Commuting Involutions of Semisimple Groups

Tadashi NAGANO and Jiro SEKIGUCHI

University of Electro-Communications and Sophia University

Introduction.

In Oshima and Sekiguchi [OS1], a class of (non-Riemannian) symmetric spaces called those of " K_{ε}-type" or " $\mathfrak{F}_{\varepsilon}$-type" were introduced and analysis on such symmetric spaces were developed. It is an interesting problem to obtain a geometric characterization of symmetric spaces of f_{ε}-type. On the other hand, B.-Y. Chen and T. Nagano [CN] studied totally geodesic submanifolds of compact symmetric spaces by using the $\left(M_{+}(p), M_{-}(p)\right)$-method. There is a similarity between the classification in [OS1, Appendix, Table 2] and [CN, p. 415, Tables I-III]. The motivation of our study is to clarify this similarity.

We are going to explain the results of this paper briefly. In this paper, a symmetric space means a coset space G / G^{σ}, where G is a connected semisimple Lie group, σ is an involution of G and $G^{\sigma}=\{g \in G ; \sigma(g)=g\}$. And G and G^{σ} are not necessarily compact. Then, due to Berger [B], there is a Cartan involution θ of G commuting with σ. Moreover, $X=G / G^{\sigma}$ is regarded as a vector bundle over $M=G^{\theta} / G^{\theta, \sigma}\left(G^{\theta, \sigma}=G^{\theta} \cap G^{\sigma}\right)$. For an involution τ of X, Y denotes the fixed point set of τ in X and N denotes the fixed point set of $\tau \mid M$ in M. Then Y is a symmetric space, N is a compact symmetric space and Y is a vector bundle over N. For the involution τ of X, we can choose an involution of G commuting with σ. We note here that studying N in Y is regarded as a generalization of the $\left(M_{+}(p), M_{-}(p)\right)$-method of Chen-Nagano [CN]. There arises naturally a pair of involutions of G from the symmetric space X and its symmetric subspace Y. Conversing this argument, we shall study the relations among the symmetric spaces X, Y, M, N defined from a pair of involutions of G.

In this paper, we restrict our attention to studying a commuting pair of involutions of G in the following two cases: (1) the case where $X=G / G^{\sigma}$ is a complexification of $M=G^{\theta} / G^{\theta, \sigma}$ (then $X \simeq T M$, the tangent bundle to M as G^{θ}-space) and (2) the case where $X \simeq T^{*} M$, the cotangent bundle to M (then M is called a symmetric R-space which was studied in Nagano [N]). As a corollary of the case (1), we can give a geometric characterization of symmetric pairs of f_{ε}-type. As the main result of the study of the

[^0]case (2), we get an analogue of Borel embedding for a certain class of symmetric spaces (Theorem 4). A result similar to Theorem 4 was obtained by B. O. Makarevič [M].
§1. Let G be a connected real semisimple Lie group with finite center and let \mathbf{g} be its Lie algebra. In this paper, we denote an involution of G and the induced involution of \mathfrak{g} by the same letter for the sake of simplicity.

Let θ, σ, τ be involutions of G commuting with each other. Denote $\mathfrak{g}^{ \pm \alpha}$ $=\{x \in \mathfrak{g} ; \alpha(x)= \pm x\}$ for $\alpha \in\{\theta, \sigma, \tau\}$, denote $\mathfrak{g}^{ \pm \alpha, \pm \beta}=\mathfrak{g}^{ \pm \alpha} \cap \mathfrak{g}^{ \pm \beta}$ for $\alpha, \beta \in\{\theta, \sigma, \tau\}$ and denote $\mathfrak{g}^{ \pm \theta, \pm \sigma, \pm \tau}=\mathfrak{g}^{ \pm \theta} \cap \mathfrak{g}^{ \pm \sigma} \cap \mathfrak{g}^{ \pm \tau}$. In the group case, denote $G^{\alpha}=\{x \in G ; \alpha(x)=$ $\pm x\}$ for $\alpha \in\{\theta, \sigma, \tau\}$, denote $G^{\alpha, \beta}=G^{\alpha} \cap G^{\beta}$ for $\alpha, \beta \in\{\theta, \sigma, \tau\}$ and denote $G^{\theta, \sigma, \tau}=$ $G^{\theta} \cap G^{\sigma} \cap G^{\tau}$.

For an involution σ of $\mathfrak{g},\left(\mathfrak{g}, \mathfrak{g}^{\sigma}\right)$ is a symmetric pair. M. Berger [B] introduced the associated pair and the dual pair of ($\mathfrak{g}, \mathfrak{g}^{\sigma}$). In this paper, following the notation in [OS2, §1(1.2)-(1.4)], $\left(\mathrm{g}, \mathrm{g}^{\sigma}\right)^{a}$ and $\left(\mathrm{g}, \mathrm{g}^{\sigma}\right)^{d}$ are the associated pair and the dual pair of $\left(\mathfrak{g}, \mathfrak{g}^{\sigma}\right)$, respectively. Moreover, we use the notation $\left(\mathfrak{g}, \mathfrak{g}^{\sigma}\right)^{\text {ad }},\left(\mathfrak{g}, \mathfrak{g}^{\sigma}\right)^{d a},\left(\mathfrak{g}, \mathfrak{g}^{\sigma}\right)^{\text {ada }}$ $\left(=\left(\mathfrak{g}, \mathfrak{g}^{\sigma}\right)^{d a d}\right)$ as in [OS2].

