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1. Introduction.

Let $(N^{3}(c), h)$ be a complete simply connected Riemannian 3-manifold of constant
curvature $c$ with metric $h$ . Let $X:M\rightarrow N^{3}(c)$ be an isometric immersion of a Riemannian
2-manifold $M$ into $N^{3}(c)$ and $H$ the mean curvature of X. The isomertic immersion X

is called H-deformable if there exists a non-trivial l-parameter family of immersions $X_{t}$

such that

(1) $X_{0}=X$ ,

(2) $X_{t}^{*}h=X_{O}^{*}h$ ,

(3) $H_{t}=H$ ,

where $H_{t}$ denotes the mean curvature of $X_{t}$ . An H-deformation $\{X_{t}\}$ is trivial if for each
parameter $t$ , there exists an isometry $L$ of $N^{3}(c)$ such that $X_{t}=L\circ X_{0}$ . An isometric
immersion $X$ is called locally H-deformable if each point of $M$ has a neighborhood
restricted to which $X$ is H-deformable.

There are some papers on the H-deformable surfaces in Euclidean 3-space. O.
Bonnet [1] proved that a surface of constant mean curvature in Euclidean space can
be locally isometrically deformed preserving the mean curvature. \’E. Cartan [4] has

studied such deformations for surfaces of nonconstant mean curvature and showed that
they are W-surfaces. Chen and Peng [5] and K. Kenmotsu [8] characterized in some
detail the Riemannian metrics and the mean curvature functions of the surfaces. Colares
and Kenmotsu [7] and Roussos [14] proved that if a surface of constant Gaussian
curvature in Euclidean 3-space is locally H-deformable, then the Gaussian curvature
must be zero and such a deformation starts from a cylinder over a logarithmic spiral.

Kokubu [9] studied such a deformation of hypersurfaces in Euclidean n-space $(n\geq 3)$ .
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In sections 2 and 3 of this paper we study locally H-deformable surfaces in $N^{3}(c)$ .
In section 4 we discuss the case of $c=-1$ in detail. The study of H-deformable surfaces
in the hyperbolic space is more complicated than that in Euclidean space. The results
we get are the following: If the Gaussian curvature $K$ of the surface is constant, then
$K=0$ or $K=-1$ . In case of $K=0$, the mean curvature of the surface is constant. In
case of $K=-1$ , we can explicitly determine the mean curvature function in section 4.2.
In both cases we can completely determine the first and second fundamental forms of
the H-deformation $\{X_{t}\}$ .

In this paper we deal with the local one. In fact for compact surfaces, Umehara
[17] showed that the H-deformability characterizes surfaces with constant mean
curvature in $N^{3}(c)$, which extends Tribuzy’s result [16] for higher genus.

The author would like to thank Professor K. Kenmotsu for his advice and
encouragement and the referee for kind advice.

2. Preliminaries.

We consider a piece of oriented surface $M$ in $N^{3}(c)$ , which does not contain any
umbilic point. We apply the method by which Colares and Kenmotsu [7] studied an
H-deformable surface in Euclidean 3-space. We get similar formulas for the surface $M$

in $N^{3}(c)$ to those in Euclidean space.
Let $\{e_{1}, e_{2}, e_{3}\}$ be an orthonormal vector fields on $M$ such that $e_{1}$ and $e_{2}$ are unit

tangent vectors at $x\in M$ and $e_{3}$ is the unit normal vector at $x\in M\subset N^{3}(c)$ . Let $\{\omega^{1}$ ,
$\omega^{2},$ $\omega^{3}$ } be the system of dual l-forms of $\{e_{1}, e_{2}, e_{3}\}$ , and $\omega_{B}^{A}$ the connection form
given by

