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§0. Introduction.

This paper is devoted to the study of the Reidemeister torsion. It is a piecewise
linear invariant for n-dimensional manifolds and originally defined by Reidemeister,
Franz and de Rham. In 1985 Casson defined an interesting topological invariant
of homology 3-spheres by making use of a beautiful construction on the space of
SU(2)-representations of the fundamental group. Later Johnson developed a similar
theory of Casson’s one by using the Reidemeister torsion as its essential ingredient. He
also derived an explicit formula for the Reidemeister torsion of Brieskorn homology
3-spheres for SL(2; C)-irreducible representations. In this paper, we call this type
Reidemeister torsion the SL(2; C)-torsion following Johnson. Let M, be a 3-manifold
obtained by the 1/n-surgery on a torus (p, g)-knot. It is a Brieskorn homology 3-sphere
2(p, g, pqn+ 1). The fundamental group =, M, admits a presentation as follows;

"fCan=<x, y | xp=yqa ml":: 1>

where m is a meridian of the torus knot which is a word of x and y and / is similarly
a longitude. Johnson proved the following theorem.

THEOREM (Johnson). The distinct conjugacy classes of the SL(2; C)-irreducible
representations of n,M, are given by p 1, such that

(1) O<a<p,0<b<gq, a=bmod?2,

(2) O0<k<N=|pgn+1|, k=namod?2,

(3)  trpge(*)=2cosma/p,

4) trpgp(y)=2cosnb/q,

(5) trpgpxim=2cosnk/N.
In this case the SL(2; C)-torsion T, 4 fOr P is given by

. _ }2(1—cosra/p)(1 —cos nb/q)(1 + cos mkpq/N) a=b=1k=n mod 2
@010 a=b=0ork#n mod2.
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His methods can be applied to more general Seifert fibered spaces and give a way
to compute the SL(2; C)-torsion of them.

The main result of this paper is the following theorem. Let M3 denote the orientable
Seifert fibered space given by the following Seifert index

{b, (8’ g) > (ala Bl)s Y (ama ﬁm)} .

MAIN THEOREM. Let p : . M — SL(2; C) be an irreducible representation. Then the

SL(2; C)-torsion ©(M; V,) is given by

[0 if H=1
—m—da T k(P )
24 m-—4g 1—(—1) ﬂl__) H I, —
M;V,)= 1131< (=1)cos o if H#l e=o
' 4-m—2g m
Piki(P)n) .
2-2 1—(—=1" - H+#I ¢=
L< COSN+1) | ig( (—1)**cos 2 if H#I e=n
where
(1) H=p(h),

(2) h is a representative element of generic fiber in n,M,

a;  pi
i Vi

(4) ki(p)e Z such that 0<k;<a;, and k;(p)=p; mod 2,

(5) N=pijoy+ -+ Pmfoty,

(6) se€Z such that 0<s<2N+2.

() pi, vi€Z such that =—1and 0<p;<a;,

REMARK. (1) In general the dimension of the space of representations of a Seifert
fibered space is not zero; in particular the distinct classes of irreducible representations
are not finite. However the set of the SL(2; C)-torsion turns out to be a finite subset
in R by this theorem; that is SL(2; C)-torsion is a constant function on each connected
component of the space of irreducible representations.

(2) It may be a problem to determine whether there exists a 3-manifold with
continuous variations of the SI(2; C)-torsion. In fact the answer is yes. In our paper [3],
we will prove that the double of the figure-eight knot exterior in S has continuous
variations of the SL(2; C)-torsion. :

Now we describe the contents of this paper. In §1 we give the necessary definitions
and properties of the SL(2; C)-torsion following Milnor. In §2 we examine the
Reidemeister torsion for the 2-dimensional torus and the solid torus. These results
will be used later for the torus decomposition formula. In §3 we investigate
SL{2; C)-irreducible representation of Seifert fibered spaces. In §4, we give a proof
of Main theorem for the case of H=—1I. In §5, we prove the non-acyclicity of the
chain complex C,(M ; V,) in the case of H=1.

The author would like to express his gratitude to Professor Shigeyuki Morita for
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his encouragement and many useful suggestions. He also would like to thank Professor
Yoshihiko Mitsumatsu for pointing out related topics.

