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Introduction.

Let the distributions $P_{\theta}$ be indexed by parameter $\theta$ in a set $\Theta$ , where $\Theta$ is a subset
of $R^{1}$ . We consider the testing problem

$H:\theta=\theta_{0}$ against $K:\theta>\theta_{0}$ .
In case that the altemative is close to the null hypothesis, we attempt to compare

two tests. A method of the comparison of two tests in the local sense was given by
Pitman (Noether [5], Pitman [6]). Pitman introduced the concept of asymptotic rela-
tive efficiency of two tests by choosing altemative sequences that approach to the null
hypothesis. Roughly speaking, his method is as follows. Let $\{T_{1n_{1}}\},$ $\{T_{2n_{2}}\}$ be two tests
based on $n_{1},$ $n_{2}$ samples, respectively, and $\alpha_{in_{i}},$ $\beta_{in_{i}}(\theta)(i=1,2)$ denote the corresponding
levels and power functions. For $i=1,2$ suppose that $\alpha_{in_{i}}\rightarrow\alpha(0<\alpha<1)$ as $ n_{i}\rightarrow\infty$ , and
choose the alternative sequence $\{\theta_{in_{i}}\}$ approaching to the null hypothesis $\theta_{0}$ so that
$\beta_{in_{i}}(\theta_{in_{i}})\rightarrow\beta(0<\beta<1)$ as $ n_{i}\rightarrow\infty$ . Then Pitman defined the asymptotic relative efficiency
(ARE) of $\{T_{2n}\}$ with respect to $\{T_{1n}\}$ as the limit of the ratio $n_{1}/n_{2}$ . The superiority or
inferiority between $\{T_{1n}\}$ and $\{T_{2n}\}$ in the local sense is decided whether ARE $>1$ or
ARE $<1$ . If ARE $=1$ then we consider the limit of the difference of sample sizes $n_{2}-n_{1}$ ,
what is called Pitman deficiency, as the second measure of comparison of the two tests.
In many cases it occurs that $\theta_{in}=\theta_{0}+k_{i}/\sqrt{n}$ . But this alternative form is not appropriate
for the study of deficiency, because approaching to the null hypothesis is coarse. And
so we choose the altemative sequence of the form $\theta_{in}=\theta_{0}+k_{i}/\sqrt{n}+l_{i}/n+m_{i}/(n\sqrt{n})$

$(i=1,2)$ . By expanding the power functions we compare the two tests under these
alternative sequences. Here $l_{i}$ may be related to the case when Pitman deficiency is infinite.
In this paper, however, we study the case when Pitman deficiency is finite only.

In section 1 we consider a method of comparison of two tests in such a case that
ARE $=1$ . In section 2 the method is applied to two examples and in section 3 we refer
to the relation between our method and Pitman deficiency.
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\S 1. Comparison of two tests.

Let $\{P_{\theta} : \theta\in\Theta\}$ denote a set of probability distributions on $(R^{1}, g)$ , where 6
denotes a parameter space which is an open subset of $R^{1}$ . es denotes the Borel $\sigma- fielc$

on $R^{1}$ . We consider the testing problem

$H:\theta=\theta_{0}$ against $K:\theta>\theta_{0}$ .
Here $\theta_{0}$ is a fixed point of $\Theta$ . For $i=1,2$ let $\{T_{in}\}$ be a sequence of test statistics basec
on $n$ samples and $\alpha_{in},$

$\beta_{in}(\theta)$ be the corresponding levels and power functions, respectively
Suppose that $\alpha_{in}\rightarrow\alpha(0<\alpha<1)$ as $ n\rightarrow\infty$ and $\beta_{in}(\theta_{in})\rightarrow\beta(0<\beta<1)$ as $ n\rightarrow\infty$ for the
altemative sequence $\theta_{in}=\theta_{0}+k_{i}/\sqrt{n}(i=1,2)$ . Then Pitman’s ARE of $\{T_{2n}\}$ with $respec\uparrow$

to $\{T_{1n}\}$ is given by $k_{1}/k_{2}$ under the appropriate conditions (cf. Noether [5], Pitman
[6]). This fact shows the $\{T_{1n}\}$ and $\{T_{2n}\}$ can be compared by comparing $k_{1}$ and $k_{2}$