$\omega^{i}(X)=\langle X, e_{i}\rangle$ , $\omega_{B}^{A}(X)=\langle\nabla_{X}e_{A}, e_{B}\rangle$ ,

where the indices $A,$ $B,$ $C$ run through 1 to 3, and $X$ is any vector field on $M$. Here V
denotes the Levi-Civita connection of the Riemannian metric $h$ and $\langle, \rangle$ the inner
product induced by $h$ on $N^{3}(c)$ . We then have the structure equations of $N^{3}(c)$,

$d\omega^{A}=-\sum_{B=1}^{3}\omega_{B}^{A}\wedge\omega^{B}$ ,

$d\omega_{B}^{A}=-\sum_{c=1}^{3}\omega_{C}^{A}\wedge\omega_{B}^{C}+c\cdot\omega^{A}\wedge\omega^{B}$

Restricting these equations to $M$, we get

(4) $d\omega^{1}=-\omega_{2}^{1}\wedge\omega^{2}$ ,

(5) $d\omega^{2}=-\omega_{1}^{2}\wedge\omega^{1}$ ,

(6) $d\omega_{j}^{i}=-\sum_{k=1}^{3}\omega_{k}^{i}\wedge\omega_{j}^{k}+c\cdot\omega^{i}\wedge\omega^{j}$ ,
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where the indices $i,j$ run through 1 to 2. From $X^{*}\omega^{3}|_{M}=0$ , and $d\omega^{3}=-\sum_{j=1}^{2}\omega_{j}^{3}\wedge \mathfrak{c}d$ ,
we can write

$\omega_{j}^{3}=\sum_{k=1}^{2}h_{J^{l}}\omega^{k}$ ,

where $h_{jk}$ is the coefficient of the second fundamental form of the immersion $X$. The
Gaussian curvature $K$ of $M$ is defined by

$d\omega_{2}^{1}=K\cdot\omega^{1}\wedge\omega^{2}$

Then the Gauss equation is given by

$K=c+\det(h)$ .
We may write as $\omega_{1}^{3}=(H+x)\omega^{1}+y\omega^{2},$ $\omega_{2}^{3}=y\omega^{1}+(H-x)\omega^{2}$ for some functions $x$ and
$y$ on $M$. By the Gauss equation, we have $H^{2}-K+c=x^{2}+y^{2}$ . Thus we can write as

(7) $\omega_{1}^{3}=$ ($H+\sqrt{H^{2}-K+c}$ cos $\alpha$)$\omega^{1}+\sqrt{H^{2}-K+c}$ sin $\alpha\omega^{2}$ ,

(8) $\omega_{2}^{3}=\sqrt{H^{2}-K+c}$ sin $\alpha\omega^{1}+$ ($H-\sqrt{H^{2}-K+c}$ cos $\alpha$)$\omega^{2}$ ,

where $\alpha$ is a locally defined function on $M$. We define

(9) $D\alpha:=d\alpha+2\omega_{1}^{2}=\alpha_{1}\omega^{1}+\alpha_{2}\omega^{2}$ ,

where $\alpha_{1}$ and $\alpha_{2}$ are coefficients of the l-form $ D\alpha$ . For any tensor field of $(0,1)$-type
$\alpha_{i}$ , we define its covariant derivatives $\alpha_{i,j}$ as follows:

(10) $D\alpha_{i}$ $:=d\alpha_{i}-\sum\alpha_{s}\omega_{i}^{s}=\sum\alpha_{t_{J}},\omega^{j}$ .

Exterior differentiations of (7) and (8) gives

(11) $\sqrt{H^{2}-K+c}D\alpha=\cos\alpha(H_{1}\omega^{2}+H_{2}\omega^{1})$ -sin $\alpha(H_{1}\omega^{1}-H_{2}\omega^{2})$

$+(\sqrt{H^{2}-K+c})_{2}\omega^{1}-(\sqrt{H}^{\overline{2}}-K+c)_{1}\omega^{2}$ ,

where $H_{i}$ and $(\sqrt{H^{2}-K+c})_{i},$ $i=1,2$ , are exterior derivatives of the scalar functions $H$

and $\sqrt{H^{2}-K+c}$ defined as in (9), respectively.
We define the l-forms

$\beta_{1}=\frac{H_{1}\omega^{1}-H_{2}\omega^{2}}{\sqrt{H^{2}-K+c}}$ , $\beta_{2}=\frac{H_{2}\omega^{1}+H_{1}\omega^{2}}{\sqrt{H^{2}-K+c}}$ .

