Tokyo J. MATH.
VoL. 16, No. 2, 1993

On the Mean-Square for the Approximate Functional
Equation of the Riemann Zeta-Function

Isao KIUCHI

Keio University
(Communicated by Y. Maeda)

§1. Introduction.

Let d(n) be the number of positive divisors of n, and y the Euler constant. The
problem of estimating the quantity

AX)=Y." d(n)—x(logx+2y—1)—1/4

nsx

is called the Dirichlet divisor problem, where the symbol )’ indicates that the last term
is to be halved if x is an integer. G. F. Voronoi [9] proved two remarkable formulas
concerning A(x). Besides giving an explicit expression for 4(x), he (see also (2.3) of [2])
proved

rA(x)dx=4—1T+(2ﬁn2)-lT3/4 i d(m)n~5* sin(@n/nT—4"m)+0(1) . (1.1)
2 n=1

The sharp estimate of the error term is to be noted.
Let {(s) be the Riemann zeta-function, and for 7=2, let

ET)= j T|C(1/2+it)|2dt—-Tlog(T/21t)—(2y— T, (1.2)
0

the error term in the mean-square formula for {(s). J. L. Hafner and A. Ivi¢ [2] es-
tablished the analogue of (1.1) for E(T):

J TE(t)dt=7tT+ 2-1QTIm) 3 (= 1ydmn~ 5 sin(dn(nT/2m)2 — 4™ 7)
n=1

2

+O0(T?*3logT) (see (2.5) of [2]) . (1.3)

We note that apart from the factor (—1)" the series in (1.3) is the same as the one in
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(1.1) with 7/2m in place of T. We now define, for T=2,

G(D=JTE(t)dt—nT.
2

Then J. L. Hafner and A. Ivic (see (2.8) of [2]) proved the following formula:

JTGz(t)dt=(5n,/2n)‘1< i dz(n)n‘s/z) T5’2+O(T2) , (1.9
2 n=1
and moreover

G(T)=Q.(T**). (1.5)

From (1.4) it follows immediately that G(T") = Q(7T3/#), but (1.5), which means that both
G(T)=9Q.(T**) and G(T)=Q_(T>*) are true, is of course sharper. They said that, by
using (1.1), one can obtain the analogue of the formula (1.4) for 4(T), but did not state
the result explicitly in [2]. Let, for 72>2,

Mm=rA(z)dz—4-1T,
2

then we can show the asymptotic formula for A(T):

fTMz(t)dt=(40n2)_‘( 3 dZ(n)n—5/2) TS24+ O(T?). (1.6)
2

n=1

From (1.6) it follows immediately that M(T)=Q(T%4), and we can also prove the
sharper result

M(T)=Q,(T*%). (1.7
Let, for t>1,

R(s; t)2m)=0%(s)— Y dmn~*—x%(s) Y dmm?,
nst/2x nst/2x
where
x(®=2°r*"1sinQR " ns)r(1 —s) .

It has been shown by Y. Motohashi [7] (see also (2.4.13) of [8]) that

(1 —9)R(s; t/2m)= —/ 2 (12m) =12 A(t/2m) + O~ 1/4) . (1.8)

We note that M. Jutila [4] gives another proof of Motohashi’s result (1.8). The
asymptotic formula

f T|R(1/2+it; t/2m) |2dt=./2n( i dz(n)hz(n)n‘”z) TY24+O(TV*1ogT) (1.9)
n=1

1
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was proved by I. Kiuchi and K. Matsumoto [5], and the error term has been improved
to O(log® T') by 1. Kiuchi [6], where

h(n)=(2/7t)1/2Jw(y+mt)“”2 cos(y+4"n)dy=0(n"1?). (1.10)
0

In view of the relation (1.8), to search an analogue of (1.1) for y(1—s)R(s; t/27®) is an

interesting problem in itself and the following result was proved by Y. Motohashi (see
(3.4.7) of [8]):

JT x(1/2—i)R(1/2+ it ; t/2n)dt

0

=(6n/2)7" j ! (t/27)~ V2 {log(1/2m) + 2y} dt + 2./ 2(T)2m)"/?
1

—(n/ 2) N T2m)* Y. d(n)n~**Re(go(nn)) cos(2./2nnT +4™ 1) +c,
n=1
+O0(T™ %), | (1.11)
where ¢, is a constant, and
Re(go(nn))= —2./2nIm j exp(—2~1y2 +i(r /2nn)y)dy (r=exp(4~1ni)) .
: 0