If $k_{1}<k_{2}(k_{1}>k_{2})$ then $\{T_{1n}\}(\{T_{2n}\})$ is superior to $\{T_{2n}\}(\{T_{1n}\})$ in the local sense
This conclusion suggests to us that Pitman’s ARE oftwo tests having the same asymptotiI
level and the same asymptotic power is measured by the distance from the altemativ $($

hypothesis to the null hypothesis. But if $k_{1}=k_{2}$ then we can not compare $\{T_{1n}\}$ witl
$\{T_{2n}\}$ . In this case when we discuss the comparison of two tests by the distance fron
the altemative hypothesis to the null hypothesis its approach to the null hypothesis $i|$

too coarse to compare. Therefore we choose the alternative sequence of the form

(1.1) $\theta_{n}=\theta_{O}+\frac{k}{\sqrt{n}}+\frac{l}{n}+\frac{m}{n\sqrt{n}}$ .

In many cases, for the alternative $\theta$ such that $\sqrt{n}(\theta-\theta_{0})$ is bounded the power function.
of test statistics $T_{n}=T_{n}(X_{1}, X_{2}, \cdots, X_{n})$ with asymptotic level $\alpha$ are approximated $b$]

the normal distribution as follows.

(1.2) $\beta_{n}(\theta)=1-\Phi(u_{\alpha}-c_{n}(\theta))+\phi(u_{a}-c_{n}(\theta))$

$\times\{\frac{1}{\sqrt{n}}s(u_{a}-c_{n}(\theta))+\frac{1}{n}t(u_{\alpha}-c_{n}(\theta))\}+o(n^{-1})$ ,

where $\Phi$ and $\phi$ denote the standard normal distribution function and its density function
$u_{a}$ is upper $\alpha$-point of $\Phi,$ $c_{n}(\theta)=\sqrt{n}(\theta-\theta_{0})c$, cisaconstant, and s$(x),$ $t(x)arepolynomial|$

of $x$, whose coefficients depend on the third and fourth cumulant of $T_{n}$ under th $($

altemative $\theta$ , multiplied by $n^{1/2}$ and $n$ , respectively. In view of (1.2), and by Taylo
expansions, for the altemative sequence $\{\theta_{n}\}$ given in (1.1) we have

(1.3) $\beta_{n}(\theta_{n})=1-\Phi(u_{\alpha}-kc)+\phi(u_{\alpha}-kc)\{\frac{1}{\sqrt{n}}s(u_{\alpha}, k, 1)$

$+\frac{1}{n}t(u_{\alpha}, k, l, m)\}+o(n^{-1})$ ,
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where $s$ and $t$ are free from $n$ . For example, suppose that the distributions $P_{\theta}(\theta\in\Theta)$

have mean $\theta$ and variance one, and let $X_{1},$ $X_{2},$ $\cdots,$ $X_{n}$ be independent identically
distributed observations from $P_{\theta}$ . Let

$T_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}-n\theta_{0}}{\sqrt{n}}$ .

Then we have the following Edgeworth expansion under the appropriate conditions.

$\beta_{n}(\theta)=1-\Phi(u_{\alpha}-c_{n}(\theta))+\phi(u_{\alpha}-c_{n}(\theta))\{\frac{1}{\sqrt{n}}\frac{\kappa_{3}}{6}((u_{\alpha}-c_{n}(\theta))^{2}-1)$

$+\frac{1}{n}(\frac{\kappa_{4}}{24}((u_{a}-c_{n}(\theta))^{3}-3(u_{\alpha}-c_{n}(\theta)))$

$+\frac{\kappa_{3}^{2}}{72}((u_{\alpha}-c_{n}(\theta))^{5}-10(u_{\alpha}-c_{n}(\theta))^{3}+15(u_{\alpha}-c_{n}(\theta))))\}+o(n^{-1})$ ,

where $c_{n}(\theta)=\sqrt{n}(\theta-\theta_{0})$ , and $\kappa_{3}$ and $\kappa_{4}$ are respectively the third and fourth cumulant
of $ X_{1}-\theta$ under the altemative $\theta$ . By Taylor expansions, for the alternative sequence
$\{\theta_{n}\}$ given in (1.1) we have

$\beta_{n}(\theta_{n})=1-\Phi(u_{\alpha}-k)+\phi(u_{\alpha}-k)\{\frac{1}{\sqrt{n}}(1+\frac{\kappa_{3}}{6}((u_{\alpha}-k)^{2}-1))$

$+\frac{1}{n}(m+\frac{1}{2}l^{2}(u_{\alpha}-k)-\frac{\kappa_{3}l}{6}((u_{\alpha}-k)^{2}+2(u_{\alpha}-k)-1)$

$+\frac{\kappa_{4}}{24}((u_{\alpha}-k)^{3}-3(u_{\alpha}-k))$

$+\frac{\kappa_{3}^{2}}{72}((u_{\alpha}-k)^{5}-10(u_{\alpha}-k)^{3}+15(u_{\alpha}-k)))\}+o(n^{-1})$ .