Since $the*$-operator of Hodge is given $by*\omega^{1}=\omega^{2}and*\omega^{2}=-\omega^{1}$ , the formula (11)

can be written as

(12) $Dct=$ -sin $\alpha\cdot\beta_{1}+\cos\alpha\cdot\beta_{2}-*d$ log$\sqrt{H^{2}-K+c}$ .
We calculate the exterior derivatives of $\beta_{i}$ as follows:
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(13) $\left\{\begin{array}{l}d\beta_{1}=\frac{1}{\sqrt{H^{2}-K+c}}[\{(log\sqrt{H^{2}-K+c})_{1}H_{2}+(1og\sqrt{H^{2}-K+c})_{2}\\\times H_{1}-2H_{1,2}\}\omega^{1}\wedge\omega^{2}-2\sqrt{H^{2}-K+c}\beta_{2}\wedge\omega_{1}^{2}]\\d\beta_{2}=\frac{1}{\sqrt{H^{2}-K+c}}[\{(log\sqrt{H^{2}-K+c})_{1}H_{1}+(log\sqrt{H^{2}-K+c})_{2}\end{array}\right.$

$xH_{2}+H_{1,1}-H_{2,2}\}\omega^{1}\wedge\omega^{2}+2\sqrt{H^{2}-K+c}\beta_{1}\wedge\omega_{1}^{2}]$ ,

where $H_{i.j}’ s$ are covariant derivatives of $H_{i}$ defined in (10). Using (9) and (13), the
exterior differentiation of (12) gives the condition:

(14) $-2A\sin\alpha+B\cos\alpha+P=0$ ,

where we put

(15) $\left\{\begin{array}{l}A=H_{1.2}\sqrt{H^{2}-K+c}-H_{2}(\sqrt{H^{2}-K+c})_{1}-H_{1}(\sqrt{H^{2}-K+c})_{2}\\B=(H_{2,2}-H_{1,1})\sqrt{H^{2}-K+c}+2H_{1}(\sqrt{H^{2}-K+c})_{1}-2H_{2}(\sqrt{H^{2}-K+c})_{2}\\P=(H^{2}-K+cX\Delta\log\sqrt{H^{2}-K+c}-2K)-|gradH|^{2}\end{array}\right.$

We shall give another formula obtained from (12). Applying $the*$-operator to (12), we
obtain

(16) $\alpha_{1}\omega^{2}-\alpha_{2}\omega^{1}=$ -sin $\alpha\cdot\beta_{2}$ -cos $\alpha\cdot\beta_{1}+d(\log\sqrt{H^{2}-K+c})$ .
By exterior differentiation of (16), we obtain

(17) $(H^{2}-K+c)\Delta\alpha=2A$ cos $\alpha+B$ sin $\alpha$ .
It follows from (14) and (17) that the conditions $A=B=0$ are equivalent to the con-
ditions $P=\Delta\alpha=0$ .

3. H-deformable surfaces with constant Gaussian curvature in $N^{3}(c)$ .
In this section we study a surface with constant Gaussian curvature in $N^{3}(c)$ which

admits an isometric deformation preserving the mean curvature. We denote by $\nabla$ the
covariant differentiation of the induced metric from an isometric immersion $ X;M\rightarrow$

$N^{3}(c)$ and we put $Z=(e_{1}-ie_{2})/2$ . Then we get the following theorem which can be
proved in a similar way to [7].

