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Moves for Flow-Spines and Topological Invariants of 3-Manifolds
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Introduction.

A spine $P$ for a closed 3-manifold $M$ is a 2-dimensional polyhedron in $M$ such
that the complement of the regular neighborhood of $P$ is homeomorphic to the 3-ball.
Cutting off a closed 3-manifold $M$ along its spine $P$, we get a 3-ball $B^{3}$ with an
identification on its boundary. This is a polyhedral representation of $M$, which is first
considered by M. Dehn in the case of closed surfaces, and introduced by H. Seifert in
the 3-dimensional case.

A DS-diagram is a polyhedral representation of a special class, which was first
introduced in [3]. A spine corresponding to a DS-diagram forms a closed fake surface
(cf. [1], [3]). A spine which forms a closed fake surface is called a standard or a simple
spine. As is pointed out in [12], a standard spine is the dual ofa singular triangulation.

A flow-spine introduced in [7] is a standard spine of a more special class, which
is generated by a pair of a non-singular flow and its local section. It was shown in [4]
and [7] that a DS-diagram for a flow-spine has an E-cycle. An E-cycle is a cycle of
the graph of a DS-diagram which represents a kind of symmetry of a polyhedral
representation. (See \S 1 for precise.)

A closed 3-manifold admits infinitely many flow-spines. In this paper, we shall give
conditions for two flow-spines to represent the same manifold, that is, it will be shown
that any two flow-spines of a 3-manifold can be transformed from one to another by
a finite sequence of operations of three types which we call “moves”. A flow-spine is
completely determined by a data on the E-cycle, which will be called an E-data (cf. \S 1).
An E-data is the one called a singularity-data in [7]. Our moves of flow-spines are
described in terms of E-data. For an easy description of moves of E-data, we introduce
the graphic representation of an E-data in \S 1.

An E-data determines not only a 3-manifold $M$ but also a class of non-singular
flows on $M$ (see \S 1). Moves of E-data are divided into two types, moves which do not
change the class of non-singular flows and those which change the class. Moves of the
first type are called regular moves and discussed in \S 2. The second type consists of only
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one move, called a surgery move, and is exhibited in \S 3.
As an application, in \S \S 4, 5 we shall attempt to give topological invariants

3-manifolds. The invariants obtained in this paper are similar to those in [12] $whi($

are called state sum invariants.
In this paper, we consider only orientable cases. Nonorientable case can be $treat|$

in a similar way, but E-data for nonorientable manifolds are somewhat $complicat|$

(cf. [7]).

\S 1. DS-diagrams and E-data.

First we shall recall the notion of fake surfaces, DS-diagrams, and DS-diagram
with E-cycle. These concepts were introduced by H. Ikeda in $[1]-[4]$ . For the preci
definition, refer to these papers. Let $P$ be a closed fake surface, and $\mathfrak{S}_{j}(P)$ be the closu
of the j-th singularities of $P(j=1,2,3)$ . A continuous map $f$ from the 2-sphere $S^{2}$ on
a closed fake surface $P$ is said to be an identification map, if there exists a connect
3-regular graph $G$ embedded in $S^{2}$ and satisfying the following conditions:

(i) $ForanyconnectedcomponentXofS^{2}-GorG-V(G)(V(G)$ is the set
vertices of $G$ ), $f|X:X\rightarrow f(X)$ is a homeomorphism.

(ii) $f^{-1}(f(\mathfrak{S}_{3}(P)))=V(G)$, and, for each $v\in V(G),$ $f^{-1}(f(v))$ consists of exac)

four points.
(iii) $f^{-1}(f(\mathfrak{S}_{2}(P)))=G$ , and $f^{-1}(f(E))$ has exactly three connected compone]

for any component $E$ of $G-V(G)$ .
A triple $(S^{2}, G,f)$ as above is called a DS-diagram. Considering $S^{2}$ to be the bounda
$\partial B^{3}$ of the 3-ball $B^{3}$ and identifying $B^{3}$ by the map $f$, we get aclosed 3-manifold $B$

which has $\partial B^{3}/f$ as its standard spine.
A cycle $e=\{E_{1}, E_{2}, \cdots, E_{2v}\}$ ofthe graph $G$ is said to be an E-cycle of a DS-diagra

$(S^{2}, G,f)$ if it satisfies that
(i) the underlying space of $e$, which we denote by the same letter $e$, is a $simI$

closed curve on $S^{2}$ ,
(ii) $f(E_{i})\neq f(E_{j})$ for $i\neq j$, and
(iii) for a component $H^{0}$ of $S^{2}-e$ (the other component is denoted by $H$

$f|H^{0}$ : $H^{0}\rightarrow f(H^{0})$ is bijective.
Let $(S^{2}, G,f)$ be a DS-diagram with an E-cycle $e$ . Without loss of generality, 1

may assume that

$B^{3}=\{(x, y, z)\in R^{3} ; x^{2}+y^{2}+z^{2}\leqq 1\}$ , $S^{2}=\partial B^{3}$ ,

$e=S^{2}\cap\{z=0\}$ (the equator),

$H^{0}=S^{2}\cap\{z>0\}$ , $H^{1}=S^{2}\cap\{z<0\}$ .
A point $v$ on $V(G)\cap e$ satisfies one of the following (0) or (1) (cf. [4]).
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$(])$ $U\cap(G-e)\subset H^{j}$ , for sufficiently small neighborhood $U$ of $v$ ($j=0$ or 1).

