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1. $Stateme\acute{n}t$ of the results.

The classical Kummer’s criterion is one of the most interesting results in algebraic
number theory, which connects the special values of the Dedekind zeta function with
some algebraic objects: the class number and the existence ofcertain algebraic extensions
of cyclotomic fields.

In this paper we prove the complete generalization ofKummer’s criterion for totally
real fields. Note that a recent work of Wiles on the Iwasawa main conjecture [Wil]
gives a “piece-by-piece” description of the criterion.

To state our theorems we have to introduce some notations used in this paper. Let
$p$ be an odd prime number and $\mu_{p^{n}}$ the group of $p^{n}$-th roots of unity. For a number
field $M$, we denote by $S(M)$ the set of primes of $M$ lying above, $p$ . By a p-ramified
extension of $M$ we mean an extension of $M$ which is unramified outside $S(M)$ and by
a $Z/pZ$-extension of $M$ a cyclic extension ofdegree $p$ . We denote by $\zeta(s, M)$ the Dedekind
zeta function ofMand by A$(M)$ the p-primary part of the ideal class group of M. And
we define $E_{p}(s, M)=\prod_{\wp\in S(M)}(1-(N\wp)^{-s})$ where $N$ is the absolute norm. Moreover, if
$M$ is a CM-field, then we denote by $M^{+}$ the maximal real subfield of $M$, and decompose
$A(M)$ by the action of the complex conjugation $J$:

$A(M)^{+}=\{a\in A(M);a^{J}=a\}$ , $A(M)^{-}=\{a\in A(M);a^{J}=-a\}$ .

Then we have $A=A^{+}\oplus A^{-}$ because $p$ is an odd prime. We fix a totally real field $k$ with
the degree $r=[k:Q]$ , and put $K=k(\mu_{p})$ and $d=[K:k]$ . Now we can state our theorems.

THEOREM 1. Let the fields $k$ and $K$ be as above. We assume that no element in
$S(K^{+})$ splits in K. Then the following four conditions are equivalent.

1. $A(K)^{-}\neq 0$ .
2. There is an unramified $Z/pZ$-extension of $K$.
3. $p$ divides one of the numerators of the following rational numbers.1
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1 The following numbers are rational by the results of Siegel [Sie].
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$\zeta(1-i, k)$ ($2\leq i\leq d-2$ , even), $p^{v}\zeta(1-d, k)$ ,

where $p^{v}$ is the number ofp-power roots of unity contained in $K$.
4. There is a p-ramified $Z/pZ$-extension of $K^{+}$ other than the first layer of th

cyclotomic $Z_{p}$-extension of $K^{+}$ .
The equivalence $1\Leftrightarrow 2$ is a simple consequence ofclass field theory and the reflectio

theorem of Leopoldt [Leo]. And the equivalence $1\Leftrightarrow 3$ is essentially due to Greenber
[Grel]. When the ground field $k$ is a real quadratic field, Kudo also obtained this forn
of the result ([Kud] Theorem 2) by using the work of Coates and Sinnott [Co-Si]
Hence we only must show the equivalence $3\Leftrightarrow 4$ . But we also show $1\Leftrightarrow 3$ in a slightll
generalized form. We shall prove the following theorem.

THEOREM 2. Let $L$ be a CM-subfield of $K$ containing $k$ . Put $[K:L]=ean_{t}$

$[L:k]=f$ . Moreover we assume no element in $S(L^{+})$ splits in L. Then $A(L)^{-}\neq 0$ if $an_{(}$

only if
(1) in the case $e=1$ : $p$ divides one of the numerators of thefollowing rational numbers

$\zeta(1-i, k)$ ($2\leq i\leq d-2$, even), $p^{\nu}\zeta(1-d, k)$ ,

where $p^{v}$ is the number ofp-power roots of unity contained in $K$.
(2) $inthecasee\neq 1$ : pdividesoneofthenumeratorsofthefollowingrationalnumbers:

$\zeta(1-(ei+1), k)$ ( $1\leq i\leq f$, odd).

We must make a number of remarks concerning our theorems.
If we take the field of rational numbers $Q$ as $k$ in Theorem 1 and use the fac

$\zeta(1-i, Q)=-B_{i}/j$ and von Staudt-Clausen’s theorem (Theorem 5.10 [Was]), then $Wt$

obtain the classical criterion ofKummer. And the case $k=Q$ ofTheorem 2 was previousl!
obtained by Adachi [Ada].