THEOREM 1. Let $M$ be a piece of an oriented surface in $N^{3}(c)$ such that it has no
umbilic points. Then, $M$ admits a non-trivial isometric deformation preserving the mean
curvature if and only if one of the following conditions holds:
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(18) $\nabla(\frac{\nabla H}{H^{2}-K+c})(Z, Z)=0$ ,

(19) $P=0$ and $\Delta\alpha=0$ .
We classify surfaces with constant Gaussian curvature $K$ in $N^{3}(c)$ which admit an

isometric deformation preserving the mean curvature function $H$ .
THEOREM 2. Let $M$ be a piece ofan oriented surface in $N^{3}(c)$ without umbilic points

such that $K$ is constant on M. If $M$ admits a non-trivial isometric deformation preserving
the mean curvature function, then $K=c$ or $K=0$ .

$PR\infty F$ . First we consider the case $M$ is a minimal suface. By results of [2], [3],
[11], and [13], we have $K=0$ or $K=1$ when $c=1$ , we have $K=0$ when $c=0$ , and we
have $K=-1$ when $c=-1$ . Next suppose that $H\neq 0$ . We define a tensor field of $(0,1)-$

type defined by $f_{i}=H_{i}/(H^{2}-K+c)$ for $i=1,2$ . A computation shows us $f_{i,j}=\{(H^{2}-$

$K+c)H_{i,j}-2HH{}_{i}H_{j}\}/(H^{2}-K+c)^{2}$ . The condition $A=0$ implies

$H_{1,2}(H^{2}-K+c)-2H_{1}HH_{2}=0$ .
The condition $B=0$ implies

$H_{2,2}(H^{2}-K+c)-2HH_{2}^{2}=H_{1.1}(H^{2}-K+c)-2HH_{1}^{2}$ .
Hence there exists a scalar function $\lambda$ with $f_{i,j}=\lambda\delta_{i,j}$ . By taking the trace of these
equations, we get

$2\lambda=\sum f_{i.i}=\frac{(H^{2}-K+c)\Delta H-2H|gradH|^{2}}{(H^{2}-K+c)^{2}}$ .

On the other hand the condition $P=0$ is equivalent to

$(H^{2}-K+c)\Delta H-2H|$ grad $H|^{2}=\frac{2K(H^{2}-K+c)^{2}}{H}$ .

These formulas follow $\lambda=K/H$ , which implies

(20) $Hf_{i.j}=K\delta_{i.j}$ , $1\leq i,j\leq 2$ .
We have from (20),

(21) $H_{k}f_{i,j}-H_{j}f_{i,k}+H(f_{i,j,k}-f_{i.k,j})=0$ .
We use the Ricci identities of the tensor field $f_{i}$ :
(22) $f_{1,2,1}-f_{1,1,2}=Kf_{2}$ ,

(23) $f_{2,1,2}-f_{2,2,1}=Kf_{1}$ .
By (20), (21), (22), and (23), we have $K(K-c)H_{i}=0,$ $i=1,2$ . Thus if $H_{i}=0,$ $i=1,2$,
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then $H$ is constant and $f_{i,j}’ s$ vanish identically. Therefore $K$ must be zero. This completes
the proof.

4. Deformations of surfaces in the hyperbolic space $H^{3}(-1)$ .

In this section we study deformations of H-deformable surfaces with constant
curvature in the hyperbolic 3-space $H^{3}(-1)$ . We consider the hyperbolic 3-space as
the upper halfspace model $\{(x_{1}, x_{2}, x_{3})\in R^{3} : x_{3}>0\}$ with the metric $(dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2})/x_{3}^{2}$ .
Recall that the theorem 2 implies the curvature of the surface is $K=0$ or $K=-1$ .

4.1. The case of the Gaussian curvature $K=0$ . Let $M$ be a piece of Euclidean
2-plane with flat metric $du^{2}+dv^{2}$ . Consider an isometric immersion $ X(u, v):M\rightarrow$

$H^{3}(-1)$ such that it has no umbilic points and satisfies the condition (18). Putting
$\omega^{1}=du$ and $\omega^{2}=dv$ , we have $\omega_{2}^{1}=0$ . The condition (18) is equivalent to

(24) $\sqrt{H^{2}-1}H_{uv}-H_{v}(\sqrt{H^{2}-1})_{u}-H_{u}(\sqrt{H^{2}-1})_{v}=0$ ,

(25) $(H^{2}-1XH_{vv}-H_{uu})+2H(H_{u}^{2}-H_{v}^{2})=0$ .