Therefore

$s(u_{\alpha}, k, l)=1+\frac{\kappa_{3}}{6}((u_{a}-k)^{2}-1)$ ,

$t(u_{\alpha}, k, l, m)=m+\frac{1}{2}l^{2}(u_{\alpha}-k)-\frac{\kappa_{3}l}{6}((u_{\alpha}-k)^{2}+2(u_{\alpha}-k)-1)$

$+\frac{\kappa_{4}}{24}((u_{\alpha}-k)^{3}-3(u_{\alpha}-k))+\frac{\kappa_{3}^{2}}{72}((u_{\alpha}-k)^{5}-10(u_{\alpha}-k)^{3}+15(u_{\alpha}-k))$ .

See Bhattacharya and Rao [3] with respect to the Edgeworth expansions. Albers [1],
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Albers, Bickel and Zwet [2] give the validity of expansions of power functions for $som($

statistics.
Let $T_{1n},$ $T_{2n}$ be two test statistics and $\beta_{1n}(\theta_{1n}),$ $\beta_{2n}(\theta_{2n})$ be corresponding powe

functions for the altemative sequence $\{\theta_{in}\}$ given in (1.1) with $k_{i},$ $l_{i},$ $m_{i}(i=1,2)$ . $Suppos($
that $\beta_{in}(\theta_{in})$ satisfy (1.2) for $i=1,2$ .

$\beta_{in}(\theta_{in})=1-\Phi(u_{\alpha}-k_{i}c)+\phi(u_{\alpha}-k_{i}c)\{\frac{1}{\sqrt{n}}s_{i}(u_{a}, k_{i}, l_{i})$

$+\frac{1}{n}t_{i}(u_{\alpha}, k_{i}, l_{i}, m_{i})\}+o(n^{-1})$ .

If $T_{1n}$ and $T_{2n}$ have the same asymptotic power then $k_{i}=k(i=1,2)$ . Put $s_{1}(u_{\alpha}, k, l_{1})=$

$s_{2}(u_{\alpha}, k, l_{2})$ and $t_{1}(u_{\alpha}, k, l_{1}, m_{1})=t_{2}(u_{\alpha}, k, l_{2}, m_{2})$ . By these relations we will obtain th $($

relations between $k,$ $l$ and $m$ . We assert that if $l_{1}<l_{2}$ or $l_{1}>l_{2}$ then $\{T_{1n}\}$ and $\{T_{2n}$
.

are distinguishable in the sense of approaching order $1/n$ , if $l_{1}=l_{2}$ and $m_{1}\neq m_{2}$ the]

$\{T_{1n}\}$ and $\{T_{2n}\}$ are distinguishable in the sense of approaching order $1/n(\sqrt{n})$ .
This method shows that the comparison of two tests in such a case that ARE $=$

can be done more plainly by taking measurements with the distanoe from the altemativ $($

hypothesis to the null hypothesis.

\S 2. Examples.

In this section we give two examples. In the first example we compare the envelo]
power with the power of the locally most powerful test.

EXAMPLE 2.1. Let $X_{1},$ $X_{2},$ $\cdots,$ $X_{n}$ be i.i. $d$ random variables with distributio]

function $\dot{F}(x-\theta),$ $\theta\in R^{1}$ . Let $f(x)$ be the density function of $F(x)$ , and be symmetri $($

about zero and positive on $R^{1}$ , and five times differentiable. We consider the $testin\{$

problem

$H:\theta=0$ against $K:\theta>0$ .

Let $T_{1n}$ be the test based on

$\sum_{i=1}^{n}\log\{f(X_{i}-\theta_{1n})/f(X_{i})\}$ ,

where $\{\theta_{1n}\}$ is the sequence of altematives satisfying (1.1), and let $T_{2n}$ be the test base $($

on

$\sum_{i=1}^{n}f^{\prime}(X_{i})/f(X_{i})$ .

Albers [1] gives the Edgeworth expansions of the power functions for the tests $T_{1n}an($
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$T_{2n}$ in details, provided that the density function $f(x)$ satisfies additional appropriate
regularity conditions and $\sqrt{n}\theta$ is bounded. The expansions are as follows.