By $V^{j}$ we denote the set of points on $V(G)\cap e$ which satisfy the above condition $(])$ .
Moreover for each $v\in V^{0}$ there exists a point $v^{\prime}$ on $V^{1}$ such that $f(v^{\prime})=f(v)$, which we
denote by $g(v)$ . In the case where the represented manifold $M=B^{3}/f$ is orientable, the
points on $V(G)\cap e$ are classified into the following two cases $(L)$ or $(R)$ (cf. [7], and
see [3] for the method for indicating the identification map $f$ on a DS-diagram).

$(L)$

$(R)$

In what follows, we consider only the case where $B^{3}/f$ is orientable. Hence $V^{j}=V\oint\cup V_{r}^{j}$

$(j=0,1),$ $g(V_{l}^{O})=V_{l}^{1}$ and $g(V_{r}^{O})=V_{r}^{1}$ , where $V_{l}^{j}$ is the set of points on $V^{j}$ with the
above condition $(L)$ and $V_{r}^{j}$ is the set of those satisfying $(R)$ . Considering $e$ as an oriented
circle, we call the 6-tuple ( $S^{1}$ ; $V_{l}^{0},$ $V_{r}^{0},$ $V_{l}^{1},$ $V_{r}^{1}$ ; g) an E-data, which we called a
singularity-data in [7]. Notice that the notation here is slightly different from the one
in [7]. Conversely, given an E-data, we can reconstruct a DS-diagram with the given
E-data if there is such a DS-diagram (cf. [7]). Furthermore, fixing the orientations on
the 3-ball $B^{3}$ and on the equator $e$ , we can regard $B^{3}/f$ as an oriented manifold. In this
way we regard an E-data as an oriented 3-manifold, if the E-data corresponds to a
DS-diagram.

Two E-data $\Delta_{j}=(S^{1} ; V_{lj}^{0}, V_{rj}^{0}, V_{lj}^{1}, V_{rj}^{1} ; g_{j})(j=1,2)$ are identified with each other
if there is an orientation preserving homeomorphism $h$ of $S^{1}$ such that $h(V_{l1}^{k})=V_{l2}^{k}$ ,
$h(V_{r1}^{k})=V_{r2}^{k}(k=0,1)$ and $h\circ g_{1}=g_{2}\circ h$ .

REMARK. Recently it is shown by H. Ikeda and M. Kouno that, even if an E-data
does not correspond to a DS-diagram, it naturally determines a compact 3-manifold
([6]).

For convenience, we represent an E-data by an oriented and coded graph. Let
$\Delta=$ ( $S^{1}$ ; $V_{l}^{0},$ $V_{r}^{0},$ $V_{l}^{1},$ $V_{r}^{1}$ ; g) be an E-data, where the orientation on the circles $S^{1}$

-

is
fixed. The oriented and coded graph $G^{*}=G^{*}(\Delta)$ defined as follows represents the given
E-data $\Delta$ .
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(i) The vertices of $G^{*}$ consist of $V_{l}^{j}$ and $V_{r}^{j}(j=0,1)$ ,
(ii) The oriented edges $E(G^{*})$ consist of three classes of edges $E^{l},$ $E^{r}$ and $E^{x}$ , tl

edges coded by $l,$ $r$ and $x$ respectively, where these classes are defined by

$(l)$ $[u, v]\in E$ ‘ iff $u\in V_{l}^{0}$ and $v=g(u)$,
$(r)$ $[u, v]\in E$ ‘ iff $u\in V_{r}^{0}$ and $v=g(u)$, and
$(x)$ $[u, v]\in E^{x}$ iff there is no vertex on the subarc of $S^{1}$ going from $u$ to $v$

in the given orientation.

For example, the graph in Fig. 1 (a) represents an E-data (the code $x$ is not written
and this E-data corresponds to the DS-diagram in Fig. 1 (b).

(a) (b)

FIGURE 1

As is shown in [7] and [8], a DS-diagram with E-cycle is closely related to
non-singular flow on the manifold represented by the given DS-diagram. For
DS-diagram with an E-cycle $e$ (we always assume that the E-cycle coincides with th
equator of $B^{3}$), a non-singular flow $\psi:R\times M\rightarrow M(M=B^{3}/f)$ is defined by

$\psi(t;f(x, y, z))=f(x, y, z+t)$

if $(x, y, z+s)\in B^{3}$ for $0\leqq s\leqq t$ (or $t\leqq s\leqq 0$).

This definition of $\psi$ is slightly different from the one in [8], but they are essentially ti
same. The local section $\Sigma$ is given by

$\Sigma=\{(x, y, z)\in B^{3}/f|z=0, x^{2}+y^{2}\leqq 1-\delta\}$ ,

where $\delta$ is a sufficiently small positive number. Any orbit of $\psi$ intersects with the interio
of $\Sigma$, and the graph $G$ of the DS-diagram is given as the image of $\partial\Sigma$ under th
Poincar\’e-map for $\Sigma$ (cf. [7]). Let $\Delta$ be an E-data which determines a closed 3-manifol
$M=M(\Delta)$ . For this E-data, there is a non-singular flow $\psi$ on $M$ defined as above. Th
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non-singular flow is not unique, but a class of non-singular flows on $M$ is uniquely
determined by $\Delta$ in some sense. In order to explain this, we make a definition.