The general solutions of (24) are

$H(u, v)=\frac{1+c_{1}(u)c_{2}(v)}{1-c_{1}(u)c_{2}(v)}$ ,

where $c_{1}(u)$ and $c_{2}(v)$ are any functions depending only on $u$ and $v$ satisfying $c_{1}(u)c_{2}(u)>0$

respectively. Considering (25), we get

(26) $H(u, v)=\frac{1+K_{1}\exp(K_{2}(u^{2}+v^{2}))}{1-K_{1}\exp(K_{2}(u^{2}+v^{2}))}$ ,

where $K_{1}$ is a positive $\infty nstant$ and $K_{2}$ is a constant independent of $u$ and $v$ . Further
more, considering (19), $K_{2}$ must be zero. As a result the surface has the constant meal

curvature $H=(1+K_{1})/(1-K_{1})$ . This is an equidistance surface from a geodesic line $il$

$H^{3}(-1)$ (see [15], [16]). Then the isometric deformation preserving the mean curvatur $($

$H$ is given by

(27) $X_{t}(u, v)=$ ($r$ cos $\theta,$ $r$ sin $\theta,$ $r$ tan $\omega$),

where we set $r=exp(\sin\omega\cdot\tilde{u})$ and $\theta=\tan\omega\cdot\tilde{v}$, also $\tilde{u}=\cos t\cdot u$ -sin $t\cdot v$ and $\tilde{v}=\sin t\cdot ui$

cos $t\cdot v$, and $\omega$ is a $\infty nstant$ .

4.2. The case of the Gaussian curvature $K=-1$ . In this section we study sur
faces with the curvature $K=-1$ having the properties (18) and (19). Let $M$ be a piec
of the hyperbolic surface as the upper half-space model $\{(u, v)\in R^{2} : v>0\}$ with th
metric $ds^{2}=(du^{2}+dv^{2})/v^{2}$ . We consider an isometric immersion $X(u, v):M\rightarrow H^{3}(-$ ]

such that it has no umbilic points and satisfies the condition (18). Putting $\omega^{1}=du/$
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and $\omega^{2}=dv/v$ , we have $\omega_{2}^{1}=-du/v$ . The condition (18), which means the conditions
that $A$ and $B$ in (15) are zero, is equivalent to

(28) $H\{vH_{uv}+H_{u}\}=2vH_{u}H_{v}$ ,

(29) $H\{v(H_{uu}-H_{vv})-2H_{v}\}=2v(H_{u}^{2}-H_{v}^{2})$ .

We can easily see that these formulas are also equivalent to

(30) $(\frac{H}{v})(\frac{H}{v})_{uv}-2(\frac{H}{v})_{u}(\frac{H}{v})_{v}=0$ ,

(31) $\frac{H}{v}\{(\frac{H}{v})_{vv}-(\frac{H}{v})_{uu}\}+2\{((\frac{H}{v})_{u})^{2}-((\frac{H}{v})_{v})^{2}\}=0$ .

The general solution of (28) is

(32) $\frac{H(u,v)}{v}=\frac{1}{(\phi(u)+\psi(v))}$ ,

where $\phi$ and $\psi$ are any functions. Considering (29), we get

(33) $\phi^{\prime\prime}(u)-\psi^{\prime\prime}(v)=0$ .

