension of Theorem 7.2 in [CN] to the case of symmetric *R*-spaces.

(ii) Theorem 4, (iii) is regarded as a generalization of "Borel embedding" of a Hermitian symmetric space of the non-compact type to its compact dual. A result similar to Theorem 4 was obtained by Makarevič [M].

References

- [B] M. BERGER, Les espaces symétriques non compacts, Ann. Sci. Ecole Norm. Sup., 74 (1957), 85–177.
- [CN] B.-Y. CHEN and T. NAGANO, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J., 45 (1978), 405-425.
- [H] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978.

[KN] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, II, Interscience, 1963.

- [L] O. Loos, Symmetric Spaces, I: General Theory, Benjamin, 1969.
- [M] B. O. MAKAREVIČ, Open symmetric orbits of reductive groups in symmetric *R*-spaces, Math. USSR-Sb., 20 (1973).
- [N] T. NAGANO, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc., 118 (1964), 428-453.
- [OS1] T. OSHIMA and J. SEKIGUCHI, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math., 57 (1980), 1-80.
- [OS2] T. OSHIMA and J. SEKIGUCHI, The restricted root system of a semisimple symmetric pair, Adv. Stud. Pure Math., 4 (1984), 433–497.

Present Address:

Tadashi Nagano Department of Mathematics, Sophia University Chiyoda-ku, Tokyo 102, Japan

JIRO SEKIGUCHI

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ELECTRO-COMMUNICATIONS CHOFU, TOKYO 182, JAPAN