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1. Introduction.

Let (N3(c), h) be a complete simply connected Riemannian 3-manifold of constant
curvature ¢ with metric 4. Let X : M — N3(c) be an isometric immersion of a Riemannian
2-manifold M into N3(c) and H the mean curvature of X. The isomertic immersion X
is called H-deformable if there exists a non-trivial 1-parameter family of immersions X,
such that

1) Xo=X,
) , X*h=X¥h,
(3) thHs

where H, denotes the mean curvature of X,. An H-deformation {X} is trivial if for each
parameter ¢, there exists an isometry L of N 3(c) such that X,=LoX,. An isometric
immersion X is called locally H-deformable if each point of M has a neighborhood
restricted to which X is H-deformable.

There are some papers on the H-deformable surfaces in Euclidean 3-space. 0.
Bonnet [1] proved that a surface of constant mean curvature in Euclidean space can
be locally isometrically deformed preserving the mean curvature. E. Cartan [4] has
studied such deformations for surfaces of nonconstant mean curvature and showed that
they are W-surfaces. Chen and Peng [5] and K. Kenmotsu [8] characterized in some
detail the Riemannian metrics and the mean curvature functions of the surfaces. Colares
and Kenmotsu [7] and Roussos [14] proved that if a surface of constant Gaussian
curvature in Euclidean 3-space is locally H-deformable, then the Gaussian curvature
must be zero and such a deformation starts from a cylinder over a logarithmic spiral.
Kokubu [9] studied such a deformation of hypersurfaces in Euclidean n-space (n>3).
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In sections 2 and 3 of this paper we study locally H-deformable surfaces in N 3(c).
In section 4 we discuss the case of c= —1 in detail. The study of H-deformable surfaces
in the hyperbolic space is more complicated than that in Euclidean space. The results
we get are the following: If the Gaussian curvature K of the surface is constant, then
K=0 or K= —1. In case of K=0, the mean curvature of the surface is constant. In
case of K= —1, we can explicitly determine the mean curvature function in section 4.2.
In both cases we can completely determine the first and second fundamental forms of
the H-deformation {X,}.

In this paper we deal with the local one. In fact for compact surfaces, Umehara
[17] showed that the H-deformability characterizes surfaces with constant mean
curvature in N3(c), which extends Tribuzy’s result [16] for higher genus.

The author would like to thank Professor K. Kenmotsu for his advice and
encouragement and the referee for kind advice.

2. Preliminaries.

We consider a piece of oriented surface M in N3(c), which does not contain any
umbilic point. We apply the method by which Colares and Kenmotsu [7] studied an
H-deformable surface in Euclidean 3-space. We get similar formulas for the surface M
in N3(c) to those in Euclidean space.

Let {e}, e,, e;} be an orthonormal vector fields on M such that e, and e, are unit
tangent vectors at xe M and e; is the unit normal vector at xe M = N¥(c). Let {w!,
o? »*} be the system of dual 1-forms of {e,, e,, e;}, and wf the connection form
given by

wl(X) = <X9 ei> ’ O)g(X) = <VXeA’ eB> ’

whére the indices A, B, C run through 1 to 3, and X is any vector field on M. Here V
denotes the Levi-Civita connection of the Riemannian metric # and ¢, ) the inner
product induced by & on N3(c). We then have the structure equations of N3(c),

3
dot=— ) ojro®,
B=1
3
dof=— ) wqro§+c otAwd.
Cc=1

Restricting these equations to M, we get

4 do' = —wi Aw?,
®) do*=—w?rw!,
3
(6) doi=— ) wjrok+co're’,

k=1
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where the indices i, j run through 1 to 2. From X*w?|,,=0, and dw’= —Z; NN
we can write

2
o= hyo*,
k=1
where hj, is the coefficient of the second fundamental form of the immersion X. The
Gaussian curvature K of M is defined by
doi=K o' nw?.

Then the Gauss equation is given by

K=c+det(h).