§1. Definition of the SL(2; C)-torsion.

First let us describe the definition of the SL(2; C)-torsion, that is, the Reidemeister

torsion for SL(2 ; C)-representations. See Johnson [2] and Milnor [4], [5], [6] for details.
Let W be an n-dimensional vector space over C and let b=(b,, -, b,) and

c=(cy, """, ¢,) be two bases for W. Setting b,=)[_, pijc;, we obtain a nonsingular
matrix P=(p;;) with entries in C. Let [b/c] denote the determinant of P.
Suppose
d d 0 :
C,: 0—5C,—Cp_y =5+ »Cy —2 Cy >0

is an acyclic chain complex of finite dimensional vector spaces over C. We assume that
a preferred basis ¢, for C,(C,) is given for each g. Choose some basis b, for B,(C,)
and take a lift of it in C, ,(C,), which we denote by b,.

Since B(C,)=2Z,(C,), the basis b, can serve as a basis for Z,(C,). Furthermore

the sequence
0-»Z,(C,)—-C/(C,)—B,_,(C,)—-0

is exact and the vectors (b,, b~q_1) form a basis for C,(C,). It is easily shown that
[b,, b,-1/c,] does not depend on the choice of the lift b,_,. Hence we simply denote
it by [b,, b,—,/¢c,].

DEerINITION 1.1. The torsion of the chain complex C, is given by the alternating
product

I—I [bqa bq—l/cq](_ b
q=0

and we denote it by 7(C,).
REMARK. It is easy to see that 7(C,) depends only on the bases {cq, * * *, €,}-

Now we apply this torsion invariant of chain complexes to the following geometric
situations. Let X be a finite cell complex and X a universal covering of X. The fundamental
group 7, X acts on X as deck transformations. Then the chain complex C,X; Z) has
the structure of a chain complex of free Z[n,X]-modules. Let p: n,X—>SL(2; C) be
a representation. We denote the 2-dimensional vector space C? by V. Using the
representation p, V has the structure of a Z[n, X]-module and then we denote it by
V,. Define the chain complex C (X ; V,) by c.X;2)® ztnx1V,, and choose a preferred
basis
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{0'1 ®e19 g4 ®eZa Y akq®e19 o-kq®e2}

of Cy(X'; V,) where {e,, e,} is a canonical basis of ¥ and o, - - -, oy, are g-cells giving
the preferred basis of C (X ; Z).

We consider the situation where C,(X ; V) is acyclic. Namely all homology groups
- vanish; H_(X; ¥,)=0. In this case we call p an acyclic representation.

DEeFINITION 1.2. Let p: n,; X —SL(2; C) be an acyclic representation. Then the
Reidemeister torsion of X with V,-coefficients is defined to be the torsion of the chain
complex C (X ; V,). We denote it by (X ; V,).

REMARK. (1). Wedefine the SL(2; C)-torsion 7(X ; V,) to be zero for a non-acyclic
representation p.
(2) The Reidemeister torsion 7(X ; V,) depends on several choices. However it is

well known that the Reidemeister torsion is a piecewise linear invariant. See Johnson[2],
Milnor [4], [6].

The key lemma of the proof of Main theorem is the following. It gives the torus
decomposition formula of the Reidemeister torsion of 3-manifolds. See Johnson [2],
Milnor [6].

LEMMA 1.3. Let0—C, - C, — C, — 0 be an exact sequence of n-dimensional chain
complexes with preferred bases {c}, {¢;} and {c|'} such that [c,, ¢}c;]=1 for Vi. Suppose
any two of the complexes are acyclic. Then the third one is also acyclic and the torsion
of the three complexes are all well-defined. Moreover the next formula holds:

_ UC )= (— )F=0bi-1# (C )r(CYy)
where B; =dimdC;, , and B; =dimoCy, ,.

PrOOF. It is easy to show the acyclicity of the third one from the homology long
exact sequence of 0 C, - C,—»C, 0.
To see the required formula, we consider the next diagram for Vi.

0 o 0

| | l
0 — 6C;+1 — 9C; 4, aC;'H 0
O— ¢ — ¢ — ¢ — 0
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Choose bases b; of 0C;,, and b/ of 0C/,, and then we get a basis of dC,, ,,
b,=(b;, b;). We will show that
‘C(C;)T(C;)T(C*)_ 1 ___(_ 1)2?:0[33— 187 .