Thus, we have

$\phi(u)=au^{2}+bu+d^{\prime}$ , $\psi(v)=av^{2}+ev+d^{\prime\prime}$

Therefore we have

(34) $\frac{H(u,v)}{v}=\frac{1}{a(u^{2}+v^{2})+bu+ev+d}$ ,

where $a,$ $b,$ $e$ and $d=d^{\prime}+d^{\prime\prime}$ are some real numbers. When $K=c=-1$ , the equation $P=0$

in (19) becomes

(35) $\Delta\log H+2-|d$ log $H|^{2}=0$ .

Substituting (34) into (35), we have $e=0$ .

Case 1. We first consider the case $b^{2}-4ad=0$ . By taking an isometric trans-
formation of the hyperbolic surface such that $u\mapsto u+b/(2a)$ , we may assume that the
mean curvature $H$ is

$H=\frac{v}{a(u^{2}+v^{2})}$ .

Furthermore, by taking isometric transformations such that

$u\mapsto-\frac{u}{u^{2}+v^{2}}$ , $v\mapsto\frac{v}{u^{2}+v^{2}}$ ,



254 HIROSHI TAKEUCHI

and

$u\mapsto u/a$ , $v\mapsto v/a$ ,

we may assume
(36) $H=v$ .
By (11), we have

(37) $\frac{\partial\alpha}{\partial u}=\frac{\cos\alpha-1}{v}$ , $\frac{\partial\alpha}{\partial v}=\frac{\sin\alpha}{v}$ .

We can easily check $\Delta\alpha=0$ . This system is integrable, and general solutions of (37) art

(38) $\tan\frac{\alpha}{2}=\frac{tv}{tu+1}$ ,

where $t$ is any real number. In this case we get a l-parameter family of isometrit
immersions $X_{t}$ preserving the mean curvature $H=v$ : The second fundamental tensori
$h_{ij}’ s$ of $X_{t}$ are given by

(39) $(h_{ij})=\left(\begin{array}{ll}v+vcos\alpha & vsin\alpha\\ vsina & v-vcos\alpha\end{array}\right)$

$=\left(\begin{array}{ll}\frac{2\iota\langle 1+tu)^{2}}{(1+tu)^{2}+(tv)^{2}} & \frac{(2tv^{2}K1+tu)}{(1+tu)^{2}+(tv)^{2}}\\\frac{(2tv^{2}X1+tu)}{(1+tu)^{2}+(tv)^{2}} & \frac{2t^{2}v^{3}}{(1+tu)^{2}+(tv)^{2}}\end{array}\right)$ .

We have the following system of the differential equations for $\{X_{t}, e_{1}, e_{2}, e_{3}\}$ :

(40) $\left\{\begin{array}{l}\nabla_{e_{1}}e_{1}=\omega_{1}^{2}(e_{1})e_{2}+\omega_{1}^{3}(e_{1})e_{3}=e_{2}+h_{11}\cdot e_{3}\\\nabla_{e_{2}}e_{1}=\omega_{1}^{2}(e_{2})e_{2}+\omega_{1}^{3}(e_{2})e_{3}=h_{12}\cdot e_{3}\\\nabla_{e_{1}}e_{2}=\omega_{2}^{1}(e_{1})e_{1}+\omega_{2}^{3}(e_{1})e_{3}=-e_{1}+h_{21}\cdot e_{3}\\\nabla_{e_{2}}e_{2}=\omega_{2}^{1}(e_{2})e_{1}+\omega_{2}^{3}(e_{2})e_{3}=h_{22}\cdot e_{3}\\\nabla_{e_{1}}e_{3}=\omega_{3}^{1}(e_{1})e_{1}+\omega_{3}^{2}(e_{1})e_{3}=-h_{11}\cdot e_{1}-h_{12}\cdot e_{2}\\\nabla_{e_{2}}e_{3}=\omega_{3}^{1}(e_{2})e_{1}+\omega_{3}^{2}(e_{2})e_{2}=-h_{12}\cdot e_{1}-h_{22}\cdot e_{2}\end{array}\right.$