In the subsequent discussion, we frequently assume the existence of a Cartan involution commuting with given commuting involutions. This assumption is a consequence of the next lemma.

Lemma 1. If σ, τ are involutions of g commuting with each other, there is a Cartan involution θ of G commuting with both σ, τ.

After establishing this lemma, we are pointed out by T. Kobayashi that Lemma 1 is a special case of a more genral statement (cf. [H]).
§2. Let τ be an involution of G and let θ be a Cartan involution of G commuting with τ. Assume that G^{τ} is not compact. Then, due to [B], G / G^{τ} is regarded as a vector bundle over $G^{\boldsymbol{\theta}} / G^{\boldsymbol{\theta}, \tau}$. We explain this fact for later use. First introduce an equivalence relation " \sim " on $G^{\theta} \times \mathfrak{g}^{-\theta,-\tau}$ as follows:

$$
(k, x) \sim\left(k^{\prime}, x^{\prime}\right) \quad \text { if and only if } k(\exp x) G^{\imath}=k^{\prime}\left(\exp x^{\prime}\right) G^{\mathfrak{\imath}}
$$

From the definition, we find that $(k, x) \sim\left(k^{\prime}, x^{\prime}\right)$ if and only if there is $m \in G^{\theta, \tau}$ such that $k^{\prime}=k m, x^{\prime}=\operatorname{Ad}\left(m^{-1}\right) x$. Then the relation " \sim " actually becomes an equivalence relation and $\left(G^{\theta} \times \mathrm{g}^{-\theta,-\tau}\right) / \sim \simeq G / G^{\tau}$. Now write $[k, x]$ for the equivalence class of (k, x). Defining $\pi([k, x])=k G^{\theta, \tau}$, we find that π is a projection from G / G^{τ} to $G^{\theta} / G^{\theta, \tau}$ and in this way, G / G^{τ} is a vector bundle over $G^{\theta} / G^{\theta, \tau}$. From the definition, π is G^{θ}-equivariant.

Now let θ, σ, τ be involutions of G commuting with each other. Assume that θ is a Cartan involution of G. Then we have the following diagram of inclusions and projections:

Diagram 1
Remark to the above diagram: G^{θ} is a maximal compact subgroup of G. The symmetric space G / G^{τ} is a vector bundle over $G^{\theta} / G^{\theta, \tau}$ as explained before. The symmetric spaces G / G^{τ} and $G / G^{\theta \tau}$ are mutually associated (cf. [B], [OS2, p. 437]). Both $G^{\theta \sigma} / G^{\theta \sigma, \tau}$ and $G^{\sigma} / G^{\sigma, \tau}$ are regarded as closed subspaces of G / G^{τ} and $G^{\theta, \sigma} / G^{\theta, \sigma, \tau}$ is regarded as a closed subspace of $G^{\theta} / G^{\theta, \tau}$. Moreover $G^{\theta \sigma} / G^{\theta \sigma, \tau}$ and $G^{\sigma} / G^{\sigma, \tau}$ are vector bundles over $G^{\theta, \sigma} / G^{\theta, \sigma, \tau}$.

In the sequel, we shall treat the case where G has a complex structure and both σ, τ are holomorphic involutions of G in $\S 3$ and the case where $G^{\theta} / G^{\theta, \tau}$ is a symmetric R-space in $\S 4$.
§3. In this section, we always assume that \mathfrak{g} is a complex semisimple Lie algebra and G is a corresponding connected complex semisimple Lie group. The purpose of this section is to obtain a geometric characterization of a symmetric space of $\mathfrak{f}_{\varepsilon}$-type introduced in [OS1].

If θ is a Cartan involution of G, G^{θ} is a maximal compact subgroup of G and \mathfrak{g}^{θ} is a compact real form of \mathfrak{g}.

In the sequel of this section, σ, τ are C-linear involutions of \mathfrak{g} such that θ, σ, τ commute with each other. Then all the involutions $\theta \sigma, \theta \tau, \theta \sigma \tau$ are \boldsymbol{R}-linear involutions of \mathfrak{g} but not \boldsymbol{C}-linear involutions. This implies that $\mathfrak{g}^{\theta \sigma}, \mathfrak{g}^{\theta \tau}, \mathfrak{g}^{\theta \sigma \tau}$ are real forms of \mathfrak{g}. On the other hand, it follows from the assumption that

$$
\mathfrak{g}=\mathfrak{g}^{\theta} \oplus \mathfrak{g}^{-\theta}, \quad \mathfrak{g}^{-\theta}=\sqrt{-1} \mathfrak{g}^{\theta}
$$

Moreover, it follows from the definition that $\left(\mathrm{g}^{\theta \sigma}, \mathrm{g}^{\theta \sigma, \tau}\right)$ and $\left(\mathrm{g}^{\theta \sigma}, \mathrm{g}^{\theta \sigma, \theta \tau}\right)$ are mutually associated.