We may write as w3 =(H + x)o! + yo?, 03 =yw! +(H— x)cu2 for some functions x and
y on M. By the Gauss equation, we have H?>— K +c¢=x?+ y*. Thus we can write as

@) w}=(H+./H*—K+ccosa)w' +./H>—K +csinaw? ,
®) w3 = m sinaw! +(H— \/ﬁz———K_-}-‘c cos W)w? ,
where « is a locally defined function on M. We define

) Do :=da+2w? =0 0 +a,0?,

where «; and «a, are coefficients of the 1-form Da. For any tensor field of (0, 1)-type
a;, we define its covariant derivatives o; ; as follows:

(10) Do, :=du;— Y awi=Y o; @’
Exterior differentiations of (7) and (8) gives

1n  H?*—K +cDa=cosa(H,w? + Hyw') —sinao(H,0* — H,w?)
+(/H?*—K+c)0' —(\/H*—K+¢),0?,

where H; and (\/H>—K +c¢);, i=1, 2, are exterior derivatives of the scalar functions H

and \/H?>—K +c defined as in (9), respectively.
We define the 1-forms

H,0!'—H,w? H,o'+ H,w?
Bi= > Ba= > .
VH*—K+c VH*—K+c¢
Since the *-operator of Hodge is given by *w!=w? and *w? = —w?, the formula (11)
can be written as
(12) o= —sina- ﬂ1+cosa B, —*dlog./H*—K +c.

We calculate the exterior derivatives of f; as follows:
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1
4= iy LloaV/H =Ko H + (og/H K +0),
—K+c

(13)1 xH,—2H, ,}o' A@?—2,/H?*— K +cf, A w?],

1
dp,= = [{(log./H?>—-K +¢);H, +(log./H>*—K +¢),
VH*—K+c¢

where H; ;s are covariant derivatives of H; defined in (10). Using (9) and (13), the
exterior differentiation of (12) gives the condition:

(14) —2Asina+Bcosa+P=0,

where we put

A=H1’2\/ HZ—K+C_H2(-\/ HZ—K'*'C)l—Hl(\/ HZ—K+C 2 s
(15) { B=(H,,—H, )/H>*~K+c+2H,(/H*—K +c¢), —2H,(./H*~K +¢), ,
P=(H?>—K +c)Alog./H*—~K+c—2K)—|grad H|*.

We shall give another formula obtained from (12). Applying the *-operator to (12), we
obtain

(16) a,w?—o,w!=—sina-f,—cosa: B, +d(log./H*—K+c¢).
By exterior differentiation of (16), we obtain
a7 (H>*— K +c)Aa=2Acosa+ Bsina .

It follows from (14) and (17) that the conditions A =B =0 are equivalent to the con-
ditions P=Aa=0.

3. H-deformable surfaces with constant Gaussian curvature in N3(c).

In this section we study a surface with constant Gaussian curvature in N3(c) which
admits an isometric deformation preserving the mean curvature. We denote by V the
covariant differentiation of the induced metric from an isometric immersion X : M —
N3(c) and we put Z=(e, —ie,)/2. Then we get the following theorem which can be
proved in a similar way to [7].

THEOREM 1. Let M be a piece of an oriented surface in N3(c) such that it has no
umbilic points. Then, M admits a non-trivial isometric deformation preserving the mean
curvature if and only if one of the following conditions holds:
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VH
18 V|\———I)(Z,2)=0,
(18) (HZ—K+C>( )
(19) P=0 and Ao=0.

We classify surfaces with constant Gaussian curvature K in N3(c) which admit an
isometric deformation preserving the mean curvature function H.

THEOREM 2. Let M be a piece of an oriented surface in N3(c) without umbilic points
such that K is constant on M. If M admits a non-trivial isometric deformation preserving
the mean curvature function, then K=c or K=0.

ProOOF. First we consider the case M is a minimal suface. By results of [2], [3],
[11], and [13], we have K=0 or K=1 when c=1, we have K=0 when ¢=0, and we
have K= —1 when c= —1. Next suppose that H #0. We define a tensor field of (0, 1)-
type defined by f;=H,/(H*—K +c) for i=1,2. A computation shows us Si={(H?*—
K+c)H; ;—2HH H }/(H* — K +c)?. The condition 4 =0 implies

H1,2(H2—K+C)_‘2H1HH2=0.
The condition B=0 implies
Hz’z(Hz—K+C)—2HH2=H1,1(H2—K+C)—‘2HH% .

Hence there exists a scalar function A with f; ;=A§, ;. By taking the trace of these
equations, we get

3= fi1= (H2—K+c)AH —2H | grad H |?
ST (H>*—K +c)? '

On the other hand the condition P=0 is equivalent to

2K(H?*—K +c¢)?