where $h_{ij}’ s$ are given in (39), and $\{e_{1}=v\partial X_{t}/\partial u, e_{2}=v\partial X_{t}/\partial v, e_{3}\}$ is a system of ortho.
normal vector fields. When $t=0$, we have $h_{11}=2v,$ $h_{12}=h_{21}=h_{22}=0$ . Thus the integral
curve of $e_{2}$ is a geodesic. The surface $X_{0}$ is realized as the following one:
(41) $X_{O}(u, v)=(c\sin(2u), c\cos(2u),$ $2cv$) ,

or
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(42) $X_{0}(u, v)=(\frac{c}{1+4v^{2}}\cdot\cos(2u),$ $\frac{c}{1+4v^{2}}\cdot\sin(2u),$ $\frac{2cv}{1+4v^{2}})$ ,

where $c$ is a constant. We can see easily that $X_{0}(u, v)$ satisfies (40), and $X_{0}(u_{0}, v)$ is a
geodesic for fixed $u_{0}$ . When $ t=\infty$ , we have $h_{11}=2u^{2}v/(u^{2}+v^{2}),$ $h_{12}=h_{21}=2uv^{2}/(u^{2}+v^{2})$,
$h_{22}=2v^{3}/(u^{2}+v^{2})$ . The surface $X_{\infty}$ is realized as the following hyperbolic cylinder [12]:

(43) $X_{\infty}(u, v)=(\zeta(\varphi)\cdot\frac{u}{\sqrt{u^{2}+v^{2}}},$ $\eta(\varphi),$ $\zeta(\varphi)\cdot\frac{v}{\sqrt{u^{2}+v^{2}}})$ ,

where $exp(\varphi)=\sqrt{u^{2}+v^{2}}$ . The functions $\zeta$ and $\eta$ depending on $\varphi$ are defined by the
following equation:

$\frac{d\zeta}{d\varphi}=\zeta\cos y$ , $\frac{d\eta}{d\varphi}=\zeta\sin y$ ,

where $y$ is the function of $\varphi$ , which satisfies

$\frac{dy}{d\varphi}-\sin y=-2e^{\varphi}$ .

Case 2. We consider the case $b^{2}-4ad>0$ . By taking an isometric transformation
such that $u\mapsto u+(-b\pm\sqrt{b^{2}-4ad})/(2a)$, we may assume that $H$ is

$H=\frac{v}{a(u^{2}+v^{2})+bu}$ .

Furthermore, by

$u\mapsto-\frac{u}{u^{2}+v^{2}}$ , $v\mapsto\frac{v}{u^{2}+v^{2}}$ ,

and $u\mapsto u-a/b$ , we may assume that

(44) $H(u, v)=\frac{v}{bu}$ .

By (11) and (44), we have

(45) $\frac{\partial\alpha}{\partial u}=\frac{\sin\alpha}{u}+\frac{(cos\alpha-1)}{v}$ , $\frac{\partial\alpha}{\partial v}=\frac{1-\cos\alpha}{u}+\frac{sin\alpha}{v}$ .

We can easily check $\Delta\alpha=0$ . This system is integrable, and general solutions of thi $s$

system are

(46) $\tan\frac{\alpha}{2}=\frac{2uvt}{t(u^{2}-v^{2})+1}$ ,
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where $t$ is any real number. Therefore we get a l-parameter family of isometric im-
mersion $X_{t}$ preserving the mean curvature $H=v/(bu)$: The second fundamental tensors
$h_{ij}’ s$ of $X_{t}$ are given by

(47) $(h_{ij})=\frac{1}{b}\left(\begin{array}{ll}\frac{v}{u}+\frac{v}{u}cos\alpha & \frac{v}{u}sin\alpha\\\frac{v}{u}sin\alpha & \frac{v}{u}-\frac{v}{u}cos\alpha\end{array}\right)$