By the work of Leopoldt [Leo], we know $A(K)^{+}\neq 0$ implies $A(K)^{-}\neq 0$ . Hence wt
may replace the first condition with $A(K)\neq 0’$ . On the other hand, in Theorem 2, wt
cannot replace the condition $A(L)^{-}\neq 0$ with $A(L)\neq 0$ whenever $e\neq 1$ . (See Adach
[Ada]).

In proving the equivalence between the fourth condition and the others we mus
assume that the Leopoldt conjecture holds for $K^{+}$ . But we can show that the negation
of the first condition implies the conjecture (see the next section). Hence when we derivt
the other conditions from the fourth, we need not assume it.

For a fixed totally real field $k$, if $p$ satisfies one of the conditions in Theorem 1
then we call the prime $p$ a k-irregular prime. It is natural to ask whether there exis)

infinitely many k-irregular primes. The answer is “Yes”. In fact, if $p$ is irregular in the
classical sense (Q-irregular in our terminology) and does not divide the degree $[k:Q]$

then $p$ is obviously k-irregular. Therefore the infinitude of irregular primes (Theorerr
5.17 [Was]) implies that of k-irregular primes.
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An elliptic analogue of Kummer’s criterion is also proved by Coates and Wiles
[Co-Wi]. Our proof is inspired by their work.

2. A simple remark on the Leopoldt conjecture.

In this section we prove the result mentioned in the above remark. We first recall
the Leopoldt conjecture for totally real fields.

THE LEOPOLDT CONJECTURE. For any totally real field $F$, the p-adic regulator
$R_{p}(F)$ of $F$ does not vanish. Equivalently, there is no $Z_{p}$-extension of $F$ other than the
cyclotomic one. $\blacksquare$

We show the following.

PROPOSITION 1. Let $k,$ $K,$ $K^{+},$ $A(K)^{-}$ be the same as Theorem 1. (We still assume
that no element in $S(K^{+})$ splits in $K.$ ) If $A(K)^{-}=0$ , then the Leopoldt conjecture is valid

for $K^{+}$ and $p$ .
This proposition is an immediate consequence of the following lemma.

LEMMA 1 (Candiotti, Proposition 5 [Can]). Let $F$ be a totally realfield such that
$A(F)=0$ . And for each $\wp\in S(F)$ , we assume that the completion $F_{\wp}$ of $F$ at $\wp$ does not

contain $\mu_{p}$ . Further we assume that the fundamental units of $F$ are linearly independent
in $U_{p}/(U_{p})^{p}$ where $U_{p}$ is defined as the product of the unit groups $U_{\wp}s$ of $F_{\wp}$ ranging over
$\wp\in S(F);U_{p}=\prod_{\wp\in S\langle F)}U_{\wp}$ . Under these assumptions, the maximal abelian p-ramified
p-extension of $F$ agrees with the cyclotomic $Z_{p}$-extension of F. $\blacksquare$

M. Yamagishi kindly pointed out to the author that Candiotti’s lemma follows
from a general theorem due to Shafarevich [Sha].

We now give a proof of the proposition. Let $F=K^{+}$ . Then the conditions in the
lemma are satisfied. In fact, by the assumption $A(K)^{-}=0$ and the remark in the previous
section, we have $A(K)=0$ . And since none of the elements in $S(K^{+})$ split in $K$, we have
$\mu_{p}\not\subset K_{\wp}^{+}$ for all $\wp\in S(K^{+})$ . Finally if the fundamental units $\{\epsilon_{1}, \cdots, \epsilon_{rd/2-1}\}$ of $K^{+}$ are
not linearly independent in $U_{p}/(U_{p})^{p}$ , then we have $\beta=\prod_{i=1}^{rd/2-1}\epsilon_{i}^{m_{i}}\in(U_{p})^{p}$ for some $m_{i}\in Z_{p}$

which are not all in $pZ_{p}$ . By the ramification theory of Kummer extensions, we find
the extension $K(\sqrt[p]{}\overline{\beta})/K$ is an unramified extension ofdegree $p$ . This contradicts $A(K)=0$ .
Hence we can apply the lemma to $K^{+}$ . Since any $Z_{p}$-extension is a p-ramifiedp-extension,
$K^{+}$ has only one $Z_{p}$-extension, i.e., the cyclotomic one by Lemma 1. $\blacksquare$

This proposition is known when $k=Q$ ([Was] p. 71). Of course in this case a more
general theorem was proved by Brumer [Bru]. And Lemma 1 also shows that the fourth
condition implies the first in Theorem 1. But the converse part cannot be shown by
this argument. The author would like to express his thanks to the referee for informing
that the equivalence follows from a standard argument on the reflection principle. But
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we give instead an analytic proof of the equivalence $3\Leftrightarrow 4$ using p-adic L-functions.