Proposition 2. Let g be a complex semisimple Lie algebra, let θ be its Cartan involution and let σ, τ be C-linear involutions of \mathfrak{g}. Assume that θ, σ, τ are mutually commutative. Then we have the following diagram.

DiAgram 2

Proof. First show that $\left(\mathrm{g}^{\theta \sigma}, \mathrm{g}^{\theta \sigma, \tau}\right)$ is a dual of $\left(\mathrm{g}^{\theta_{\tau}}, \mathrm{g}^{\theta \tau, \sigma}\right)$. Since

$$
\mathbf{g}^{\theta \tau}=\mathbf{g}^{\theta \tau, \sigma, \tau} \oplus \mathbf{g}^{\theta \tau, \sigma,-\tau} \oplus \mathfrak{g}^{\theta \tau,-\sigma, \tau} \oplus \mathfrak{g}^{\theta \tau,-\sigma,-\tau}
$$

is a direct sum decomposition, we find from the definition of a dual symmetric pair that the dual of $\left(\mathrm{g}^{\theta \tau}, \mathrm{g}^{\theta \tau, \sigma}\right)$ is

$$
\begin{aligned}
\left(\mathfrak{g}^{\theta \tau, \sigma, \tau} \oplus \sqrt{-1}\right. & \mathfrak{g}^{\theta \tau, \sigma,-\tau} \oplus \\
& \left.\sqrt{-1} \mathfrak{g}^{\theta \tau,-\sigma, \tau} \oplus \mathfrak{g}^{\theta \tau,-\sigma,-\tau}, \mathfrak{g}^{\theta \tau, \sigma, \tau} \oplus \sqrt{-1} \mathfrak{g}^{\theta \tau,-\sigma, \tau}\right) \\
& =\left(\mathfrak{g}^{\theta \sigma}, \mathfrak{g}^{\theta \sigma, \tau}\right) .
\end{aligned}
$$

Other cases are shown by a similar argument.
Remark. (i) Among the six symmetric pairs appearing in Diagram 2, four symmetric pairs appear in Diagram 1. Changing the roles of τ and σ in Diagram 1, different four symmetric pairs of Diagram 2 appear in Diagram 1.
(ii) In general, any symmetric pair is expressed in the form ($g^{\theta \tau}, \mathfrak{g}^{\theta \tau, \sigma}$) for some complex semisimple Lie algebra g and its involutions θ, τ, σ with the conditions of this section. We will explain this more precisely. Any symmetric pair has the form ($\mathrm{g}_{0}, \mathfrak{g}_{\mathbf{o}}^{\boldsymbol{\sigma}}$), where g_{0} is a real semisimple Lie algebra and σ is its involution. Take a Cartan involution θ of \mathfrak{g}_{0} commuting with σ and denote by g the compexification of \mathfrak{g}_{0}. Extend σ to \mathfrak{g} as a C-linear involution. Then $\mathfrak{g}_{u}=\mathfrak{g}_{0}^{\theta} \oplus \sqrt{-1} \mathfrak{g}_{0}^{-\theta}$ is a compact real form of \mathfrak{g} and θ coincides with the restriction to g_{0} of the conjugation of g with respect to g_{u}. Noting this, denote by θ the conjugation of g. Then clearly σ and θ commute with each other. Since the conjugation of g with respect to g_{0} commutes with both θ, σ, there is a C-linear involution τ of g such that $\theta \tau$ is the conjugation of g with respect to g_{0}. It is obvious that τ commutes with both θ, σ. Then $\left(\mathfrak{g}_{0}, \mathfrak{g}_{0}^{\boldsymbol{\sigma}}\right)=\left(\mathbf{g}^{\theta \tau}, \mathfrak{g}^{\theta \tau, \sigma}\right)$.