DEFINITION 1.1. Two non-singular flows $\psi_{1}$ and $\psi_{2}$ on an oriented closed manifold
$M$ are said to be equivalent, written by $\psi_{1}\sim\psi_{2}$ , if there are non-singular flows $\hat{\psi}_{1}$ and
$\hat{\psi}_{2}$ , and an orientation preserving homeomorphism $h:M\rightarrow M$ such that $h\circ\hat{\psi}_{1}=\hat{\psi}_{2}\circ h$

and $\hat{\psi}_{j}$ can be continuously deformed into $\psi_{j}$ within the set ofall non-singular flows on $M$.

Let $\Delta$ be an E-data which represents a closed 3-manifold $M$, and $(S^{2}, G,f)$ be a
DS-diagram given by $\Delta$ . Since the graph $G$ is determined only up to isotopy, the
corresponding non-singular flow $\psi$ which depends on the choice of $G$ is not unique.
However the above defined equivalence class of $\psi$ is uniquely determined. We denote
by $[\Delta]$ this equivalence class.

\S 2. Regular moves of E-data.

For an oriented closed 3-manifold $M$ there are infinitely many E-data $\Delta$ such that
$M(\Delta)$ is homeomorphic to $M$. In this section, we consider when two E-data give the
same manifold. As is stated in the previous section, an E-data, if it represents a closed
3-manifold $M$, corresponds to a pair of a non-singular flow on $M$ and its local section.
In [7] we called this pair a normal pair. Hence, in the case of $[\Delta_{1}]=[\Delta_{2}]$ , the change
from $\Delta_{1}$ into $\Delta_{2}$ can be described as a continuous deformation of normal pairs, which
is quite analogous to the regular Reidemeister moves of knot projections. Refer to [9]
(Chap. 4) for the notion of the Reidemeister move of knot projections.

Before giving the precise definition of moves, we shall summarize the relation
between an E-data and a non-singular flow. This will give a good explanation for the
reason why the moves of E-data is similar to the regular Reidemeister moves. Let $M$

be a closed 3-manifold, and $\psi$ : $R\times M\rightarrow M$ be a non-singular flow. Choose a local
section $\Sigma$ so that the pair $(\psi, \Sigma)$ forms a normal pair (cf. [7]). Namely any orbit intersects
with $\Sigma$ transversely, and moreover $\Sigma$ satisfies some generic conditions (see [7] for the
precise). Then we can define the Poincare-map $ T:M\rightarrow\Sigma$ ; i.e., for $x\in M,$ $T(x)$ is the
first returning point to $\Sigma$ along $\psi$ . The set of the discontinuity points of $T$, denoted by
$P_{-}(\psi, \Sigma)$ , forms a spine of $M$, and the DS-diagram induced by this spine has an E-cycle
([7]).

Now we shall explain how the E-data of the DS-diagram is derived from the spine
$P_{-}(\psi, \Sigma)$ . Let $M$ be oriented, and $R^{3}$ be usually oriented Euclidean space whose coordi-
nate is denoted by $(x, y, z)$ . Let $U$ be a neighborhood of $\Sigma$ , and $h:U\rightarrow R^{3}$ be an orienta-
tion preserving embedding such that $h(\Sigma)\subset\{z=0\}$ and $h(x, y, z+t)=\psi(t;h(x, y, z))$ . We
settle the orientation on $\partial\Sigma$ so that $h(\Sigma)$ is on the left of $h(\partial\Sigma)$ . In this way, for alocal
section $\Sigma$ of a flow on an oriented manifold, we can regard the boundary $\partial\Sigma$ as the
oriented circle $S^{1}$ . The required E-data ( $S^{1}$ ; $V_{l}^{0},$ $V_{r}^{0},$ $V_{l}^{1},$ $V_{r}^{1}$ ; g) is given as follows (cf.
[7]):
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$V^{0}=\{x\in\partial\Sigma|T(x)\in\partial\Sigma\}$ , $g=T|V^{0}$ ,
$V_{l}^{0}=$ {$ x\in V^{0}|T|\partial\Sigma$ is left continuous at $x$} ,
$V^{0}=$ {$ x\in V^{0}|T|\partial\Sigma$ is right continuous at $x$} ,
$V_{l}^{1}=g(V_{l}^{0})$ , $V_{r}^{1}=g(V_{r}^{1})$ .

This E-data is called the one generated by a normal pair $(\psi, \Sigma)$ , and denoted $t$

$\Delta(\psi, \Sigma)$ .
See Fig. 2 (i), and assume that
(a) the flow runs from the back of the sheet to the front,
(b) the curves drown there are parts of $\partial\Sigma$, and
(c) $\Sigma$ lies on the left of its boundary.

Then the singularities of the spine correspond to the crossings of the figure, and so th
E-data for this part is given by Fig. 2 (ii). Deforming the local section, we get th
situation as in Fig. 3 (i). In this figure, the crossing points encircled by the dotted circl
seems to produce a 3-rd singularity of the spine. However there is the local sectio
attached to the part of the boundary numbered by 2 between the under and ove
crossings. Hence this crossing produces no discontinuity point of the $Poincar\acute{e}- ma$]
Consequently the E-data corresponding to Fig. 3 (i) is given by Fig. 3 (ii). Obviousl

(i) (ii)

FIGURB 2

(i) (ii)

FIGURE 3

the transformation of E-data from Fig. 2 (ii) into Fig. 3 (ii) does not change th
represented manifold. This transformation is one of the moves of E-data. The precis
definition of regular moves is as follows, and one more move will be introduced in th
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next section.