(1.12)

In the next section (Lemma 3) we will give a proof of the fact

Re(go(nm))=mn/2 hn) . (1.13)

Therefore, Motohashi’s formula (1.11) can be rewritten as

er(l/Z—it)R(l/2+it; t/2m)dt

(4]
=3/ 1) ' TV?{log(T/2n) + 2y + 4}

(T2 3 dimyhmyn=4 cos(2/2anT +4= 1)+ c+ O(T- 14y,  (1.14)
n=1 .

where cis a constant. The formula (1.11) is used in the proof of Motohashi’s ‘“smoothed”
version of Atkinson’s formula for E(T") (see Theorem 8 of [8]) as an application of the
{2-analogue of the Riemann-Siegel formula. Now, let

K(T)= f ! (12— i)R(1)2+it ; t/2m)dt— 3/ =) " TY*{log(T/2m) + 2y +4}, (1.15)
(4]
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then from (1.14) and (1.15) it follows that K(T)= O(T*/*). The formulas (1.1) and (1.14)

also support the analogy between x(1 —s)R(s ; t/2x) and (t/2n) ~ /2 A(t/2n). Analogously

to Hafner and Ivi¢’s (1.4) and (1.5), we shall prove the following results for K(7).
THEOREM 1. For T=2 we have

Qa0

f TKz(t)dt=(3\/—27t)"< y dz(n)hz(n)n'3/2) T32 4+ O(T) . (1.16)
2

n=1
THEOREM 2.
K(T)=Q,(T"%). (1.17)

REMARK. It follows immediately from (1.16) that K(T)=Q(T*%), so apart from
the value of the numerical constants involved, the order of magnitude of K(T) is precisely
determined.

By using (1.1), we can obtain (1.6) and (1.7) as analogues of the above theorems,
but the proofs of these results are quite similar and we omit it.

ACKNOWLEDGEMENT. The author is indebted to Prof. K. Matsumoto and the
referee for valuable comments. In particular, Prof. K. Matsumoto kindly read the
original manuscript carefully and pointed out errors.

§2. Some lemmas.

Firstly we show Lerch’s formula; this is classically known, but here we give a proof
for the convenience of readers.

LEMMA 1. For a>0, we have

o0
J e W@ty —2-1 [ pe~2a,

o

>PRO0F. Let

S=j e”“z_‘“/“’zdu=e‘z“f e~ W—@mgy, 2.1

0 0o

Now we put t=a/u, then

S=ae‘2“f e U@ -24 (2.2)
)

From (2.1) and (2.2), it follows that

S=2'1e_2“I et @] yar~?)dr .
0
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Hence, putting y=1¢—(a/t), we have

S=2'1e“2“f e Vdy .

This completes the proof of Lemma 1.

LemMMA 2 (Lerch, see p. 279 in [10]). For Re(s)>0 and Re(w)>0, we have
f {1+47 (w/x)?} "2 e ¥ dx =/ n (F'(2" 1))~ 1 J e~ Wi gy
0 0
PROOF. We start from the obvious identity, valid for z>0 and Re(s)>0,

fw e 2y ldy=z"°T'(s) .

o

We put z=1+4"1(w/x)? (w>0) to get

Jv e—{l +4—1(w/x)2}yy2'1s—ldy___r(z— 1S){1 +4—1(w/x)2}—2‘1s .
(4]

Multiplying this by e™** and integrating over the interval [0, o), we have

o0 [ce]

e—yy2“15~1dyf e—x2—4“(w/x)2ydx.
o

fw e {1 +4‘1(W/x)2}_2—lsdx=(r(2_1s))—1j

(V] (1]
By using Lemma 1 with a=2"'w,/ y, we obtain that the right-hand side of the above
is equal to

2—1 / by (F(2_1S))_1 J\ e-—y—wx/;yZ'ls—ldy .
(4]
Hence, for Re(s)>0 and w>0, we have

a0

fw{1+4‘l(w/x)z}_z'l‘e""zdx=ﬁ(1“(2‘1s))‘1J e FTwEST1gx . (2.3)
0

0

Next we shall prove that (2.3) is valid, by the analytic continuation, for Re(w)>0. Let
w=u+iv (u>0) and s=0+it (6 >0). Since