Here from the definition of the torsion,

n
(CYUCHUC) ™ =[] (B, bi— 1 /1Y (B, By /€/1 ' [by, by fe TV

i=0

Note that this value does not depend on the choice of b; and b;. Consequently we may
assume that

[}, bi— 1 /ci]=(b, bi-1/ci]1=1.

Hence
HCIUCHUC)™ = [T 1B biy fe] ™0

Moreover, from the assumptions, we may choose identifications
0C;;1=0C;®0C;, Ci=CidC;, oC;xaC;®aC},
Ci=0Ci,, ®0C;, C/=0C{,,®0oC; .
Thereby we can identify C; with 0C},, ® dC;® dC/, , ® dC} and get a basis for C;
(B, bi— 1, B, B 1) =(c,, ) =c; .
Moreover we have the following as an oriented basis,
(b}, b;— 1, b, b ) =(—1)Pi-+% (b, b, b;_ 1, b_,)
=(—1)fi-1# (b, b;_,).
Hence
(8%, bi— 1 /cA[BY, b1 /c/1[by, By—y /e ]
11— 1P o8 = (— )P
Therefore
UCHCH(C,) ™  =(— 1)FF-oPi-18i

This completes the proof of Lemma 1.3.

§2. Examples of SL(2; C)-torsion.

In this section, we compute the SL(2; C)-torsion of the torus 72 and the solid
torus S. First we consider the condition of the acyclicity of 72. When a representation
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p is fixed, we denote the matrix p(x) for Vx by the corresponding capital letter X. Recall
that we denote the 2-dimensional complex vector space C2 by V and the canonical basis
of V by {e,, e,}.

DEFINITION 2.1. A parabolic element of SL(2; C) is a nontrivial element which
fixes some nonzero vector in V. Equivalently an element is parabolic if it is conjugate to
(I t) for 3re C—{0}.

01
DEFINITION 2.2. Let p: n,7%— SL(2; C) be a representation. Then it is called a

parabolic representation if X is either trivial or a parabolic element in SL(2; C) for
Vxen,T?.

We can easily prove the following lemma.

LeMMA 2.3. Letp: n;T? - SL(2; C) be a representation. The Sollowing statements
are equivalent:

(1) p is a parabolic representation.

(2) det(X —1)=0 for Vxen,T? where I is the unit matrix in SL(2; C).

Now we describe the condition of acyclicity.

PROPOSITION 2.4. Let p: n,T? - SL(2; C) be a representation. Then all homology
groups vanish: H,(T?, V,)=0 if and only if p is a non-parabolic representation. In this
case, the SI(2; C)-torsion is given by

(T V,)=1.

PROOF. Suppose p is a non-parabolic representation. We fix an orientation on
T2. By assumption, there is an element xem;T? such that det(X—7)#0. We take
yen; T? such that the geometric intersection number x- y=1. We assume that a cell
structure of 72 is given by the following;

(0) one O-cell p,

(1) two 1-cells x and y,

(2) one 2-cell w,
with the attaching map given by dw=xyx~!y~!. By easy computation, this chain
complex is given as follows;

7] 17
0—wRV—x@VQyRV —pR®V—0

where

az=(_(§:?), 9, =(X—I Y-I.

Since det(X—17)#0, 9, is surjective and then dim(Ker 0,)=2. Similarly 9, is injective
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and dim(Im d,)=2. On the other hand, we have
' Imo, =« Kero,
by the definition of the boundary operators. Hence
Imod,=Kero, .

Therefore this chain complex C,(T?;V,) is acyclic. Then ©(T?; V,) is given by the
following. Since a canonical basis of V'@ V is given by {(e;, 0), (e,, 0), (0, €,)(0, e,)},
we may identify the bases

c,={es, 5},

c1={(e;, 0), (€2, 0), (0, ¢,), (0, &)} ,

co={es, €2} .
We take a basis b; of B; for Yie {0, 1} which satisfies b; =dc,, by=0c,. Then by the
definition of the SL(2; C)-torsion,

©(T?; V,)=[b1/c;1[by, bo/es1™ " [Bo/co] -
By straightforward computation,
[b,/¢c;]1=1,

—(Y-D 0

b, b =det|
[y, bo/co] e( Y—1 1

)=det(Y—1) ,

[bo/co]l=det(Y—1).