(2.1) $\beta_{in}(\theta_{in})=1-\Phi(u_{\alpha}-a_{i})+\frac{a_{i}}{n}(b_{i1}u_{\alpha}^{2}+b_{i2}u_{\alpha}a_{i}+b_{i3}+b_{i4}a_{i}^{2})\phi(u_{\alpha}-a_{i})$

$+O(n^{-3/2})$ ,

where

$a_{i}=\theta_{in}(nE_{0}(\psi_{1}^{2}(X_{1})))^{1/2}$ $(i=1,2)$ ,

$a_{3}=E_{0}(\psi_{1}^{4}(X_{1}))/\{E_{0}(\psi_{1}^{2}(X_{1}))\}^{2}$ ,

$a_{4}=E_{0}(\psi_{2}^{2}(X_{1}))/\{E_{0}(\psi_{1}^{2}(X_{1}))\}^{2}$ ,

$\psi_{j}(X_{1})=f^{0)}(X_{1})/f(X_{1})$ $(j=1,2)$ ,

$E_{0}$ denotes the expectation under the null hypothesis,
$f^{(\prime)}$ denotes j-th derivative of $f$,

$b_{11}=b_{21}=-(a_{3}-3)/24$ ,

$b_{12}=b_{22}=-(a_{3}-3)/24$ ,

$b_{13}=b_{23}=-(a_{3}-3)/24$ ,

$b_{14}=(2a_{3}-3a_{4})/72$ ,

$b_{24}=(5a_{3}-12a_{4}+9)/72$ .
In view of (2.1), we obtain that for $i=1,2$,

$\beta_{in}(\theta_{in})=1-\Phi(u_{a}-(k_{i}+\frac{l_{i}}{\sqrt{n}}+\frac{m_{i}}{n})c)+\frac{c}{n}(k_{i}+\frac{l_{i}}{\sqrt{n}}+\frac{m_{i}}{n})$

$\times\emptyset(u_{a}-(k_{i}+\frac{l_{i}}{\sqrt{n}}+\frac{m_{i}}{n})c)\{b_{i1}u_{a}^{2}+b_{i2}u_{\alpha}(k_{i}+\frac{l_{i}}{\sqrt{n}}+\frac{m_{i}}{n})c$

$+b_{i3}+(k_{i}+\frac{l_{i}}{\sqrt{n}}+\frac{m_{i}}{n})^{2}c^{2}b_{i4}\}+O(n^{-3/2})$

$=1-\Phi(u_{\alpha}-k_{i}c)+\phi(u_{\alpha}-k_{i}c)\{\frac{l_{i}c}{\sqrt{n}}+\frac{1}{n}(m_{i}c+\frac{1}{2}l_{i}^{2}c^{2}(u_{\alpha}-k_{i}c)$

$+k_{i}c(b_{i1}u_{\alpha}^{2}+b_{i2}u_{\alpha}k_{i}c+b_{i3}+k_{i}^{2}c^{2}b_{i4}))\}+O(n^{-3/2})$ ,

where $c=\{E_{0}(\psi_{1}^{2}(X_{1}))\}^{1/2}$ . Since $\{T_{1n}\}$ and $\{T_{2n}\}$ have the same asymptotic power
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we obtain that $k_{1}=k_{2}$ . Put $k_{1}=k_{2}=k$ . Let $1/\sqrt{n}$-terms in $\beta_{1n}(\theta_{1n})$ coincide witl
$1/\sqrt{n}$-terms in $\beta_{2n}(\theta_{2n})$ , and similarly we do also about $1/n$-terms. We obtain that

$l_{1}=l_{2}$ ,

$m_{1}-m_{2}=k\{(b_{21}-b_{11})u_{\alpha}^{2}+(b_{22}-b_{12})ku_{\alpha}c+(b_{23}-b_{13})+(b_{24}-b_{14})k^{2}c^{2}\}$

$=(a_{3}-3a_{4}+3)k^{3}c^{2}/24$ .
REMARK. By easy calculations we observe that

$a_{3}-3a_{4}+3=-3V_{0}(\psi_{1}^{\prime}(X_{1}))$ ,

where $V_{0}$ denotes the variance under the null hypothesis. Therefore we obtain tha
$m_{1}\leqq m_{2}$ .