$=\frac{1}{b}$( $\frac{2\iota\langle t(u^{2}-v^{2})+1)^{2}}{\frac{u\{t^{2}(u^{2}+v^{2})^{2}+2t(u^{2}-v^{2})+1\}4uv^{2}t(t(u^{2}-v^{2})+1)}{u\{t^{2}(u^{2}+v^{2})^{2}+2t(u^{2}-v^{2})+1\}}}$ $\frac{4uv^{2}t(t(u^{2}-v^{2})+1)}{\frac{u\{t^{2}(u^{2}+v^{2})^{2}+2t(u^{2}-v^{2})+1\}8t^{2}u^{2}v^{3}}{u\{t^{2}(u^{2}+v^{2})^{2}+2t(u^{2}-v^{2})+1\}}}$ ).
We get again the total differential equation (40) for $X_{t}$ , where $h_{ij}’ s$ are given in (47).

When $t=0$, it follows that $h_{12}=h_{21}=h_{22}=0,$ $h_{11}=2v/(bu)$. Thus the integral curve of
$e_{2}$ is a geodesic. The surface $X_{0}$ is realized as the following:

(48) $X_{0}(u, v)=2(\int sin\frac{\log u}{b}du,$ $\int\cos\frac{\log u}{b}du,$ $v)$

When $b=1$ , this formula is the same as that of H-deformable surfaces in Euclidean
3-space [7]. But the first and the second fundamental forms are different from those
of Euclidean case.

Case 3. We consider the case $b^{2}-4ad<0$ . By taking isometric transformations
such that $u\mapsto u+b/(2a)$, and $u\mapsto au,$ $u\mapsto av$, we may assume that

(49) $H=\frac{v}{u^{2}+v^{2}+d}$ ,

where $d$ is a positive number. By (11) and (49), we have

(50) $\left\{\begin{array}{l}\frac{\partial\alpha}{\partial u}=\frac{2u}{u^{2}+v^{2}+d}\alpha+\frac{u^{2}-v^{2}+d}{1\langle u^{2}+v^{2}+d)}(cos\alpha+1)-\frac{2}{v}\\\frac{\partial\alpha}{\partial v}=\frac{2u}{u^{2}+v^{2}+d}(1-\cos\alpha)+\frac{u^{2}-v^{2}+d}{\iota\langle u^{2}+v^{2}+d)}\alpha\end{array}\right.$

This system is integrable, and general solutions are given by

$\psi(u-v\cot\frac{\alpha}{2},$ $\frac{\sin\alpha/2}{v})=0$ ,

for an arbitrary function $\psi$ . We get a l-parameter family of isometric immersions $X$

preserving the mean curvature $H=v/(u^{2}+v^{2}+d)$ : The second fundamental tensors $h_{ij^{t}}’$.
of $X_{t}$ are given by
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(51) $(h_{ij})=\frac{v}{(u^{2}+v^{2}+d)}\left(\begin{array}{ll}1+cos\alpha & sin\alpha\\ sin\alpha & 1-cos\alpha\end{array}\right)$ .

Therefore we have proved the following:

THEOREM 3. Let $M$ be a piece of surface with constant Gaussian curvature $K=0$

or $K=-1$ in the hyperbolic 3-manifold $H^{3}(-1)$ , which does not contain any umbilic point.
Suppose that $M$ admits a non-trivial isometric deformation preserving the mean curvature
function $H$.
1. If $K=0$ , then $H$ becomes constant. Consequently $M$ is an equidistance surface from
a geodesic line in $H^{3}(-1)$ , and the H-deformation is given by (27).
2. If $K=-1$ , then we get

2.1. $H=v,$ $andthesecondfundamentalformsofMaredeterminedby(39)$ for some
$t$ and the H-deformation of $M$ starts from the surface which is given by (41) or (42),
$or$

2.2. $H=v/(bu)$ for any real number $b$ , and the secondfundamentalforms of $M$ are
determined by (47) for some $t$ and the H-deformation of $M$ starts from the surface which
is given by (48),
$or$

2.3. $H=v/(u^{2}+v^{2}+d)$ for a positive number $d$, and the secondfundamental forms
of $M$ are determined by (51).
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