DEFINITION 2.1. (Regular moves)
(i) The transformation of E-data from Fig. 2 (ii) into Fig. 3 (ii) is called thefirst

regular move, and denoted by $R_{1}$ .
(ii) Each transformation of E-data in Fig. 4 (1)$-(4)$ will be called the second

regular move, and denoted by $R_{2^{-}}(x)$ ($x=1,2,3$ or 4), or simply by $R_{2}$ .
The inverse of the regular move $R_{j}$ is denoted by $R_{j}^{-1}$ .

$|$ $\}$

(1) (2)

$|$ $|$

(3) (4)

FIGURE 4

If an E-data $\Delta^{\prime}$ is obtained from $\Delta$ by applying the move $R_{j}^{\pm 1}$ , then we write
$\Delta^{\prime}=R_{j}^{\pm 1}(\Delta)$ . It is easy to see that if an E-data $\Delta$ is realized by a normal pair on some
closed 3-manifold $M$, then each one of $R_{1}^{\pm 1}(\Delta)$ and $R_{2}(\Delta)$ is also realized by a normal
pair on $M$. However for $R_{2}^{-1}(\Delta)$ there might be no closed 3-manifold corresponding to
it. By these regular moves we can define equivalence relations.

DEFINITION 2.2. (Regular eqivalence and strongly regular equivalence)
(i) Two E-data $\Delta_{a}$ and $\Delta_{b}$ are said to be regular equivalent to each other iff there

is a sequenoe of E-data $\Delta_{a}=\Delta_{1},$ $\Delta_{2},$ $\cdots,$ $\Delta_{n}=\Delta_{b}$ such that $\Delta_{k+1}=R_{j}^{\pm 1}(\Delta_{k})(j=1$ or 2,
$k=1,$ $\cdots,$ $n-1$ ). We denote this equivalence by $\Delta_{a}\sim R\Delta_{b}$ .

(ii) Moreover if any $\Delta_{k}(k=1,2, \cdots, n)$ represents a closed 3-manifold, then we
say these E-data are strongly regular equivalent to each other, and write $\Delta_{a}^{s}\sim^{R}\Delta_{b}$ .

It is not known whether there are two E-data of closed manifolds which are regular
equivalent but not strongly regular equivalent.

The purpose of this section is to prove the next theorem.
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THEOREM 2.3. Let $\Delta_{1}$ and $\Delta_{2}$ be E-data which correspond to oriented close
3-manifolds $M(\Delta_{1})$ and $M(\Delta_{2})$ respectively. Then we have that

$M(\Delta_{1})\simeq M(\Delta_{2})$ and $[\Delta_{1}]=[\Delta_{2}]$ if and only if $\Delta_{1}^{S}\sim^{R}\Delta_{2}$ ,

where $M(\Delta_{1})\simeq M(\Delta_{2})$ means that there is an orientation preserving homeomorphism
$h:M(\Delta_{1})\rightarrow M(\Delta_{2})$ .

$PR\infty F$ . First we shall consider the case where two E-data $\Delta_{1}$ and $\Delta_{2}$ generated $b$

normal pairs $(\psi, \Sigma_{1})$ and $(\psi, \Sigma_{2})$ for the same flow $\psi$ and its disjoint local sections $\Sigma$

and $\Sigma_{2}$ . In this case, connecting $\Sigma_{1}$ and $\Sigma_{2}$ by a band $U$, we get a normal pair $(\psi,$ $\Sigma_{u}$

for a local section $\Sigma_{*}=\Sigma_{1}\cup\Sigma_{2}\cup U$ which yields an E-data $\Delta_{*}$ . Consider a deformatio
$\Sigma^{t}(-1\leqq t\leqq 1)$ of local sections such that $\Sigma^{-1}=\Sigma_{1},$ $\Sigma^{t}\supset\Sigma_{1}$ for $-1\leqq t\leqq 0,$ $\Sigma^{0}=\Sigma_{I}$

$\Sigma^{t}\supset\Sigma_{2}$ for $0\leqq t\leqq 1$ , and $\Sigma^{1}=\Sigma_{2}$ . Then, for any $f\Sigma^{t}$ intersects with all orbits of $\psi$ . $W$

may assume that the DS-diagram generated by $(\psi, \Sigma^{t})$ changes its isotopy type at finit
$t’ s$ , where it happens the cases in Fig. 5 (i) or (ii) (in these figures the arcs are th
boundary of $\Sigma^{t}$ , and the flow $\psi$ runs from the back to the front).

(i)

$)_{\backslash }^{\nearrow}($ $-)($

(ii)

FIGURE 5

The change in Fig. 5 (ii) yields one of the second regular moves of E-data. For th
change in Fig. 5 (i), there are several cases about the orientations of the boundary $i$

the figure. However we can easily check that, in any case, the correspondin
transformation of E-data is represented as a composition of the moves $R_{1}$ and $R_{2}$ (se
Fig. 6 for example). This shows that $\Delta(\psi, \Sigma_{1})$ and $\Delta(\psi, \Sigma_{2})$ are strongly regular equivalen
if $\Sigma_{1^{\cap}}\Sigma_{2}=\emptyset$ .