EXAMPLE 2.2. Let $X_{1},$ $X_{2},$ $\cdots,$ $X_{n}$ be i.i. $d$ random variables with $norm^{r}$

distribution with mean $\theta$ and variance one. We consider the testing problem

$H;\theta=0$ against $K:\theta>0$ .

We consider two tests as follows.

$T_{1n}=\sqrt{n}\overline{X}_{n}$ , $T_{2n}=\sqrt{n}\overline{X}_{n}/s_{n}$ ,

where

$\overline{X}_{n}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ , $s_{n}^{2}=\sum_{i=1}^{n}(X_{i}-\overline{X}_{n})^{2}/(n-1)$ .

The critical region of $T_{1n}$ with level $\alpha$ is given by

$T_{1n}\geqq u_{\alpha}$ ,

where $u_{\alpha}=\Phi^{-1}(1-\alpha)$ . Its power function is as follows.

(2.2) $\beta_{1n}(\theta_{1n})=P_{\theta_{1n}}(T_{1n}\geqq u_{\alpha})$

$=1-\Phi(u_{\alpha}-\sqrt{n}\theta_{1n})$

$=1-\Phi(u_{a}-k_{1})+\frac{l_{1}}{\sqrt{n}}\phi(u_{\alpha}-k_{1})$

$+\frac{1}{n}\{m_{1}-\frac{(u_{\alpha}-k_{1})l_{1}^{2}}{2}\}\phi(u_{\alpha}-k_{1})+O(n^{-3/2})$ .

Next, the critical region of $T_{2n}$ is given by

$T_{2n}\geqq c_{n}$ ,

where $c_{n}$ satisfy that $ P_{O}(T_{2n}\geqq c_{n})=\alpha$ . The power function of t-test is calculated $t$
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Hodges and Lehmann [4]. They give the normal approximation of the power function
as follows.

(2.3) $\beta_{2n}(\theta_{2n})=1-E(\Phi(c_{n}s_{n}-\sqrt{n}\theta_{2n}))$

$=1-\Phi(u_{\alpha}-\sqrt{n}\theta_{2n}(1-\frac{u_{\alpha}^{2}}{4n}))+O(n^{-2})$

$=1-\Phi(u_{\alpha}-k_{2})+\frac{l_{2}}{\sqrt{n}}\phi(u_{\alpha}-k_{2})-\frac{1}{n}(\frac{k_{2}u_{\alpha}^{2}-4m_{2}}{4}$

$+\frac{l_{2}^{2}(u_{\alpha}-k_{2})}{2})\phi(u_{\alpha}-k_{2})+O(n^{-3/2})$ .

In view of (2.2) and (2.3) it must be $k_{1}=k_{2}$ , because $\beta_{in}(\theta_{in})\rightarrow\beta$ as $ n\rightarrow\infty$ for $i=1,2$ .
Put $k_{1}=k_{2}=k$ . We compare (2.2) with (2.3) in the same way as Example 2.1, and we
obtain that

$l_{1}=l_{2}$ ,

$ku^{2}$

$m_{1}-m_{2}=-\frac{\alpha}{4}$ .

\S 3. Relation to Pitman deficiency.

We consider the following testing problem.

$H:\theta=\theta_{O}$ against $K:\theta>\theta_{0}$ .
Suppose that for $i=1,2$ the sequence $\{T_{in}\}$ of test statistics and the sequence $\{c_{in}\}$ of
real numbers satisfy that

(3.1) $\alpha_{in}=P_{\theta_{0}}(T_{in}\geqq c_{in})\rightarrow\alpha$ $(0<\alpha<1)$

as $ n\rightarrow\infty$ and following Edgeworth type expansions are permitted with the altemative
$\theta$ such as $\sqrt{n}(\theta-\theta_{0})$ is bounded.

(3.2) $\beta_{in}(\theta)=P_{\theta}(T_{in}\geqq c_{in})$

$=1-\Phi(u_{\alpha}-c_{n}(\theta))+\{\frac{1}{\sqrt{n}}s_{i}(u_{\alpha}, c_{n}(\theta))$

$+\frac{1}{n}t_{i}(u_{\alpha}, c_{n}(\theta))\}\phi(u_{\alpha}-c_{n}(\theta))+O(n^{-3/2})$ ,

where $c_{n}(\theta)=\sqrt{n}(\theta-\theta_{0})c,$
$c$ is a constant, $u_{\alpha}$ is upper $\alpha$-point of $\Phi$ , and $s(x, y)$ and