In the sequel, we shall explain the ($\left.M_{+}(p), M_{-}(p)\right)$-method due to Chen-Nagano [CN] which is one of the methods of geometric constructions of pairs of commuting involutions of g . Let τ be a holomorphic involution of G and let θ be a Cartan involution of G commuting with τ. Then $M=G^{\theta} / G^{\theta, \tau}$ is a compact symmetric space. Take any point p of M. If $p=g_{0} G^{\theta, \tau}$ for some $g_{0} \in G^{\boldsymbol{\theta}}$, the automorphism s_{p} of M defined by $s_{p}\left(g G^{\theta, \tau}\right)=g_{0} \tau\left(g_{0}^{-1}\right) \tau(g) G^{\theta, \tau}\left(\forall g \in G^{\theta}\right)$ is an involutive isometry of M with respect to G^{θ}-invariant Riemannian metric. This implies that the automorphism τ_{p} of G^{θ} defined by $\tau_{p}(g)=g_{0} \tau\left(g_{0}^{-1}\right) \tau(g) \tau\left(g_{0}\right) g_{0}^{-1}\left(\forall g \in G^{\theta}\right)$ is an involution of G^{θ} and $\tau_{p}(g) s_{p}(q)=s_{p}(g q)$ for
any $g \in G^{\theta}, q \in M$.
Put $o=e G^{\theta, \tau} \in M$ and consider a closed geodesic (= circle) \mathscr{C} passing through o. Then there is $x_{0} \in \mathfrak{g}^{\theta,-\tau}$ with the conditions (i) $\mathscr{C}(t)=\exp \left(t x_{0}\right) G^{\theta, \tau}(0 \leq t \leq 1)$, (ii) $\mathscr{C}(t) \neq \mathscr{C}\left(t^{\prime}\right)$ if $0 \leq t<t^{\prime}<1$, (iii) $\mathscr{C}(0)=\mathscr{C}(1)=o$. For the geodesic $\mathscr{C}, p=\mathscr{C}\left(\frac{1}{2}\right)$ is the antipodal point to o. Put $g_{0}=\exp \left(\frac{1}{2} x_{0}\right)$. Since, by definition, $\tau\left(g_{0}\right)=\exp \left(\frac{1}{2} \tau\left(x_{0}\right)\right)=\exp \left(-\frac{1}{2} x_{0}\right)=g_{0}^{-1}$, we find that $g_{0} \tau\left(g_{0}\right)^{-1}=g_{0}^{2} \in G^{\theta, \tau}$. This implies that $g_{0}^{2}=\tau\left(g_{0}^{2}\right)=g_{0}^{-2}$. Therefore $g_{0}^{4}=e$.

Let $M_{+}(p)=G^{\theta, \tau} p$ be the $G^{\theta, \tau}$-orbit of p in M. Since p is the antipodal point to o of the geodesic \mathscr{C}, it follows that $s_{p} s_{o}=s_{o} s_{p}$. Since both $\tau_{p} \tau$ and $\tau \tau_{p}$ are continuous maps of G^{θ} and since $\tau_{p}(e)=\tau_{p} \tau(e)$, we find that $\tau_{p} \tau(g)=\tau \tau_{p}(g)$ for any $g \in G^{\theta}$.

Theorem 3. Let G, θ, τ, M be as above. Moreover τ_{p} is the involution of G corresponding to the antipodal point $p=g_{0} G^{\theta, \tau}$ to o with respect to a circle passing through o. By definition, $\sigma=\tau_{p}=\operatorname{Ad}\left(g_{0}^{2}\right) \circ \tau$ is a holomorphic involution of G. Then θ, σ, τ commute with each other and the symmetric pair $\left(\mathfrak{g}^{\theta \sigma}, \mathfrak{g}^{\theta \sigma, \tau}\right)$ is of $\mathfrak{f}_{\varepsilon}$-type in the sense of [OS2, (1.2)]. In particular, $\left(\mathrm{g}^{\theta \sigma}, \mathrm{g}^{\theta \sigma, \tau}\right)$ is self-dual and $\left(\mathrm{g}^{\theta \sigma \tau}, \mathrm{g}^{\theta \sigma, \tau}\right)$ is self-associated.

Proof. We keep the notation before the theorem. Put $g(\mathrm{t})=\exp \left(t x_{0}\right)$. Then $\mathscr{C}(t)=g(t) G^{\theta, \tau}, g_{0}=g(1 / 2), g_{0}^{4}=e$. Since x_{0} is semisimple, there is a maximal abelian subspace \mathfrak{a} of $\mathfrak{g}^{\theta,-\tau}$ containing x_{0}. Then $\tau \sigma(x)=x$ for any $x \in \mathfrak{a}$. This implies that \mathfrak{a} is contained in $\mathfrak{g}^{\theta,-\tau,-\sigma}$. On the other hand, we have $\operatorname{Ad}\left(g_{0}\right) \mathfrak{g}^{\theta \tau}=\mathfrak{g}^{\theta \sigma}, \operatorname{Ad}\left(g_{0}\right) \tau=\sigma \operatorname{Ad}\left(g_{0}\right)$, $\operatorname{Ad}\left(g_{0}\right) \sigma=\tau \operatorname{Ad}\left(g_{0}\right)$. Therefore, noting that $\sqrt{-1} \mathfrak{g}^{\theta}=\mathfrak{g}^{-\theta}$, we find that $\sqrt{-1} \mathfrak{a}$ is a maximal abelian subspace of $\mathfrak{g}^{\theta \sigma,-\sigma}$ and that $\sqrt{-1} \mathfrak{a}$ is contained in $\mathfrak{g}^{\theta \sigma,-\tau,-\sigma}$. Since $\mathrm{g}^{\theta \sigma}=\mathrm{g}^{\theta \sigma, \sigma} \oplus \mathrm{g}^{\theta \sigma,-\sigma}$ is a Cartan decomposition of $\mathfrak{g}^{\theta \sigma}$, the totality of the roots of $\mathrm{g}^{\theta \sigma}$ with respect to $\sqrt{-1} \mathfrak{a}$ becomes the restricted root system of $\mathfrak{g}^{\theta \sigma}$ which we denote by Σ. Moreover, for any root $\alpha \in \Sigma$, denote by $\mathrm{g}^{\theta \sigma}(\sqrt{-1} \mathfrak{a}, \alpha)$ the root space of $\mathrm{g}^{\theta \sigma}$ belonging to α. Then, for each root $\alpha \in \Sigma$, there is a real number $\varepsilon(\alpha)$ such that $\tau(x)=\varepsilon(\alpha) \sigma(x)$ for any $x \in \mathfrak{g}^{\theta \sigma}(\sqrt{-1} \mathfrak{a}, \alpha)$. From the definition, $\varepsilon(\alpha)^{2}=1$. On the other hand, it is clear from the definition that for any $x \in \mathfrak{g}^{\theta \sigma}$ such that $[x, \mathfrak{a}]=0, \tau(x)=\sigma(x)$ holds. Therefore, from [OS2, (1.9.3), (1.12)], we find that $\left(\mathrm{g}^{\theta \sigma}, \mathfrak{g}^{\theta \dot{\sigma}, \tau}\right)$ is a symmetric pair of $\mathfrak{f}_{\varepsilon}$-type. The rest of the statements follow from the properties of symmetric pairs of f_{ε}-type (cf. [OS2]).