© ©
J le—xz—wxxs—lldxéj e—xz—uxxa—ldx,
0 0

the integral on the right-hand side of (2.3) is absolutely convergent for >0 and any
w. Since

27 'targ(1+ (w/2x)?)<c; and —27'clog|l+W/2x)?|=Zc,

for u>0 and >0, we have
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fw | {14+4"Y(w/x)?} 2" "%e~**|dx

0

@®
=J e~ 2-1lglog|1+(w/2x)2|+ 2~ 1targ(1 +(y/2x)2)—x2dx

where the constants ¢; (j=1, 2, 3) depend on s and w. Therefore the left-hand side of
(2.3) is absolutely convergent for o >0 and > 0. This completes the proof of Lemma 2.
Now we can prove the identity (1.13):

LEMMA 3.

Re(go(nn))=n./ 2 h(n) .
PrROOF. From (1.10) and (1.12), it suffices to show that

2‘1’2Imf exp(—2‘1y2+i(r./2mt)y)dy=—2‘1f (y+nn)~2cos(y+4~ n)dy .
0 0

2.4
We put s=1, \/ 2 x=y and w= —2ir./nzn in the right-hand side of Lemma 2, then it
is equal to

2"1’2Jwexp(—2'1y2+i(r,/2n1t)y)dy. (2.5)

0

The left-hand side in Lemma 2 with s=1 and w= —2ir./nn is

Jw x(x®—r’nn)~ 2 exp(— x¥)dx= —2" 1i.[iw (E+nn)~ 2 exp(i(E+4~ 'n))dE, (2.6)
0 0

since

(x2—r?nn)'? = —ir(¢ +nm)'/? (r=exp@~ni), &=—(x/r)?).

It can be easily seen that the integral

I (E+nn)~ Y2 exp(i(é + 4~ ‘n))dE
Cr

tends to 0 as R tends to infinity, where Cy denotes a quadrant of radius R from R to
iR. Hence, we have
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jioo (E+nn)~ 2 exp(i(E+4~ ‘n))dE = jw E+nn) " 2exp(i(E+47 n)dE. (2.7)
0 0

From (2.5)—(2.7), it follows that

2 Jw exp(—27 'y +i(ry/2nm)y)dy= -2t jm(6+nn)‘”2 exp(i(¢ +4~'m))d¢ .
(1]

0

Hence, taking the imaginary part, we obtain the identity (2.4).

§3. Proof of Theorem 1.

From (1.14), (1.15) and Schwarz’s inequality, we have

2T
J K(dt=1,+1, + I+ O(T 2+ TY4[L2 4 TV41312) | 3.1
T
where
2T e 2
11=j (t2m)"* Y. dmyh(m)n=3* cos(2./2nnt + 4" 'm)| dt,
T n=1
2T )
Iz=2cj (t/2m)/4 Z d(n)h(n)n=3/* cos(2./2nnt+4 " ‘n)dt ,
T n=1
2T
I3=c2f dt=0(T). (3.2)
T
Since

2T
f g4 exp(iu\/T)dt=0(u'1T3/4) u#£0),

T

we have, by (1.10),

I,=0 ( T S dnyh(nyn~ 5/‘*) =O(T?% . (3.3)

To evaluate I; we expand out the square, and get

0 2T
nL=2"t% dz(n)hz(n)n“:‘/zf (t/2m)*%dt
=1 T

00

=271y d*(m)h*(n)n=3? jZT (t/2m)1/? sin(4 . /2nnt)dt

n=1
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r

—2-t i f d(m)d(n)h(m)h(n)(mn) 3+ 2T(t/21t)”2 sin(2./2nt(/m+./ n ))dt

m=1n=1 JT
m¥*n

r

+2-1 Zl 21 d(m)d(n)h(m)h(n)(mn)~ 3/4 :T(t/Zn)”z cos(2/2nt(\/m—./ n))dt
m#*n

=11,1+Il'2+11,3+11,4, ' say .
Since

JZT 112 exp(iu\/T)dt=O(u‘1T) u+#0),

T

we have, by (1.10),

I, ,=0 (T i dz(n)hz(n)n‘2>=0(T), (3.4)

and

I,,=0 ( T i f d(m)d(n)h(m)h(n)(mn)~3*(/m+./n )-1>

m=1n=1
m¥n

=0(T< i d(n)h(n)n‘1)2)=0(T). 3.5
n=1
It is seen that

2.2, dm)d(m)h(m)h(m)(mn)~>*| \/m—./n |~

mn<N

m#n

n<ms<N

=0 ( 2.2, d(m)d(m)h(myh(nym™/4n=3/(m — n)- 1)