$\rightarrow^{R_{2}^{-1}}$ $\rightarrow^{R_{1}^{-1}}$

$\rightarrow^{R_{2}}$

FIGURE 6
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In the case of $\Sigma_{1}\cap\Sigma_{2}\neq\emptyset$ , taking another local section $\Sigma_{3}$ such that $\Sigma_{3}\cap\Sigma_{j}=\emptyset$

$(j=1,2)$ and $(\psi, \Sigma_{3})$ is also a normal pair, we can see that $\Delta(\psi, \Sigma_{1})^{S}\sim^{R}\Delta(\psi, \Sigma_{3})^{S}\sim^{R}\Delta(\psi, \Sigma_{2})$ .
Now consider the general cases. Suppose a flow $\psi_{1}$ can be continuously deformed

into $\psi_{2}$ within the set of non-singular flows on a 3-manifold $M$. Then we can take a
sequence of non-singular flows $\psi_{1}=\psi^{1},$ $\psi^{2},$

$\cdots,$ $\psi^{n}=\psi_{2}$ and local sections $\Sigma^{1},$ $\Sigma^{2},$ $\cdots$ ,
$\Sigma^{n-1}$ such that $(\psi^{k}, \Sigma^{k})$ and $(\psi^{k+1}, \Sigma^{k})$ are normal pairs having the same E-data for
each $k=1,2,$ $\cdots,$ $v$ . Consequently we get

$\Delta(\psi_{1}, \Sigma_{1})=\Delta(\psi^{1}, \Sigma^{1})=\Delta(\psi^{2}, \Sigma^{1})^{S}\sim^{R}\Delta(\psi^{2}, \Sigma^{2})=\Delta(\psi^{3}, \Sigma^{2})^{s}\sim^{R}\cdots$

$=\Delta(\psi^{n-1}, \Sigma^{n-2})^{s}\sim^{R}\Delta(\psi^{n-1}, \Sigma^{n-1})=\Delta(\psi^{n}, \Sigma^{n-1})=\Delta(\psi_{2}, \Sigma_{2})$ .
This proves that $[\Delta_{1}]=[\Delta_{2}]$ implies the strongly regular equivalence of $\Delta_{1}$ and $\Delta_{2}$ .

Conversely, recalling the way for constructing a non-singular flow from an E-data,
we can easily see that if two E-data are strongly regular equivalent, then the
corresponding flows are equivalent.

This completes the proof. $\square $

\S 3. Surgery move of E-data.

In this section, we consider the move of E-data for the case where $M(\Delta_{1})\simeq M(\Delta_{2})$

and $[\Delta_{1}]\neq[\Delta_{2}]$ . In order to describe this move, we need the notion of a surgery of a
non-singularflow given below. Let $\psi$ be a non-singular flow on a closed 3-manifold $M$.
We denote by $X$ the vector field generating $\psi$ . Suppose that $\psi$ has a periodic orbit $C$

with a regular neighborhood $U$ which is homeomorphic to $D^{2}\times S^{1}$ and invariant under
$\psi$ . Let $(r, \theta)$ be a polar coordinate on $D^{2}=\{r\leqq 1\}$ and $t$ be a coordinate on
$S^{1}=\{\exp(2\pi\sqrt{-1}t)|t\in R\}$ . Moreover assume that $X=\partial/\partial t$ on $U$. For such an $X$, we
define a vector field $Y$ so that

(i) $Y=X$ on $M-U$,
(ii) $Y=a(r)\partial/\partial t+b(r)\partial/\partial r$ on $U$,

where $a(r)$ and $b(r)$ are smooth functions such that
(iii) $a(r)$ is increasing, $a(1)=1$ and $a(O)=-1$ ,
(iv) $b(r)$ is non negative, $b(O)=b(1)=0$, and
(v) $a^{2}(r)+b^{2}(r)>0$ for $0\leqq r\leqq 1$ .

We say that $Y$ (or the flow generated by Y) is obtained by a surgery of $X$ (or $\psi$

respectively) along the periodic orbit $C$ .
The next lemma is the key for getting one more move of E-data.

LEMMA 3.1. Let $M$ be a closed 3-manifold, and $\psi_{a}$ and $\psi_{b}$ be non-singularflows on
M. Then there is. a sequence of non-singular flows $\psi_{1},$ $\psi_{2},$ $\cdots,$ $\psi_{n}$ such that

(i) $\psi_{1}\sim\psi_{a}$ and $\psi_{n}\sim\psi_{b}$ , and
(ii) $\psi_{k}$ is obtained by a surgery of $\psi_{k-1}$ along a periodic orbit.
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$PR\infty F$ . Let $TM$ be the tangent bundle of $M$. It is known that $TM$ is a trivia
bundle. Fix a trivialization $\tau_{0}$ : $TM\rightarrow M\times R^{3}$ . Then for a vector field $X$ on $M$ there $i$

a function $\tilde{X}:M\rightarrow R^{3}$ such that $\tau_{0}(X(p))=(p,\tilde{X}(p))(p\in M)$ .
Let $X_{0}$ be the vector field given by $\tilde{X}_{0}(p)\equiv(0,0,1)$ , and $X$ be an arbitrar

non-singular vector field with $\Vert X(p)\Vert\equiv 1$ . Deforming $X$ slightly if necessary, we ma
assume that $s=(0,0, -1)$ is a regular value of $\tilde{X}:M\rightarrow S^{2}=\{x\in R^{3}|\Vert x\Vert=1\}$ . Henc
$\tilde{X}^{-1}(s)$ is a finite union of simple closed curves $C_{1},$ $\cdots,$ $C_{n}$ . Since $S^{2}-\{s\}$ is contractible
we can deform $X$ into $X_{1}$ so that $\tilde{X}_{1}^{-1}(s)=C_{1}\cup C_{2}\cup\cdots uC_{n}$ and $X_{1}=X_{0}$ on the outsid
of a regular neighborhood of $C_{1}\cup C_{2}\cup\cdots uC_{n}$ . Furthermore we can take a continuou
function $A(t, p)\in SO(3, R)(0\leqq t\leqq 1, p\in M)$ such that $A(O, p)\equiv id$ , and the vector $fie1($