Now we explain the converse of the theorem.
Let σ be a C-linear involution of g and let θ be a Cartan involution of g commuting with σ. Then clearly, $\mathfrak{g}^{\theta \sigma}$ is a real form of \mathfrak{g}. Let \mathfrak{a} be a maximal abelian subspace of $\mathrm{g}^{\theta \sigma,-\sigma}$ and let Σ be the root system of ($\mathrm{g}^{\theta \sigma}, \mathfrak{a}$). For a signature $\varepsilon: \Sigma \rightarrow\{1,-1\}$ (cf. [OS2]), define an involution τ of \mathfrak{g} by

$$
\tau(x)= \begin{cases}\sigma(x) & \text { if } \quad x \in \mathfrak{g}^{\theta \sigma},[x, \mathfrak{a}]=0 \\ \varepsilon(\alpha) \sigma(x) & \text { if } \quad x \in \mathfrak{g}^{\theta \sigma}(\mathfrak{a}, \alpha), \alpha \in \Sigma\end{cases}
$$

where $\mathfrak{g}^{\theta \sigma}(\mathfrak{a}, \alpha)$ is the root space of $\mathfrak{g}^{\theta \sigma}$ belonging to α. Then τ is uniquely extended to a C-linear involution of g. For the involution τ, we find from [OS1, Lemma 1.3] that
there is $x_{0} \in \mathfrak{a}$ such that $\sigma \tau(x)=\operatorname{Ad}\left(\exp \left(i x_{0}\right)\right)(x)$ for any $x \in \mathfrak{g}$. If $G=\operatorname{Int} \mathfrak{g}$, then θ, σ, τ are lifted to involutions of G. Put $M=G^{\boldsymbol{\theta}} / G^{\theta, \tau}$. Then $\mathscr{C}(t)=\exp \left(t i x_{0}\right)(t \in R)$ is a circle passing through $o=e G^{\theta, \tau}$ and if p is the antipodal point to o, it follows that $\sigma \mid G^{\theta}=\tau_{p}$.

From the discussions above, a geometric characterization of symmetric spaces of $\mathfrak{f}_{\varepsilon}$-type is obtained at least in Lie algebra case. In particular, it clarifies the relation between [OS1, Appendix, Table 2] and [CN, p. 415, Tables I-III].
§4. In this section, we treat the case where $G^{\boldsymbol{\theta}} / G^{\theta, \tau}$ is a symmetric R-space. To explain our situation more precisely, let G be a connected real semisimple Lie group and let θ, τ be commuting involutions of G. Assume that θ is a Cartan involution. In the sequel, we always assume that there is a parabolic subgroup P of G such that $P=G^{\tau} N$ is its Levi decomposition for the unique unipotent radical N. This assumption implies that $G / P \simeq G^{\theta} / G^{\theta, \tau}$. On the other hand, it follows from [N, Th. 4.4] that G / G^{τ} is isomorphic to the cotangent bundle to $G^{\theta} / G^{\theta, \tau}$ as G-space. Noting this, we denote by π_{P} the natural projection of G / G^{τ} to. G / P. In section 2 , we already explained that G / G^{τ} is a vector bundle over $G^{\boldsymbol{\theta}} / G^{\theta, \tau}$. There π is meant to be the projection of G / G^{τ} onto $G^{\boldsymbol{\theta}} / G^{\theta, \tau}$. We stress here the difference between π and π_{p}. The latter is G-equivariant whereas the former is only G^{θ}-equivariant.