- Therefore the SL(2; C)-torsion is given by

(T?;V,)=1.

Conversely we assume that p is a parabolic representation. If p is a trivial
representation, it is clear that C,(T2; V,) is a usual V-coefficient chain complex and
not acyclic. Hence we may assume p is nontrivial. Then there is an element xe =, T?
such that X=p(x)#1. Let ve V denote the fixed vector of X and L the complex line
spanned by v. Let y e m, T2 be any other element such that Y= p(y)#1I. Since Y commutes
with X, they have a common eigenvector which must be v or its multiple. Since Y is a
parabolic element of SL(2; C), Y also fixes the vector v. Then we have

Iméd, <L
and then 9, is not surjective. Hence Ho(T?; V,)#0. This completes the proof.

ReMARk. If ©(M; V) is well-defined for an even dimensional closed orientable
manifold M, then the absolute value of the Reidemeister torsion
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|t(M; V,)|=1.
See Ray-Singer [8] for details.
Next we consider the solid torus S=S! x D? with n,S~Z generated by x.

PROPOSITION 2.5. Let p: n,S—SL(2; C) be a representation. The representation
p is non-parabolic if and only if the chain complex C,(S; V) is acyclic. In this case the
SL(2; C)-torsion of S is given by

oS; V,)=det(X —I).

Proor. It is easy to see that S has the same simple homotopy type as S'. We
may assume that a cell structure of S* is given by one 0-cell p and one 1-cell x. Then
the corresponding chain complex is given by

o=X—
0 =X®V X I:p®V—>0,

Hence C(S; V,) is acyclic if and only if det(X —I)#0. Therefore p is a non-parabolic
representation. If we take a basis b, ={0e,, de,} for By(C,), then the SL(2; C)-torsion
is given by

uS; V,)=[bo/c;]1 ™ ' [bo/co]l=1-det(X —I)=det(X —1I).
This completes the proof of Proposition 2.5.

§3. Irreducible representations of Seifert fibered spaces.

In this section, we investigate the SL(2; C)-irreducible representation of the Seifert
fibered space M given by the Seifert index {b, (¢, g), (@1, B1); " =5 (%ms Bw)}- It is well
known that the fundamental group of M has a presentation as follows. If ¢=o, that
is, if the orbit surface is orientable, then

maM={ay, by, *,a, b, qy, "y Gm b | [a, K1=[b;, K]1=[g;, 1]=1,
aihfi=1,q, - gula;, by] -~ [ag, bl=H") .
If e=n, that is, if the orbit surface is nonorientable, then
TAM=Cvy, ", 0 415" 5 dm 1 | vihv; '=h"1, q;hg; ' =h,
gihP=1,q, - quv} - v7=h>.

REMARK. In the case of ¢=o0 generators a;, b; and gq; come from the fundamental
group of the orbit surface. Then we can choose the representative closed curves on the

orbit surface q,, - - *, q,, such that q, - - - g,[a;, b;] - - - [a,, b,]=1. Similarly we choose
the curves in the case of e=n.
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We fix this presentation for n; M and consider only SL(2; C)-irreducible repre-
sentations. The next lemma gives us a clue to compute the SI(2; C)-torsion.

LEMMA 3.1. Let p: n;M—SL(2; C) be an irreducible representation. Then the
image of the generic fiber h is given by

+1 (e=0)
H=p(h)= A 0 _
(0 /1_1> (e=n)

where I is the unit matrix in SL(2; C), A€ C such that A*¥*2=1, N=, /o, + - - - + Bou/Om.

Proor. By theirreducibility of p, it is easy to see that His a non-parabolic element.

Case 1: ¢e=0. Suppose H# +I. Let u be an eigenvector for an eigenvalue 4 of
H. Since H commutes with 4;=p(a;), B;=p(b;) and Q;=p(q;), all vectors 4u, Bu and
Q;u is contained in the vector space spanned by u. It contradicts the irreducibility of
p. Thus H=+1.