$X_{\acute{0}}$ defined by

$\tilde{X}_{\acute{O}}(p)=(0,0,1)A(1, p)$

has closed curves $C_{1},$ $\cdots,$ $C_{n}$ as its periodic orbits. On the other hand, define a vecto
field $X_{1}^{\prime}$ by $\tilde{X}_{1}^{\prime}(p)=X_{1}(p)A(1, p)$ . Making continuous deformations on $X_{\acute{0}}$ and $X_{1}^{\prime}i$

necessary, we have that $X_{0}\sim X_{0}^{\prime},$ $X_{1}\sim X_{1}^{\prime}$ and $X_{1}^{\prime}$ can be obtained from $X_{\acute{0}}$ by applyin
surgeries along periodic orbits $C_{1},$ $C_{2},$ $\cdots,$ $C_{n}$ . This completes the proof. $\square $

According to this lemma and Theorem 2.3, the move describing a surgery alon
a periodic orbit together with the regular moves will give the generators of moves $0$

E-data.

DEFINITION 3.2. The transformation ofE-data in Fig. 7 is called the surgery move
and denoted by $S$.

(i) (ii)

FIGURE 7

Let $\Delta_{a}$ and $\Delta_{b}$ be E-data representing closed manifolds $M(\Delta_{a})$ and $M(\Delta_{b})$ respectivel)
We define two more equivalence relations as follows.

DEFINITION 3.3.
(i) $\Delta_{a}$ and $\Delta_{b}$ are said to be equivalent to each other, if there is a sequence $0$

E-data $\Delta_{a}=\Delta_{1},$ $\Delta_{2},$ $\cdots,$ $\Delta_{n}=\Delta_{b}$ such that $\Delta_{k+1}=R_{j}^{\pm 1}(\Delta_{k})(j=1,2)$ or $S^{\pm 1}(\Delta_{k})$ fo
$k=1,$ $\cdots,$ $n-1$ . This equivalence is denoted by $\Delta_{a}\sim\Delta_{b}$ .

(ii) $\Delta_{a}$ and $\Delta_{b}$ are said to be strongly equivalent to each other (denoted by $\Delta_{a}\sim s\Delta_{b)}^{\backslash }$

if any $\Delta_{k}$ in the above definition corresponds to a closed 3-manifold.

Under these definitions, we have the next two theorems.
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THEOREM 3.4. Let $\Delta_{1}$ and $\Delta_{2}$ be E-data corresponding to closed 3-manifolds $M(\Delta_{1})$

and $M(\Delta_{2})$ respectively. Then thefundamentalgroup $\pi_{1}(M(\Delta_{1}))$ is isomorphic to $\pi_{1}(M(\Delta_{2}))$

if $\Delta_{1}\sim\Delta_{2}$ .
THEOREM 3.5. Under the same assumption as the above theorem, we have that

$M(\Delta_{1})\simeq M(\Delta_{2})\iota f$ and only if $\Delta_{1}\sim s\Delta_{2}$ .
Moves for general DS-diagrams (not necessarily with E-cycle) of standard spines

(spines which form closed fake surfaces) are proposed in [5], [10] and [11]. Our regular
moves are special cases of the moves in those papers and the surgery move can be
written as a composition of those moves.

$PR\infty F$ of THEOREM 3.4. A presentation of $\pi_{1}(M(\Delta))$ which is given in Theorem
4.1 of [7] is determined only by an E-data $\Delta$ . This presentation can be defined for any
E-data $\Delta$ even if it does not correspond to any closed 3-manifold. We denote by $\Pi(\Delta)$

such a presentation. It can be easily seen that $\Pi(R_{j}^{\pm 1}(\Delta))(j=1,2)$ and $\Pi(S^{\pm 1}(\Delta))$ are
all obtained by applying the Tietze transformation on $\Pi(\Delta)$ . This implies the consequence
of Theorem 3.4. $\square $

$PR\infty F$ of THEOREM 3.5. According to Theorem 2.3 and Lemma 3.1, it is sufficient
to show that the surgery move of E-data describes a surgery of a non-singular flow
along a periodic orbit.

By $(S^{2}, G_{1},f_{1})$ and $(S^{2}, G_{2},f_{2})$ we denote the DS-diagrams which are generated by
the E-data in Fig. 7 (i) and (ii) respectively. These DS-diagrams are given by Fig. 8 (i)
and (ii) respectively. In each diagram, the parts $\alpha,$

$\beta$ , and $\gamma$ of the circle $C$ drown by

(i) (ii)

FIGURE 8
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broken lines are identified by $f_{j}$ as indicated in the figure. Let $D_{0}$ be a 2-disk properl
embedded in the 3-ball $B^{3}$ and bounding the circle $C$, and let $D_{1}$ be the disk in $\partial B$

bounded by $C$. Then $D_{0}\cup D_{1}$ bounds a 3-ball $B$ in $B^{3}$ . In both cases of Fig. 8 (i) an
(ii), $B/f_{j}$ is a solid torus with a meridian curve homologous to $f_{j}(x+y)$ , where $x$ and
are closed curves on the boundary ofthe solid torus given by $x=f_{j}(\alpha+\gamma)$ and $y=f_{j}(\beta+\gamma)$ .