Now let us review the results of [N] briefly. Let g be the Lie algebra of G. Then there is a unique element z of $\mathfrak{g}^{-\theta, \tau}$ (up to signature) such that $\mathfrak{g}_{0}=\mathfrak{g}^{\tau}, \mathfrak{g}_{-1} \oplus \mathfrak{g}_{1}=\mathfrak{g}^{-\tau}$, where $\mathfrak{g}_{d}=\{x \in \mathfrak{g} ;[z, x]=d z\}(\forall d \in \boldsymbol{R})$. The element z has the following properties:

$$
\begin{aligned}
& {[z,[z, x]]=x \quad\left(\forall x \in \mathfrak{g}^{-\tau}\right)} \\
& {\left[z, \mathfrak{g}_{ \pm 1}\right]=\mathfrak{g}_{ \pm 1},} \\
& \mathfrak{g}_{ \pm 1}=\left\{x \pm[z, x] ; x \in \mathfrak{g}^{\theta,-\tau}\right\}
\end{aligned}
$$

Theorem 4. Let G, θ, τ be as above and moreover assume that G / G^{τ} is irreducible. If σ_{0} is an involution of G^{θ} commuting with τ, the following hold:
(i) There is a unique involution σ of G such that $\sigma \mid G^{\theta}=\sigma_{0}, \sigma(z)=z$ and that σ commutes with both θ, τ.
(ii) $G^{\sigma} \cap P$ is a parabolic subgroup of G^{σ} and $G^{\sigma} / G^{\sigma, \tau}$ is isomorphic to the cotangent bundle over $G^{\theta, \sigma} / G^{\theta, \sigma, \tau} \simeq G^{\sigma} / G^{\sigma} \cap P$ as G^{σ}-space. Similarly, $G^{\sigma \tau} \cap P$ is a parabolic subgroup of $G^{\sigma \tau}$ and $G^{\sigma \tau} / G^{\sigma, \tau}$ is isomorphic to the cotangent bundle over $G^{\theta, \sigma \tau} / G^{\theta, \sigma, \tau} \simeq G^{\sigma \tau} / G^{\sigma \tau} \cap P$ as $G^{\sigma \tau}$-space.
(iii) Let $\imath: G^{\theta \sigma} / G^{\theta \sigma, \tau} \rightarrow G / G^{\tau}$ and $\imath^{\prime}: G^{\theta \sigma \tau} / G^{\theta \sigma, \tau} \rightarrow G / G^{\tau}$ be natural inclusions. Then $\pi_{P} \circ \imath\left(r e s p . \pi_{P} \circ \imath^{\prime}\right)$ is a bijective $G^{\theta \sigma}$-equivariant (resp. $G^{\theta \sigma \tau}$-equivariant) map and both $\operatorname{Im}\left(\pi_{P} \circ \mathfrak{l}\right)$ and $\operatorname{Im}\left(\pi_{P} \circ l^{\prime}\right)$ are open subsets of $G^{\theta} / G^{\theta, \tau}$.
(iv) Regard $G^{\theta, \sigma} / G^{\theta, \sigma, \tau}$ and $G^{\theta, \sigma \tau} / G^{\theta, \sigma, \tau}$ as closed subsets of $G^{\theta} / G^{\theta, \tau}$. Then $G^{\theta \sigma} / G^{\theta \sigma, \tau}$ (resp. $G^{\theta \sigma \tau} / G^{\theta \sigma, \tau}$) is isomorphic to the cotangent bundle over $G^{\theta, \sigma} / G^{\theta, \sigma, \tau}\left(\operatorname{resp} . G^{\theta, \sigma \tau} / G^{\theta, \sigma, \tau}\right)$ as $G^{\theta, \sigma}$-space (resp. $G^{\theta, \sigma \tau}$-space).

Proof. (i) First note that it is sufficient to show the case where the action of G on G / G^{τ} is effective. In fact, suppose that (i) is true for the effective action case. In general, let G_{1} be the quotient group of G which acts on G / G^{τ} effectively. Then (i) is true for G_{1}. So there is an involution σ^{\prime} of G_{1} with the conditions mentioned in (i). Let σ be the induced involution of g from σ^{\prime}. Noting the Cartan decomposition $G=G^{\theta} \exp \left(g^{-\theta}\right)$, define an involution σ of G by $\sigma(k \cdot \exp x)=\sigma(k) \exp \sigma(x)$ for any $k \in G^{\theta}$, $x \in \mathfrak{g}^{-\theta}$. Then σ is the required involution on G.

For this reason, we assume that G acts on G / G^{τ} effectively for a moment. Define σ by

$$
\sigma(x)= \begin{cases}\sigma_{0}(x) & \left(x \in \mathfrak{g}^{\theta}\right) \\ {\left[z, \sigma_{0}([z, x])\right]} & \left(x \in \mathfrak{g}^{-\theta,-\tau}\right)\end{cases}
$$

Then we find that σ is a linear transformation of the vector space $V=\mathfrak{g}^{\theta, \tau} \oplus \mathfrak{g}^{\boldsymbol{\theta},-\tau} \oplus \mathfrak{g}^{-\theta,-\tau}$. We find from the property of z mentioned above that σ^{2} is the identity transformation of V. Now, using σ, define an automorphism φ^{\prime} of $G^{\theta} \times \mathfrak{g}^{-\theta,-\tau}$ by

$$
\varphi^{\prime}(k, x)=\left(\sigma_{0}(k), \sigma(x)\right) \quad\left(\forall(k, x) \in G^{\theta} \times \mathfrak{g}^{-\theta,-\tau}\right)
$$