$t(x, y)$ are polynomials of $x,$ $y$ .
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THEOREM 3.1. Suppose thatfor $i=1,2,$ $\{T_{in}\}$ satisfy (3.1) and (3.2), and $\beta_{in}(\theta_{in})\rightarrow$

$(0<\beta<1)$ as $ n\rightarrow\infty$ for $\theta_{in}=\theta_{0}+k_{i}/\sqrt{n}$ . If $s_{1}=s_{2}$ then Pitman deficiency, denoting it $0$

$d$, of $\{T_{2n}\}$ with respect to $\{T_{1n}\}$ is finite, and

$d=\frac{2(t_{2}(u_{a},kc)-t_{1}(u_{a},kc))}{kc}$ ,

where $k$ satisfies that $ 1-\Phi(u_{\alpha}-kc)=\beta$ .
$PR\infty F$ . Let $\theta_{in_{\mathfrak{l}}}=\theta_{0}+k_{i}/\sqrt{n_{i}}(i=1,2)$ . For i $=1$ , 2we obtain that

(3.3) $\beta_{in_{t}}(\theta_{in_{i}})=1-\Phi(u_{\alpha}-\sqrt{n_{i}}(\theta_{in_{1}}-\theta_{0})c)$

$+\{\frac{1}{\sqrt{n_{i}}}s_{i}(u_{\alpha}, \sqrt{n_{i}}(\theta_{in_{1}}-\theta_{0})c)+\frac{1}{n_{i}}t_{i}(u_{\alpha}, \sqrt{n_{i}}(\theta_{in_{1}}-\theta_{0})c)\}$

$\times\phi(u_{\alpha}-\sqrt{n_{i}}(\theta_{in_{1}}-\theta_{0})c)+O(n_{i}^{-3\prime 2})$

$=1-\Phi(u_{\alpha}-k_{i}c)+\phi(u_{\alpha}-k_{i}c)\{\frac{1}{\sqrt{n_{i}}}s_{i}(u_{\alpha}, k_{i}c)+\frac{1}{n_{i}}t_{i}(u_{\alpha}, k_{i}c)\}$

$+O(n_{i}^{-3/2})$ .
Let $n_{2}^{*}$ be the solution of equation $\beta_{2n_{2}}(\theta_{2n_{2}})=\beta_{1n_{1}}(\theta_{1n_{1}})$ under the condition such ’

$\theta_{2n_{2}}=\theta_{1n_{1}}$ , and define $d_{n}$ as $d_{n}=n_{2}^{*}-n_{1}$ . By equation $\theta_{1n_{1}}=\theta_{2_{2}},$ , we observe that

$k_{2}=\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}$ .

In view of (3.3), we observe that

(3.4) $\beta_{2n_{2}}.(\theta_{2n_{\dot{2}}})=1-\Phi(u_{\alpha}-\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)$

$+\phi(u_{\alpha}-\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)\{\frac{1}{\sqrt{n_{1}+d_{n}}}s_{2}(u_{\alpha},$
$\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)$

$+\frac{1}{n_{1}+d_{n}}t_{2}(u_{\alpha},$ $\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)\}+O(n_{1}^{-3\prime 2})$ .

By using Taylor expansions we observe that
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$\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}=(1+\frac{d_{n}}{n_{1}})^{1/2}=1+\frac{d_{n}}{2n_{1}}+O(n_{1}^{-2})$ ,

$\frac{1}{\sqrt{n_{1}+d_{n}}}=\frac{1}{\sqrt{n_{1}}}(1+\frac{d_{n}}{n_{1}})^{-1/2}=\frac{1}{\sqrt{n_{1}}}+O(n_{1}^{-3/2})$ ,

$\frac{1}{n_{1}+d_{n}}=\frac{1}{n_{1}}(1+\frac{d_{n}}{n_{1}})^{-1}=\frac{1}{n_{1}}+O(n_{1}^{-2})$ ,

$\Phi(u_{\alpha}-\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)=\Phi(u_{\alpha}-k_{1}c-\frac{k_{1}cd_{n}}{2n_{1}}+O(n_{1}^{-2}))$

$=\Phi(u_{\alpha}-k_{1}c)-\frac{d_{n}k_{1}c}{2n_{1}}\phi(u_{\alpha}-k_{1}c)+O(n_{1}^{-2})$ ,

$\phi(u_{\alpha}-\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)=\phi(u_{\alpha}-k_{1}c-\frac{d_{n}k_{1}c}{2n_{1}}+O(n_{1}^{-2}))$