REMARK. If $L$ is an intermediate CM-field of $K/k$, then, as mentioned in th
previous section, $A(L)^{-}=0$ does not imply $A(L)=0$ so far as $e\neq 1$ . Thus we cann $($

derive the validity of the Leopoldt conjecture for $L^{+}$ in this way.

3. p-adic L-functions for totally real fields.

We need some preliminaries on p-adic L-functions for the proof of our theorem
(See, for example, [Coa] and [De-Ri] for more details.) From now on, we fix a
embedding of the algebraic numbers into $C_{p}$, the completion of the algebraic closu]

of $Q_{p}$ and we may consider the algebraic numbers to be contained in $C_{p}$ by th
embedding. For an algebraic number field $F$, we put

$\zeta^{*}(s, F)=E_{p}(s, F)\zeta(s, F)$ . $($

We consider, in particular, the case that $F$ is totally real. Let ru be the p-adic Teichm\"ullt

character. We can then define the p-adic Hecke character associated with $F(\mu_{p})/F^{t}$

$\omega_{F}=\omega\circ N$. Now we put

$L^{*}(s, \omega_{F}^{i})=\sum_{\langle A,p)=1}\frac{\omega_{p}^{i}(A)}{(NA)^{s}}=\prod_{\wp\in Sp\epsilon c\langle F)\backslash S\langle F)}(1-\frac{\omega iA\wp)}{(N\wp)^{s}})^{-1}$

And let $d=[F(\mu_{p}):F]$ . If $i\equiv 0(mod d)$ , then we have
$L^{*}(s, \omega_{F}^{i})=\zeta^{*}(s, F)$ . $(^{\prime}$

Let $L$ be the CM-intermediate field of $F(\mu_{p})/F$ and $X$ the group of the characters a
sociated with the extension $L/F$. Then it is easy to obtain the following two equalities:

$\zeta^{*}(s, L)=\prod_{\chi\in X}L^{*}(s, \chi)$ ,

$\zeta^{*}(s, L^{+})=\prod_{\chi\in X^{+}}L^{*}(s, \chi)$ .

Here we denote by $X^{+}$ the subset of $X$ consisting of the even characters.
Under these settings, it is shown that, for each $\omega_{F}^{i}$ , there exists a continuous functio

$L_{p}(s, \omega_{F}^{i})$ from $Z_{p}$ (from $Z_{p}\backslash \{1\}$ if $i\equiv 0(mod d)$) to $C_{p}$ such that
$L_{p}(1-n, \omega_{F}^{i})=L^{*}(1-n, \omega_{F}^{i-n})$ , $(n\geq 1)$ .

In particular, if $n\equiv i(mod d)$ , we have

$L_{p}(1-n, \omega_{F}^{i})=\zeta^{*}(1-n, F)$

by (2) and (5).
Now we fix a topological generator $\gamma$ of the Galois group $Ga1(F(\bigcup_{n\geq 1}\mu_{p^{n}})/f(\mu_{l}$
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and define $u$ by the element in $1+pZ_{p}$ which satisfies $\zeta_{p^{n}}^{\gamma}=\zeta_{p^{n}}^{u}(n\geq 1)$ , where $\zeta_{p^{n}}$ is a
generator of the group $\mu_{p^{n}}$ . Then it is also shown that there exists an element $G(T, \omega_{F}^{1-i})$

of the quotient field of the Iwasawa algebra $\Lambda=Z_{p}[[T]]$ such that

$L_{p}(s, \omega_{F}^{i})=G(u^{s}-1, \omega_{F}^{1-i})$ . (7)

Moreover, if we put

$H(T, \omega_{F}^{i})=\left\{\begin{array}{ll}G(T, \omega_{F}^{i}) & (i\not\equiv 1(mod d))\\(1+T-u)G(T, \omega_{F}^{i}) & (i\equiv 1(mod d)) ,\end{array}\right.$ (8)

then we have
$ H(T, \omega_{F}^{i})\in\Lambda$ , (9)

that is, as far as $i\not\equiv O(mod d),$ $L_{p}(s, \omega_{F}^{i})$ is an Iwasawa function.