Let $\psi_{1}$ and $\psi_{2}$ be the non-singular flows for Fig. 8 (i) and fig. 8 (ii) respectivel]
By a little careful observation upon the construction of the flows, we can see that $\psi$

can be taken so that $\psi_{1}$ is periodic in $B/f_{1}$ and $\psi_{2}$ can be continuously deformed int
a flow obtained from $\psi_{1}$ by asurgery along aperiodic orbit which is the core of $B/f$

This proves the theorem. $\square $

\S 4. State sum invariant.

Recall the graphic representation $G^{*}(\Delta)$ of an E-data $\Delta$ which is introduced in \S 1
Throughout this and the next section, we will fix the notation for $G^{*}(\Delta)$ as follows:

NOTATION.
1) $E(G^{*}(\Delta))=E^{x}\cup E^{l}uE$‘, and $v=\#(E^{l}\cup E^{r})$ .
2) $Byv_{1},$ $v_{2},$ $\cdots,$ $v_{v},$ we denote the elements of E $\cup E^{r}$ .
3) By $E_{1},$ $E_{2},$ $\cdots,$ $E_{2v},$ we denote the elements of $E^{x}$ .
4) $c(v_{k})$ ( $=l$ or r) is the code of $v_{k}$ .
5) The numbering to the elements of $E^{l}\cup E$‘ and $E^{x}$ will be fixed once for all.

$Foranelementv_{k}$ of $E^{l}\cup E$‘, $wedefinefouredgesE_{k(1)},$ $E_{k\langle 2)},$ $E_{k(3)}andE_{k\langle 4)}$ of E
by the following rule.

DEFINITION 4.1. The edges $E_{k0)}(j=1, \cdots, 4)$ are defined by the first picture $i$

Fig. 9if $c(v_{k})=l$, and by the second if $c(v_{k})=r$ .

FIGURE 9

Let $J=\{1,2, \cdots, s\}$ be a finite set, called a set of colors. A coloring of $E^{x}$ by $J$

a map $\gamma:E^{x}\rightarrow J$. Let $W_{l}$ and $W_{r}$ be complex valued functions on $J^{4}$ . We define
complex number $\Gamma(\Delta)$ for each E-data $\Delta$ by the following formula:

$\Gamma(\Delta)=\sum_{\gamma k}\prod_{=1}^{v}W_{c\langle v_{k})}(\gamma(E_{k\langle 1)}), \gamma(E_{k(2)}),$ $\gamma(E_{k(3)}),$ $\gamma(E_{k\langle 4)}))$ ,

where the sum is taken all over the colorings. If we could define the functions $W_{l}$ an
$W_{r}$ so that $\Gamma(\Delta)$ is invariant under the regular moves of E-data, then, according $t$
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Theorem 2.3, $\Gamma(\Delta)$ gives an invariant of the pair of the manifold $M(\Delta)$ and the class
$[\Delta]$ of non-singular flows. If it is invariant also under the surgery move, then $\Gamma(\Delta)$

becomes a topological invariant of $M(\Delta)$ by Theorem 3.5. The required conditions on
$W_{l}$ and $W$ are as follows:

(4.1) $\sum_{i,j,k}W_{l}(a_{1}, i, b_{1}, k)W_{l}(k, b_{2},j, c_{2})W_{l}(i, a_{2}, c_{1},])$

$=\sum_{j}W_{l}(b_{1},j, c_{1}, c_{2})W_{l}(a_{1}, a_{2},j, b_{2})$ ,

(4.2.1) $\sum_{i,j}W_{l}(a, i, b,j)W_{r}(c, i, d,j)=\delta_{ac}\delta_{bd}$ ,

(4.2.2) $\sum_{i,j}W_{l}(i, a,j, b)W_{r}(i, c,j, d)=\delta_{ac}\delta_{bd}$ ,

(4.2.3) $\sum_{i,j}W_{l}(a, i,j, b)W(c, i,j, d)=\delta_{ac}\delta_{bd}$ ,

(4.2.4) $\sum_{i,j}W_{l}(i, a, b,j)W_{r}(i, c, d,j)=\delta_{ac}\delta_{bd}$ ,

(4.3) $\sum W_{l}(j_{1},j_{2},j_{5},j_{6})W_{l}(i_{2},j_{3},j_{3},j_{4})W_{l}(i_{7}, b, a,j_{1})W_{r}(j_{7},j_{6},j_{5},j_{4})=\delta_{ab}$

(the sum is taken over $j_{1},$ $\cdots,j_{7}$).

PROPOSITION 4.2.
(i) $\Gamma(\Delta)$ is invariant under thefirst regular move $R_{1}$ if the condition (4.1) is satisfied.
(ii) $\Gamma(\Delta)$ is invariant under the second regular move $R_{2}- 0$) if the condition (4.2])

is satisfied $(i=1, \cdots, 4)$ .
(iii) $\Gamma(\Delta)$ is invariant under the surgery move $S$ if the conditions (4.2) and (4.3) are

satisfied.
$PR\infty F$ . For Fig. 2 (ii) and Fig. 3 (ii) which indicate the move $R_{1}$ , assume that

colors are given to x-coded edges as in Fig. 10. Then it can be easily seen that the
condition (4.1) implies the invariance of $\Gamma(\Delta)$ under the move $R_{1}$ .

FIGURE 10

Similarly, coloring the figures indicating the move $R_{2}$ (Fig. 4) as in Fig. 11, we can
see the second statement.
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$a=c|$ $|b=d$

FIGURE 11

Giving colors to x-coded edges in Fig. 7 as shown in Fig. 12, we can see that $l$

the left-hand side of (4.3) is equal to

$\sum_{j}\sum_{i.k}W_{l}(j, k, i_{J})W(b, k, i, a)$ ,

then $\Gamma(\Delta)$ is invariant under the surgery move. By (4.2.3), this quantity is equal $|$

$\sum_{j}\delta_{jb}\delta_{ja}=\delta_{ab}$ . $\square $

FIGURE 12

\S 5. Examples of the solutions for (4.1), $($4.2 $J)$ and (4.3).