$=\phi(u_{\alpha}-k_{1}c)+O(n_{1}^{-1})$ ,

$s_{2}(u_{\alpha},$ $\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)=s_{2}(u_{\alpha},$ $k_{1}c+\frac{d_{n}k_{1}c}{2n_{1}}+O(n_{1}^{-2}))$

$=s_{2}(u_{\alpha}, k_{1}c)+O(n_{1}^{-1})$ ,

$t_{2}(u_{\alpha},$ $\sqrt{\frac{n_{1}+d_{n}}{n_{1}}}k_{1}c)=t_{2}(u_{\alpha},$ $k_{1}c+\frac{d_{n}k_{1}c}{2n_{1}}+O(n_{1}^{-2}))$

$=t_{2}(u_{\alpha}, k_{1}c)+O(n_{1}^{-1})$ .
In view of (3.4) we observe that

$\beta_{2n_{2}^{*}}(\theta_{2n_{2}}.)=1-\Phi(u_{\alpha}-k_{1}c)+\phi(u_{\alpha}-k_{1}c)\{\frac{1}{\sqrt{n_{1}}}s_{2}(u_{\alpha}, k_{1}c)$

$+\frac{1}{n_{1}}(t_{2}(u_{\alpha}, k_{1}c)-\frac{d_{n}k_{1}c}{2})\}+O(n_{1}^{-3/2})$ .

It must be that $k_{1}=k_{2}$ , because $\{T_{1n}\}$ and $\{T_{2n}\}$ have the same asymptotic power. Put
$k_{1}=k_{2}=k$ . By equation $\beta_{1n_{1}}(\theta_{1n_{1}})=\beta_{2n_{2}}.(\theta_{2n_{2}^{*}})$ , we obtain that
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(3.5) $\frac{1}{\sqrt{n_{1}}}s_{1}(u_{\alpha}, kc)+\frac{1}{n_{1}}t_{1}(u_{\alpha}, kc)$

$=\frac{1}{\sqrt{n_{1}}}s_{2}(u_{\alpha}, kc)+\frac{1}{n_{1}}(t_{2}(u_{\alpha}, kc)-\frac{d_{n}kc}{2})+O(n_{1}^{-3/2})$ .

In view of (3.5) if $s_{1}=s_{2}$ then we obtain that

$d_{n}=\frac{2(t_{2}(u_{\alpha},kc)-t_{1}(u_{\alpha},kc))}{kc}+O(n_{1}^{-1\prime 2})$ .

The proof has been completed.

REMARK. In Theorem 3.1, $n_{2}$ is not necessarily an integer. But by stochasti
interpolation we can avoid the difficult situation. That is to say, we define $\beta_{2n_{2}}.(\theta_{2_{2}},)$ a
follows.

$\beta_{2n_{\dot{2}}}(\theta_{2n_{2}}.)=(1-n_{2}^{*}+[n_{2}^{*}])\beta_{2[\#_{2}]}(\theta_{2[n_{2}]})+(n_{2}^{*}-[n_{2}^{*}])\beta_{2[\prime_{2}]+1}(\theta_{2[n_{2}]+1})$ ,

where $[x]$ denotes the integer part of $x$ (cf. Hodges and Lehmann [4]).

Let $\theta_{in}=\theta_{0}+k_{i}/\sqrt{n}+l/n+m_{i}/(n\sqrt{n})(i=1,2)$ . If two tests $\{T_{1n}\}$ and $\{T_{2n}\}$ hav
the same asymptotic power then $k_{1}=k_{2}$ by the discussion in the proof of Theorem 3.1

THEOREM 3.2. Let $\theta_{in}=\theta_{0}+k/\sqrt{n}+l_{i}/n+m_{i}/(n\sqrt{n})(i=1,2)$ . Suppose that, $fo$

$i=1,2,$ $\{T_{in}\}$ satisfy (3.1), (3.2), and $\beta_{in}(\theta_{in})\rightarrow\beta(0<\beta<1)$ as $ n\rightarrow\infty$ . Let $d$ denote Pitmai
deficiency of $\{T_{2n}\}$ with respect to $\{T_{1n}\}$ . If $s_{1}=s_{2}$ then

$d=\frac{2(m_{1}-m_{2})}{k}$ ,

where $k$ satisfies that $\beta=1-\Phi(u_{\alpha}-kc)$ .
$PR\infty F$ . In view of (3.2) we obtain that for i $=1,2$

$\beta_{in}(\theta_{in})=1-\Phi(u_{\alpha}-\sqrt{n}(\theta_{in}-\theta_{0})c)+\{\frac{1}{\sqrt{n}}s_{i}(u_{\alpha}, \sqrt{n}(\theta_{in}-\theta_{0})c)$

$+\frac{1}{n}t_{i}(u_{\alpha}, \sqrt{n}(\theta_{in}-\theta_{0})c)\}\phi(u_{\alpha}-\sqrt{n}(\theta_{in}-\theta_{0})c)+O(n^{-3\prime 2})$ .