4. Proof of Theorem 1.

Let $M$ be the maximal abelian p-ramified p-extension and $K_{\infty}^{+}$ the cyclotomic
$Z_{p}$-extension of $K^{+}$ respectively. Then the negation of the fourth condition of the
theorem is equivalent to $M=K_{\infty}^{+}$ . Therefore it is equivalent to $Ga1(M/K_{\infty}^{+})=1$ . We need
a lemma.

LEMMA 2 (Coates [Coa] Appendix Lemma 8). Let $F$ be a totally real field for
which the Leopoldt conjecture for $p$ is valid. And let $F_{\infty}$ be the cyclotomic $Z_{p}$-extension,
and $M$ the maximal abelian p-ramified p-extension of $F$ respectively. Put

$\alpha(F)=\frac{(w(F(\mu_{p}))hR_{p}E_{p}(1,F))}{\sqrt{\delta}}$ . (10)

Then we have

$\#Ga1(M/F_{\infty})=p^{v_{p}\langle\alpha\langle F))}$ ,

where $w(F1\mu_{p}))$ is the number of the roots of unity contained in $F(\mu_{p}),$ $h$ is the class number
of $F,$ $R_{p}$ is the p-adic regulator of $F,$ $\delta$ is the absolute value of the discriminant of $F$, and
$v_{p}$ is the p-adic valuation normalized by $v_{p}(p)=1$ . $\blacksquare$

In this lemma let $F=K^{+}$ . Then we have

$Ga1(M/K_{\infty}^{+})=1\approx\alpha(K^{+})\in Z_{p}^{x}$ (11)

Let

$Q=Q_{0}\subset Q_{1}\subset\cdots\subset Q_{n}\subset\cdots\subset Q_{\infty}$

be the cyclotomic $Z_{p}$-extension of $Q$ . And define an integer $v$ by $Q_{\infty}\cap K^{+}=Q_{v-1}$ . Then
it follows that (p-part of $w(K)$) $=p^{v}$ . Now to connect the algebraic results in the above
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with analytic objects, we need another lemma.

LEMMA 3 (Colmez [Col]). We use the notation in Lemma 2. Put $\zeta_{p}(F, s)=L_{p}(s,$ $\omega_{F}^{0)}$,
Then we have

$\lim_{s\rightarrow 1}(s-1)\zeta_{p}(F, s)=\frac{2^{n-1}hR_{p}E_{p}(1,F)}{\sqrt{\delta}}$ ,

where $n=[F;Q]$ . In particular, if the Leopoldt conjecture is validfor $F$, then $\zeta_{p}(F, s)ha$

a pole at $s=1$ of order 1 and the residue is given by the above formula. I
We apply this lemma to $K^{+}$ . Under the assumption that the Leopoldt conjectur $($

is valid for $K^{+}$ , we have

${\rm Res}(\zeta_{p}(K^{+}, s),$ $s=1$ ) $=\frac{2^{n-1}hR_{p}E_{p}(1,K^{+})}{\sqrt{\delta}}\neq 0$ . (12

By (10), (11) and (12) we obtain

$Ga1(M/K_{\infty}^{+})=1\approx w(K){\rm Res}(\zeta_{p}(K^{+}, s),$ $s=1$ ) $\in Z_{p}^{x}$

It can be seen $\zeta_{p}(K^{+}, s)=\prod_{i=2,i:\cdot ven}^{d}L_{p}(s, \omega_{k}^{i})$, and by (7) and (8) we have

$(u^{s}-u)\zeta_{p}(K^{+}, s)=\prod_{i=2.i:even}^{d}H(u^{s}-1, \omega_{k}^{1-i})$ .

It follows from (9) that the both sides of the above equation are analytic, and by th $($

expansion of $t-u$ :

$u^{s}-u=u(s-1)\log_{p}(u)+higher$ terms,

we obtain

$u\log_{p}(u){\rm Res}(\zeta_{p}(K^{+}, s),$ $s=1$ ) $=\prod_{i=2,i:even}^{d}H(u^{1}-1, \omega_{k}^{1-i})$ .