= o( XY d(n)d(n+r)n=13/8y~1 1/8)

nrsN

=0( ZZ n—(13/8)+ar—(11/8)+a>=O(l) ,

nr=<N

by using (1.10), the inequality a+5>2./ab (@20, =0), and the fact d(n)= O(n®) for
any ¢>0. Hence, we have

I 4=0(T). (3.6)
It is easy to see that
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11,1=(3\/E)—1< i dz(n)hz(n)n_3/2> (QT)¥*—-T3?} . (3.7

From (3.4)—(3.7), we have
I, =(3J2_n)‘1( 5 dZ(n)hZ(n)n”“) {@T)*? -T2} + O(T). (3.8)
n=1

From (3.2) and (3.8), we see that the error term in the right-hand side of (3.1) is O(T).
Therefore, we have

f”KZ(t)dt=(3\/2"n)-1( fj dz(n)hz(n)n"3’2) {@T)** =T} +O(T) .
n=1

T

Replacing T by 27T, 41T, and so on, and adding we obtain Theorem 1.

§4. Proof of Theorem 2.

From (1.10), integrating by parts, we have
h(n)=(2/n)'/? (—- Qrn)~ Y2+ 2rn)"32—-(3/4) J (y+nm)~ 32 cos(y+4~ 171:)tz'y) ,
0

which implies that

hn)< —(ny/n )" {1—(1+./2)Q2an)" 1}, 4.1)

and

)z —(ny/n) ' —(/2 —DQ2a>) " n"32. 4.2)
From (1.14) and (1.15), it follows that

K(T)= —(T)2m)"* Y. dm)h(m)n=3"* cos(2/2nnT+4~ n) + ¢+ O(T~ %)
n=1

To prove the omega-result (1.17), we proceed similarly as in the proof of J. L. Hafner
and A. Ivi¢ (see (6.4) of [2]). Set

Ju)= — 21 d(n)h(m)n= 3 cos(u/ n +47x).

Then, it suffices to show that
lim sup J(u)>0, (4.3)

u— oo

and
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lim inf J(x) <0 . (4.4)

u—* oo

We start from the proof of (4.3). Let M be a large positive integer, and let §=M ~1/2,
For each n< M, write n=v?q where g=gq(n) is the square-free divisors of n. Let
Q,={q(n); 1=n<M}, and Q, be the set of all distinct elements of Q,. Then
{\/ q ;qe Q,} is the set of linearly independent numbers, as a special case of Besicovitch’s
theorem (see p. 204 of [1]). Then by Kronecker’s approximation theorem (see Lemma
9.3 of [3]), there exists arbitrarily large « such that

|2n) " tuy/ ¢ —m,| <9,

with some integer m, and 0<d,<d, where g ranges over the set Q,. Hence we can
deduce that for n< M,

cos(uy/ n +4 'n)=cos(4"n)+ 05/ n).
We have, by (4.1),

lim sup J(u) = —cos(4 " 'n) Y, d(n)h(n)n"3*+O(M~*logM)

u— oo nsM

2(n/2)71 Y dimn 34 (1—(/ 2 +1)2nn) ")+ OM~ 4 1ogM)>0 .

nsM

Next, we prove (4.4). From Kronecker’s approximation theorem, there exists arbitrarily
large u such that

|27) " 'uy/ q —1/2—m,| <4, .

In this case
cos(u/ n +47 'n)=A4,cos(4"'n)+ 05/ n),
with 4,=1 if n=0 (mod4) and A,= —1 otherwise, so that we obtain, by (4.2),

lim inf J(u) < —cos(4™1n) Y, A d(n)h(m)n=3*+O(M ~14log M)

u—* oo nsM

S(y2) ' Y Admn (/2 —1)2/ 22D Y Adm)n—*
nsM

nsM
+O(M~Y41ogM) .

Since
S hdmn =321 122732 (s> 1),
n=1

which is negative at s=5/4 and 9/4 (see p. 186 of [2]), so that, letting M tend to infinity,
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we see that the resulting infinite series are negative. Hence we obtain lim inf J(u) <0.
This completes the proof of Theorem 2. umeo
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