Case 2: ¢=n. Since we consider the conjugacy classes of representations, we may
suppose H is the diagonal matrix H =<g ,1(‘, 1) .
Subcase 1: m=0. In this case M has no exceptional fibers; it is an S'-bundle over a
non-orientable surface of genus g. By the relation V;H=H 'V,

Vl-He1=/1Vie1=H_1Vie1 .
Accordingly we get
HViel=).‘1Vie1

and Ve, is contained in the eigenspace for an eigenvalue A~! as in Case 1. Similarly
Ve, is contained in the eigenspace for 4. Thus we may set for each i

V,-=(0 a,-) such that g,b;= —1.
b, 0

By simple computation, we have
Vi=-—1I.

The relation of n, M implies
H=VZV}- - Vi=(-Iy.

Hence

H=+1I.

Subcase 2: m>1. Then M has the exceptional fibers q,, * * -, ¢,,. For Vg;, we set the
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corresponding matrix

The condition HQ;=Q;H implies

( As; At; )=(As,- /l“tj).
A"y, ATy, Au; A7y

If we compare each entry of the left-side with the one of the right-side,

l=}u_1 or tj=uj=0.

If Az=A"1, then we get A= +1 and consequently H=+1. If A# A7, then every Q; is a
diagonal matrix. In this case, the relation g’h#/=1 implies

(3 )0 )
o vw) \ 0 )

Sj - l ~Bilay and vj = )-pj’aj .

Hence we get

On the other hand, we get

b, 0

as in the subcase 1. The relation h=gq, - - * g,,v1 - - - vZ implies

A. 0 Sl ct S 0
=(—1I m
(6 20
A“(ﬁl/¢1+"’+ﬂm/am) 0
=(_1)g< 0 Apllal"'"'*’pm/am) :

A= Bsfart et Bmlam) = (_1)91 .

Hence the following holds:

Therefore setting N=§, /o, + - - - + B/t We get
AZN +2 _ 1.
This completes the proof.
From the above lemma, we get easily the following corollary.

COROLLARY 3.2. Q;=p(q;) has only eigenvalues which are roots of unity.
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§4. Proof of Main theorem (1).

In this section, we give a proof of Main theorem. Here we decompose M into
tubular neighborhoods of exceptional fibers and their complement. Then we compute
the SL(2; C)-torsion for each part and apply Lemma 1.3 to our situations. Since we

can compute the SL(2; C)-torsion for ¢=n as in the case of e=0, we will prove only
the case of e=o.

We put
I*=X—(D3u ---uD?)

where X is an orientable closed surface of genus g and D2, - - -, D2 are disjoint embedded
open 2-disks. Also let M,, denote the trivial S'-bundle Z* x S'. We give a canonical
torus decomposition of Seifert fibered space M as follows:

M=M,US,US, - US,
where any S; is the solid torus. The solid torus S, is the one corresponding to the

triviality obstruction b and S; for Vie{l,---,m} is the one corresponding to the
exceptional fiber.

LemMMA 4.1. Let p: ny,(M)—SL(2; C) be an irreducible representation. Suppose
all homology groups of the boundary vanish: H,(0M,,; V,)=0. Then H (M ; V,)=0 if
and only if H,(M,,; V,))=H,(So; V,)="--=H (S V,)=0. In this case, we have

M V,)=tMy; V)u(So; V,) - ©(Sp; V) -
PrOOF. Apply Lemma 1.3 to the short exact sequence of the chain complex given
by the torus decomposition of M;

0D C,0S:;V,)>C,(M,,; V,)® @ C(Si;V,)»>C(M; V,)—=0.
i=0 i=0

By the proof of Proposition 2.4, dim 6C*(6S i> V,)iseven. Therefore we have Lemma 4.1.

PROPOSITION 4.2. Let p: n,(M)—SL(2; C) be an irreducible representation. We
denote the restriction of p to n,(M,,) by the same symbol p. Then all homology groups
vanish: H,(M,,; V,)=0 if and only if H=p(h)= —I. In this case the SL(2; C)-torsion is
given by '

o(M,,; V,)=22"2m=4¢

PrOOF. It is easy to see that M,, has the same simple homotopy type as the direct
product of the one point union of 2g+m circles S* v - - - v S! and S!. We denote this
space by (\/,S;) x S*. Then V;S: has a natural cell decomposition given by one 0-cell »
and 2g+m 1-cells a;, b;, g;. It gives a cell decomposition of (\/,S) x S by

(1) O-cell u,
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(2) 1l-cells ay, - ,a, by, -, b, q1," ", qm, h corresponding to the generators
of n, M.