Similarly as the proof of Theorem 3.1, using Taylor expansions we obtain that

$\beta_{in}(\theta_{in})=1-\Phi(u_{a}-kc)+\frac{1}{\sqrt{n}}(l_{i}c+s_{i}(u_{\alpha}, kc))\phi(u_{\alpha}-kc)$

$+\frac{1}{n}\{m_{i}c+\frac{(u_{\alpha}-kc)l_{i}^{2}c^{2}}{2}+l_{i}c(u_{\alpha}-kc)s_{i}(u_{\alpha}, kc)$
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$+l_{i}cs_{i}^{\prime}(u_{\alpha}, kc)+t_{i}(u_{\alpha}, kc)\}\phi(u_{\alpha}-kc)+O(n^{-3/2})$ .

Let $1/\sqrt{n}$-terms ( $1/n$-terms) in $\beta_{1n}(\theta_{1n})$ coincide with $1/\sqrt{n}$-terms ( $1/n$-terms) in
$\beta_{2n}(\theta_{2n})$ . It follows that

$l_{1}c+s_{1}(u_{\alpha}, kc)=l_{2}c+s_{2}(u_{\alpha}, kc)$ ,

$m_{1}c+\frac{1}{2}(u_{\alpha}-kc)l_{1}^{2}c^{2}+l_{1}c(u_{\alpha}-kc)s_{1}(u_{\alpha}, kc)+l_{1}cs_{1}^{\prime}(u_{\alpha}, kc)+t_{1}(u_{\alpha}, kc)$

$=m_{2}c+\frac{1}{2}(u_{a}-kc)l_{2}^{2}c^{2}+l_{2}c(u_{\alpha}-kc)s_{2}(u_{\alpha}, kc)+l_{2}cs_{2}^{\prime}(u_{\alpha}, kc)+t_{2}(u_{\alpha}, kc)$ .

Since $s_{1}=s_{2}$ , it follows that $l_{1}=l_{2}$ , and

$m_{1}-m_{2}=\frac{t_{2}(u_{\alpha},kc)-t_{1}(u_{\alpha},kc)}{c}=\frac{kd}{2}$ .

The proof has been completed.

By applying Theorem 3.2 to Example 2.1, we have

$d=\frac{2(m_{1}-m_{2})}{k}=\frac{(-a_{3}+3a_{4}-3)k^{2}c}{12}$ .

This value coincides with the asymptotic deficiency given by Albers [1].
For Example 2.2 we obtain that

$d=\frac{2(m_{1}-m_{2})}{k}=-\frac{u_{\alpha}^{2}}{2}$ .

This value coincides with the value given by Hodges and Lehmann [4].

ACKNOWLEDGEMENTS. The author thanks the referee for helpful comments and
suggestions.

References

[1] W. ALBERS, Asymptotic Expansions and the Deficiency Concept in Statistics, Math. Centrum Tracts,
59 (1974).

[2] W. ALBERS, P. J. BICKEL and W. R. VAN ZWET, Asymptotic expansions for the power of distribution
free tests in the one-sample problem, Ann. Statist., 4 (1976), 108-156.

[3] R. N. BHATTACHARYA and R. R. RAO, Normal Approximation andAsymptotic Expansions, Wiley (1976).
[4] J. L. HODGES and E. L. LEHMANN, Deficiency, Ann. Math. Statist., 41 (1970), 783-801.
[5] G. E. NOETHER, On a theorem of Pitman, Ann. Math. Statist., 26 (1955), 6448.
[6] E. J. G. PITMAN, Some Basic Theory for Statistical Inference, Chapman and Hall (1979).



216 HARUYOSHI MITA

Present Address:
GENERAL CULTURAL SUBJECTS PROGRAM, FACULTY OF LIBERAL ARTS,
UNIVERSITY OF TIffl SACRED HEART
$HIR\infty$, SHIBUYA-KU, TOKYO 150, JAPAN