On the other hand, we have

$v_{p}(u\log(u))=v_{p}(u-1)=v_{p}(w(K))$

by the definition of $u$ . This yields

$v_{p}(w(K){\rm Res}(\zeta_{p}(K^{+}, s),$ $s=1$ )) $=v_{p}(\prod_{i=2.i:even}H(u^{1}-1, \omega_{k}^{1-i}))$ .

Since $H(u^{1}-1, \omega_{k}^{1-i})s$ are p-adic integers, we finally obtain

$Ga1(M/K_{\infty}^{+})=1\Leftrightarrow H(u^{1}-1, \omega_{k}^{1-i})\in Z_{p}^{x}$ ($2\leq i\leq d$ : even).

We rewrite the condition of the right hand side. We have, for $j\not\equiv O(mod d)$,
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$H(u^{1}-1, \omega_{k}^{1-j})\equiv H(u^{1-j}-1, \omega_{k}^{1-j})$ $(mod p)$

$=L_{p}(1-j, \omega_{k}^{j})$ (by (7))

$=\zeta^{*}(1-j, k)$ (by (6))

$=$ ( $p$-adic $unit$) $\times\zeta(1-j, k)$ (by (1)). (13)

For $j\equiv 0(mod d)$ , we have

$H(u^{1}-1, \omega_{k}^{1-j})\equiv H(u^{1-j}-1, \omega_{k}^{1-j})$ $(mod p)$

$=(u^{1-j}-u)L_{p}(1-j, \omega_{k}^{j})$ (by (7), (8))

$=(u^{1-j}-u)\zeta^{*}(1-j, k)$ (by (6))

$=$ ( $p$-adic unit) $\times(u^{1-j}-u)\zeta(1-j, k)$ (by (1)).

Let $j=d$, and we have $v_{p}(u^{1-d}-u)=v$ , because $(p, d)=1$ , Hence we have

$H(u^{1}-1, \omega_{k}^{1-d})\in Z_{p}^{x}\approx p^{\nu}\zeta(1-d, k)\in Z_{p}^{x}$ (14)

Combining (13) and (14), the proof of Theorem 1 is complete.

5. Proof of Theorem 2.

Let $h,$ $R,$ $\delta$ be the class number, the regulator and the absolute value of the
discriminant of $L$ respectively. Moreover let $h^{+},$ $R^{+},$ $\delta^{+}$ be the corresponding objects
for $L^{+}$ , and $w$ the number of the roots of unity contained in $L$ . We can prove aclass
number formula for $L$ by the same method used by Greenberg in his paper [Grel].

Namely, we have

$ah^{-}=\frac{w}{2^{t+1}}\prod_{i=1,i:odd}^{\int}L^{*}(0, \omega_{k}^{ei})$ , (15)

where $h^{-}=h/h^{+}$ and the integer $t$ is determined by the formula $R/R^{+}=2^{t}$ (see Proposition
4.16 [Was]) and the integer $a$ is determined by the formula

$a=\lim_{s\rightarrow 0}\frac{E_{p}(s,L)}{E_{p}(s,L^{+})}$ .

Note that, since no element of S$(L^{+})splitsinL/L^{+}$ , aisapower of2, soap-adic unit.
Also note that

$v_{p}(w)=\left\{\begin{array}{ll}0 & if e\neq 1\\v & if e=1.\end{array}\right.$

By (5) we can rewrite (15) by the language ofp-adic L-functions. In fact, we have
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$w\prod_{i=1,i:}^{f}$

odd

$L^{*}(0, \omega_{k}^{ei})=w\prod_{i=1,i:}^{f}$

odd

$L_{p}(0, \omega_{k}^{ei+1})$ . (16

As in the proof of Theorem 1 we obtain

(p-adic unit) $\times w\prod_{i=1,i:}^{f}$

odd
$L_{p}(0, \omega_{k}^{ei+1})$

$\equiv w\prod_{i=1,i:odd}^{\int}L_{p}(1-(ei+1), \omega_{k}^{ei+1})$ $(mod p)$

$=w\prod_{i=1,i:}^{J}$

odd
$\zeta^{*}(1-(ei+1), k)$

$=$ ( $p$-adic unit) $xw\prod_{i=1.l:}^{f}$

odd
$\zeta(1-(ei+1), k)$ . (17

Combining (15), (16), (17) and using the p-integrality of $\zeta(1-(ei+1), k)orp^{v}\zeta(1-d, k)$

the proof of Theorem 2 is complete.
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