In this section we will give solutions for the equations (4.1) and (4.2]) in the ca
of $J=\{1,2\}$ or {1, 2, 3}. For convenience, we represent the function $W_{l}$ by a matrix}

follows. We denote by $L_{pq}$ an $s\times s$ matrix $(s=\# J)$ whose $(i,J)$-element is $W_{l}(q,$ $p,$ $i,$ .
and by $L$ an $s^{2}\times s^{2}$ matrix defined by

$L=$ $\left|\begin{array}{lll}L_{11} & L_{12} & L_{1s}\\L_{21} & L_{22} & L_{2s}\\L_{s1} & L_{s2} & L_{ss}\end{array}\right|$
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Moreover we define an $s^{2}\times s^{2}$ matrix $\hat{L}$ by

$\hat{L}=$
$\left|\begin{array}{lll}L_{11} & L_{21} & L_{s1}\\L_{12} & L_{22} & L_{s2}\\L_{1s} & L_{2s} & L_{ss}\end{array}\right|$

Using the function $W$ , we define $s\times s$ matrices $R_{pq}$ and $s^{2}\times s^{2}$ matrices $R$ and $\hat{R}$ by
the same rule as $L_{pq},$ $L$ and $\hat{L}$ . Then the conditions (4.2.1) and (4.2.2) are equivalent
to the condition $R^{-1}=L^{T}$ , and the conditions (4.2.3) and (4.2.4) are equivalent to
$\hat{R}^{-1}=\hat{L}^{T}$ , where $L^{T}$ and $\hat{L}^{T}$ denote the transposed matrices.

In order to get functions $W_{l}$ and $W$ invariant under the regular moves, we should
determine them in the following way. First take an $L$ satisfying the condition (4.1),
and put $R^{T}=L^{-1}$ . If this $R$ satisfies also $\hat{R}^{T}=\hat{L}^{-1}$ , then these $L$ and $R$ give a solution
for the equations (4.1) and (4.2.]). Therefore it is most important to solve the equation
(4.1). In what follows, in the case $J=\{1,2\}$ or {1, 2, 3}, we shall solve this equation
under a restricted conditions

(5.1) $W_{l}(q, p, i,j)=0$ if $p>q$ or $i>j$ .
The case of $J=\{1,2\}$ .
By the restriction (5.1) we can put

$L_{11}=$
$\left|\begin{array}{ll}u_{1} & x_{1}\\0 & u_{2}\end{array}\right|$

$L_{21}=$ $0$

$L_{12}=$ $\left|\begin{array}{ll}y_{1} & z\\0 & y_{2}\end{array}\right|$

$L_{22}=\left|\begin{array}{ll}u_{3} & x_{2}\\0 & u_{4}\end{array}\right|$

Solving the equation (4.1) directly, we get two solutions up to the permutation of $J$ :
(5.2) $u_{1}=-1$ , $u_{j}=1(j=2,3,4)$ , $z=1$ , $x_{1}y_{1}=-2$ , $x_{2}=y_{2}=0$ ,

(5.3) $u_{j}=1(j=1,3,4)$ , $u_{2}=-1$ , $z=-1$ , $x_{1}y_{2}=2$ , $x_{2}=y_{1}=0$ .
For both of these solutions, defining the matrix $R$ by $R^{T}=L^{-1}$ , we have also

$\hat{R}^{T}=\hat{L}^{-1}$ . Moreover we can check that these solutions satisfy also the equality (4.3).
Therefore $\Gamma(\Delta)$ defined by these solutions give topological invariants of $M(\Delta)$ .

The case of $J=\{1,2,3\}$ .
In this case, as one of solutions of (4.1), we get
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$L_{11}=$ $|_{0}^{\omega}0$ $-\delta_{1}b\omega_{0}^{2}$ $-\omega^{2}b\delta_{1}b^{2}1|$

$L_{13}=$ $\left|\begin{array}{lll}\delta_{2}a^{2} & -\omega^{2}a & 1\\0 & 0 & 0\\0 & 0 & 0\end{array}\right|$ ,

$L_{23}=$ $\left|\begin{array}{lll}-\omega^{2}a & \delta_{1} & 0\\0 & a & 1\\0 & 0 & 0\end{array}\right|$

$L_{12}=$
$\left|\begin{array}{lll}-\delta_{2}a & 2\omega^{2} & -\omega^{2}b\\0 & \delta_{2}a & \delta_{2}\\0 & 0 & 0\end{array}\right|$

$L_{22}=$
$\left|\begin{array}{lll}\omega^{2} & \delta_{1}b & 0\\0 & \omega & b\\0 & 0 & 1\end{array}\right|$

$L_{33}=1$ (the identity matrix),

and $L_{pq}=0$ for $p>q$ , where $\omega=\exp(2\pi\sqrt{-1}/3)$ , and $a,$ $b,$ $\delta_{1}$ and $\delta_{2}$ are constan)

satisfying $ab=\omega-1$ and $\delta_{1}\delta_{2}=-1$ . We can show that the value $\Gamma(\Delta)$ defined by th
solution is invariant under the moves $R_{1},$ $R_{2}$ and $S$ .
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