Since φ^{\prime} preserves the equivalence relation \sim on $G^{\theta} \times \mathfrak{g}^{-\theta,-\tau}$ (see $\S 2$), it follows that φ^{\prime} induces an automorphism φ of $\left(G^{\theta} \times g^{-\theta,-\tau}\right) / \sim \simeq G / G^{\tau}$. It is clear from the definition that φ^{2} is the identity automorphism of G / G^{τ}. Put $\sigma(g)=\varphi g \varphi^{-1}$ for any $g \in G$. Then $\sigma(g)$ is an automorphism of G / G^{τ}. Therefore both G and $\sigma(G)$ are subgroups of the automorphism group of G / G^{τ}. This combined with Kobayashi-Nomizu [KN] gives $\sigma(G)=G$. This implies that σ is an involution of G. From the definition, we find that $\sigma \mid G^{\theta}=\sigma_{0}$ and that σ commutes with θ, τ. From the choice of z, it follows that $\sigma(z) \in \mathfrak{g}^{-\theta, \tau}$, moreover, $\sigma(z)$ is contained in the center of \mathfrak{g}^{τ}. Since G / G^{τ} is irreducible, the center \mathfrak{c} of \mathfrak{g}^{τ} is one or two dimensional. In the case where $\operatorname{dim} c=2, \mathfrak{g}^{\tau}$ is complex semisimple and $c=C z$. But eigenvalues of $\operatorname{ad}(\sigma(z))$ are $1,-1$. Hence $\sigma(z) \in \boldsymbol{R} z$. On the other hand, if $\operatorname{dim} c=1$, then clearly, $\mathfrak{c}=\boldsymbol{R} z$. We have thus found that $\sigma(z)=c z$ for some $c \in \boldsymbol{R}$. Since $\sigma^{2}=1$, it follows that $c^{2}=1$. In the case where $c=-1$, we have $\theta \sigma(z)=z$. Therefore, in this case, we take $\theta \sigma$ instead of σ. Then we can take such a σ that $\sigma(z)=z$ holds. We have thus proved (i).
(ii) Since $z \in \mathfrak{g}^{\sigma}, \mathfrak{g}^{\sigma} \cap \mathfrak{g}_{0}=\mathfrak{g}^{\sigma, \tau}, \mathfrak{g}^{\sigma,-\tau}=\mathfrak{g}^{\sigma} \cap \mathfrak{g}_{-1} \oplus \mathfrak{g}^{\sigma} \cap \mathfrak{g}_{1}$, it follows that $G^{\sigma} \cap P$ is a parabolic subgroup of G^{σ}. The rest follows from properties of symmetric R-spaces.
(iii) First show that $\pi_{P} \circ \boldsymbol{l}$ is injective. For this purpose, take $g \in G^{\theta \sigma}$ and assume that $\pi_{P}\left(l\left(g G^{\theta \sigma, \tau}\right)\right)=e P$. Since $P=G^{\tau} N$, there are $h \in G^{\tau}$ and $n \in N$ such that $g=h n$. Let \bar{N} be the opposite of N. Since $\theta \sigma(g)=g$, it follows that $h n=\theta \sigma(h n)=\theta \sigma(h) \theta \sigma(n)$. Then $\theta \sigma(h) \in G^{\tau}$ and $\theta \sigma(n) \in \bar{N}$. These imply that $h=\theta \sigma(h), n=e$. Hence $g=h \in G^{\tau} \cap G^{\theta \sigma}$ and the injectivity of $\pi_{P} \circ \boldsymbol{l}$ follows.

Next we will show that $\operatorname{Im}\left(\pi_{P} \circ \imath\right)$ is open. Put $o=e G^{\tau}$. This is regarded as an element of $G^{\theta \sigma} / G^{\theta \sigma, \tau}$. Moreover we need the identifications

$$
T_{o}\left(G^{\theta \sigma} / G^{\theta \sigma, \tau}\right) \simeq \mathrm{g}^{\theta \sigma} / \mathfrak{g}^{\theta \sigma, \tau}
$$

$$
\begin{aligned}
& T_{o}\left(G / G^{\tau}\right) \simeq \mathfrak{g} / \mathfrak{g}^{\tau} \\
& T_{\pi_{P(o)}}(G / P) \simeq \mathfrak{g} / \mathfrak{g}^{\tau} \oplus \mathfrak{g}_{1}^{-\tau}
\end{aligned}
$$

(Here we assumed that $\operatorname{Lie}(N)=\mathfrak{g}^{\tau} \oplus \mathfrak{h}^{-\tau}$.) Then

$$
\begin{aligned}
& \left(\pi_{P} \circ \mathfrak{l}\right)_{*}\left(x \bmod \mathfrak{g}^{\theta \sigma, \tau}\right) \\
= & \left(\pi_{P}\right)_{*}\left(x \bmod g^{\tau}\right) \\
= & \frac{1}{2}(x-[z, x]) \bmod \mathfrak{g}^{\tau} \oplus \mathfrak{g}_{1}^{-\tau} .
\end{aligned}
$$