(3) 2-cells v,, Ugy, ", Vgys Upys * " "5 Upys Ugys * ° °» Vg, TESPectively with boundary a;,
b; and gq;.

By using this cell structure, we can determine the structure of C,(M,,; V,). Recall that
{e;, e,} is a canonical basis of V. The 2-chain module C,(M,;V,) is a free
Z[n;M,]-module on {v, ®e;, v, ®e;,v, e} for Vie{l,2} and V je{l,---,g}.
Similarly C,(M,,; V,) is a free Z[n,M,]-module on {2;®e;, b;Qe;, q;Qe;, hQe;}
and Cyo(M,,) is a free Z[n,M,]-module on {u®e;}. Then the boundary operators are
given by

d,=(A,—1--+B,—1---Q,—I1--Qu—I H-I).

It is easy to see that C,(M,,; V,) is acyclic if and only if H= —1I. Let b; be a basis of
the boundary B(M,,; V,) for i=0, 1. Then the SL(2; C)-torsion is given by

M, ; Vp)=[b1/c2] [b,, bo/"'1]_1 [bo/co] -

We may choose a lift of b, which coincides with ¢, and the one of b, which coincides
with {hQe,, h®e,}. By simple computation,

M,; V,)=1 -(det(I — H))~@#+m . det(H — I)=(det(I — H))"@s*+m+ D

Then substituting —I for H, we have

2 0 —(2g+m)+1
M_; V., )=|{det
UM V) (e(o 2))

=2—2(29+m)+2

This completes the proof of Proposition 4.2.

Because 0M,, is the disjoint union of tori, the fundamental group =, M is generated
by h and {q,, - - -, gn}. Then C,(OM,,; V) is acyclic if and only if H= —1I by Proposi-
tion 2.4.

PROPOSITION 4.3. If H= —1, then the SL(2; C)-torsion of S, is given by
T(So; Vp)=22 .
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Yo
loeny M, by q5°h*. The sewing of the solid torus S, makes the curve my=q,h® on the
component of M, null-homotopic in S,. On the other hand the closed curve Iy is the
generator in n,S,=Z. Then the relation implies

Lo=p(lo)=Q8°H" .

Since q0=(hb)_1=(q1. ’ .qm[ala bl] : '[aga bg])_l and Vo“bpo= -1 s

PROOF. Let p, and v, be integers such that = —1. We define an element

Lo=(Q:" " QulA4;, B,]" - [4,, B,]) *°H™
=H—bpo+vo=H—1 =-—].
Therefore the SL(2; C)-torsion of S, is given as follows;
T(So ) Vp) = det(Lo - I)

-2 0
= det( )
0 -2
=22,
This completes the proof.
PROPOSITION 4.4. If H= —1, then the SL(2; C)-torsion of S; is given by

s Pkio)m ) .

i

(S;; Vp)=2(1 —(—D%co

% pi
i Vi

PROOF. Let p;and v, be integers such that

= —1and 0 < p; <a;. We define the
generator ;e n,S; by g'h*. Here the image of /; is given by
Li=p(l)=QfH" =(—1)"Qf" .
By Proposition 2.5, we have
(S;; Vp)=det(Li—I)=det((— DMt —N=2—(—1)"trQf.

In view of relations gf‘h#*=1 and H= —I, the identity Q% =(— I} holds. Then we may
denote the eigenvalues of Q; by exp(\/— lk(p)n/a;) and exp(—./— lk(p)n/a;) where
0<k(p)<a; and k(p)=f;mod 2. Hence we get

S Pkdo)n ) .

i

(S;; Vp)=2(l —(=D"co

This completes the proof of Proposition 4.4.
By using Lemma 4.1, the SL(2; C)-torsion ©(M ; V,) of the Seifert fibered space is
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given by
T(M 5 Vp) = T(Mm 5 Vp)T(SO 5 Vp) U t(Sm > Vp)

=22-2m-4g,92 ,9m, H (1 —(—I)V‘COS Pik.(P)n)
i=1 ;
Piki(P)Tf> )

=24"m-4 [] (1—(—1)"'cos
i=1

We have a proof of Main theorem for the case of H= —1I.