On the other hand, from the property of z, the maps

$$
\begin{aligned}
& \mathfrak{g}^{\theta, \sigma,-\tau} \longrightarrow \mathfrak{g}_{-1}^{-\tau, \sigma}, \quad x \mapsto \frac{1}{2}(x-[z, x]), \\
& \mathfrak{g}^{-\theta,-\sigma,-\tau} \longrightarrow \mathfrak{g}_{-1}^{-\tau,-\sigma}, \quad x \mapsto \frac{1}{2}(x-[z, x])
\end{aligned}
$$

are linear isomorphisms. Noting that

$$
\begin{aligned}
& \mathbf{g}^{\theta \sigma} / \mathbf{g}^{\theta \sigma, \tau} \simeq \mathbf{g}^{\theta, \sigma,-\tau} \oplus \mathrm{g}^{-\theta,-\sigma,-\tau} \\
& \mathbf{g} / \mathbf{g}^{\tau} \oplus \mathfrak{g}_{1}^{-\tau} \simeq \mathbf{g}_{-1}^{-\tau, \sigma} \oplus \mathfrak{g}_{-1}^{-\tau,-\sigma}
\end{aligned}
$$

we find that if $x \in \mathrm{~g}^{\theta, \sigma,-\tau}, y \in \mathfrak{g}^{-\theta,-\sigma,-\tau}$, then

$$
\begin{aligned}
& \left(\pi_{P} \circ \mathfrak{l}\right)_{*}\left(x+y \bmod \mathrm{~g}^{\theta \sigma, \tau}\right) \\
= & \frac{1}{2}\{(x-[z, x])+(y-[z, y])\} \bmod \mathfrak{g}^{\tau} \oplus \mathfrak{g}_{1}^{-\tau}
\end{aligned}
$$

Then we find that $\left(\pi_{P} \circ\right)_{*} T_{o}\left(G^{\theta \sigma} / G^{\theta \sigma, \tau}\right)=T_{\pi_{P}(o)}(G / P)$. Since $\pi_{P} \circ \imath$ is $G^{\theta \sigma}$-equivariant, it follows that the image of $\pi_{P} \circ l$ is an open subset of $G / P \simeq G^{\theta} / G^{\theta, \tau}$.
(iv) If M is a C^{∞}-manifold, and L is its closed submanifold, then

$$
0 \longrightarrow T_{L}^{*} M \longrightarrow T^{*} M \mid L \longrightarrow T^{*} L \longrightarrow 0
$$

is an exact sequence. Consider the case where $M=G^{\theta} / G^{\theta, \tau}$ and $L=G^{\theta, \sigma} / G^{\theta, \sigma, \tau}$. Then it follows from (ii) that

$$
\begin{aligned}
& T^{*} M \simeq G / G^{\tau} \simeq\left(G^{\theta} \times \mathfrak{g}^{-\theta,-\tau}\right) / \sim, \\
& T^{*} L \simeq G^{\sigma} / G^{\sigma, \tau} \simeq\left(G^{\theta, \sigma} \times \mathbf{g}^{-\theta,-\sigma,-\tau}\right) / \sim
\end{aligned}
$$

On the other hand, since $\mathrm{g}^{-\theta,-\tau}=\mathrm{g}^{-\theta,-\sigma,-\tau} \oplus \mathrm{g}^{-\theta, \sigma,-\tau}$, we have

$$
T_{L}^{*} M \simeq\left(G^{\theta, \sigma} \times \mathrm{g}^{-\theta, \sigma,-\tau}\right) / \sim \simeq G^{\theta \sigma} / G^{\theta \sigma, \tau}
$$

Similar argument goes well for the case where $L=G^{\theta \sigma \tau} / G^{\theta \sigma, \tau}$.
Remark. (i) Theorem 4, (ii) is regarded as an extension of Theorem 7.2 in [CN] to the case of symmetric R-spaces.
(ii) Theorem 4, (iii) is regarded as a generalization of "Borel embedding" of a Hermitian symmetric space of the non-compact type to its compact dual. A result similar to Theorem 4 was obtained by Makarevič [M].

References

[B] M. Berger, Les espaces symétriques non compacts, Ann. Sci. Ecole Norm. Sup., 74 (1957), 85-177.
[CN] B.-Y. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J., 45 (1978), 405-425.
[H] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978.
[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, II, Interscience, 1963.
[L] O. Loos, Symmetric Spaces, I: General Theory, Benjamin, 1969.
[M] B. O. Makarević, Open symmetric orbits of reductive groups in symmetric R-spaces, Math. USSR-Sb., 20 (1973).
[N] T. Nagano, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc., 118 (1964), 428-453.
[OS1] T. Oshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math., 57 (1980), 1-80.
[OS2] T. Oshima and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, Adv. Stud. Pure Math., 4 (1984), 433-497.

Present Address:

Tadashi Nagano
Department of Mathematics, Sophia University
Chiyoda-ku, Tokyo 102, Japan
Jiro Sekiguchi
Department of Mathematics, University of Electro-Communications
Chofu, Tokyo 182, Japan

[^0]: Received November 21, 1990