§5. Proof of Main theorem (2).

If H=1, we cannot apply Lemma 4.1 to our situations because a given representation
is not acyclic when we restrict it to the complement of exceptional fibers. However
then the representation p is not acyclic. Now we prove the following proposition.

PROPOSITION 5.1. Let p: ny(M)— SL(2; C) be an irreducible representation such
that H=p(h)=1. Then p is not acyclic; that is, H (M ; V) #0.

PrOOF. The proof is by contradiction. We assume all homology groups of M
vanish: H,(M; V,)=0. Then the following sequences given by the Mayer-Vietoris
sequence are exact.

O#HZ(aMma Vp)_’HZ(Mm’ Vp)_’o ’

0- H,(0M,,; V,)-»H\(M,;V,)® @ H\(S;; V,)-0,
i=0

0> Ho@Mp: V)~ HoM: V) ® @ Hi(Si3 V) 0.
Case 1: There exists a non-parabolic element in {4;, B;, Q;}. From the proof of

Proposition 4.2, in the chain complex C (M,,; V),
rank(d,)=rank(d,)=2.

In this case, by easy computation, the homology groups of M,, are given as follows;
Hy(M,,; V,)xV2+m-1,
H\(M,,; V,)zy2tm-1,
HyM,,;V,)=0.

By the above exact sequences and the Poincaré duality, we have the following
identifications;
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Ho(OM,,; V)= Hy(0M,,; V)= H)(M,,; V)= V2+m=1,

On the other hand, we have
Hy(OM,,; V,)=Hy\M,,;V,)® @ Hy(S;; V,)
i=0

’-}{0}@ Vm+1—k

~ Vm+1—k

where k is the number of the solid tori with non-trivial 0-dimensional homology group.
Hence we have

k=2-2g.

Because k is a non-negative integer, the genus g=0 or 1.
First we assume g=0; that is, k=2. In this case,

7!:1M=<q19 s Gmo hl[‘]., h]= 1, q?'hﬁ‘=1, q," - 'qm=hb> .

Then we have
@ O(S is p) = ym- !

by Propositions 4.3 and 4.4. For simplicity, we may assume
rank(L,—I)=0  for Vie{0, -+, m—2}
and
rank(L,—I)=2 for Vie{m—1,m}.

For Vie{0, ---,m—2}, thatis L;e SL(2; C) is a parabollc element. On the other hand,
from the relatlons of m, M, we have

Li=QfH"=0Qf'=
Hence
0.,=1 for Vie{0,---,m—2}

and

Om-1Qm=1.

Hence the representation p is reducible because Q,,; and Q,, have acommon eigenvector.
Next we assume g=1; that is, k=0. In this case, we have
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7"'11‘4=<ala bla 91> " s qm hl[ala h]=[b1a h]=[qi9 hl=1,
gihfi=1, [a,, b1g: - qm=H".

Then we have
@D Hy(S;; V,,)g ym+l
i=0

Then for Vie{0, - - -, m}
rank(L;—I)=0
and L,e SL(2; C) is parabolic or trivial. On the other hand, we have
Li=0fH"=Qf'=I.
Hence we have
0:=1 | for Vie{0,---,m}.

Then p factors through a representation of the group <{a,, b, | [ay, b;]=1). Since this
group is abelian, this representation is reducible. This is a contradiction.
Case 2: All 4;, B;, Q, are parabolic elements. In this case, we have

0;,=1 for Vie{0,---,m} .
Then we have
rank(d,)=2 or 0
for C,(M,,; V,). Hence

- y2etm-1 if rank(d,)=2
H,(M,,;V, )= .
2 2 { y2e+m if rank(d,)=0.
By Poincaré duality and the exact sequence, we obtain
HZ(Mm; Vp)gHZ(aMm; Vp)gHO(Mm; Vp)@ Vm+l .

Then we get the genus g=1. Hence this representation p is reducible since p factors
through the representation of the group <a,, b, | [a;, b;]=1) asin Case 1. This completes
the proof of Proposition 5.1.

By the lemmas and the propositions, we get a proof of Main theorem.
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