(H*—K+c)AH—2H |grad H |*=

H
These formulas follow 4= K/H, which implies
(20) Hf,;=Ké,;, 1<i,j<2.
We have from (20),
(21) Hyf;—H;fix+H(f; ji—fix.)=0.
We use the Ricci identities of the tensor field f;:
(22) Sr21—f1,1,2=Kf,
(23) So12—f221=Kf1 .

By (20), (21), (22), and (23), we have K(K —c)H,=0, i=1,2. Thus if H,=0, i=1,2,
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then H is constant and f; ;s vanish identically. Therefore K must be zero. This completes
the proof.

4. Deformations of surfaces in the hyperbolic space H3(—1).

In this section we study deformations of H-deformable surfaces with constant
curvature in the hyperbolic 3-space H3(—1). We consider the hyperbolic 3-space as
the upper half space model {(x,, x5, x3) € R? : x5 >0} with the metric (dx} + dx3 + dx3)/x3.
Recall that the theorem 2 implies the curvature of the surface is K=0 or K= —1.

4.1. The case of the Gaussian curvature K=0. Let M be a piece of Euclidean
2-plane with flat metric du®+dv?. Consider an isometric immersion X(u,v): M —
H3(—1) such that it has no umbilic points and satisfies the condition (18). Putting
w!=du and w?=dv, we have wi=0. The condition (18) is equivalent to

(24) JH*=1H,,—H(/H?—1),— H(/H*=1),=0,
(25) (H*—1YH,,—H,)+2H(H2—H})=0.

The general solutions of (24) are

1+ cy(u)c,(v)

1—cy(weyv)

where c,(u) and c,(v) are any functions depending only on u and v satisfying c¢,(u)c,(u) >0,
respectively. Considering (25), we get

1+ K, exp(K,(u?+v?))
1—K, exp(K(u*+v?) ’

H(u, v)=

(26) H(u, v)=

where K, is a positive constant and K, is a constant independent of u and v. Further-
more, considering (19), K, must be zero. As a result the surface has the constant mean
curvature H=(1+K,)/(1 —K,). This is an equidistance surface from a geodesic line in
H3(—1) (see [15], [16]). Then the isometric deformation preserving the mean curvature
H is given by

27) X, (u, v)=(rcos, rsinf, rtan w) ,

where we set r =exp(sin w*#%) and §=tan w+?, also #=cost-u—sint-v and f=sint-u+
cost-v, and w is a constant.

4.2. The case of the Gaussian curvature K= —1. In this section we study sur-
faces with the curvature K = — 1 having the properties (18) and (19). Let M be a piece
of the hyperbolic surface as the upper half-space model {(u, v)e R?: v>0} with the
metric ds?=(du? +dv?)/v®. We consider an isometric immersion X(u, v): M - H*(—1)
such that it has no umbilic points and satisfies the condition (18). Putting o' =du/v
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and w?=dv/v, we have wi= —du/v. The condition (18), which means the conditions
that 4 and B in (15) are zero, is equivalent to
(28) H{vH,,+H,}=2vH H,,

We can easily see that these formulas are also equivalent to

o (o)A )
oo A A )

The general solution of (28) is
H(u, v) 1

v (@WYE)
where ¢ and Y are any functions. Considering (29), we get
(33) ¢"(w)—y"(v)=0.

Thus, we have

(32)

dpw=au*+bu+d, Yv)=av’+ev+d".
Therefore we have
(34) H(u, v) _ 1 ’
v a(u? +v?)+bu+ev+d
where a, b, e and d =d’ +d"’ are some real numbers. When K =c= —1, the equation P=0
in (19) becomes
(3% AlogH+2—|dlogH|*=0.

Substituting (34) into (35), we have e=0.

Case 1. We first consider the case b?—4ad=0. By taking an isometric trans-

formation of the hyperbolic surface such that ur>u+ b/(2a), we may assume that the
mean curvature H is

_ v
a(u?+0v?)
Furthermore, by taking isometric transformations such that

u v
Uur— —— v

2 T 5 . 4
u? +0? u?+v?




254 HIROSHI TAKEUCHI

and
ur—uj/a, v—v/a,
we may assume
(36) H=v.
By (11), we have

37) oo _ cosa—1 ’ i‘i: sin a
Ju v ov v

We can easily check Aa=0. This system is integrable, and general solutions of (37) are

t
(38) tano =2
2 tu+1

where ¢ is any real number. In this case we get a 1-parameter family of isometric
immersions X, preserving the mean curvature H=v: The second fundamental tensors
h;;’s of X, are given by

v+vcosa vsSina
(39) (hu)=( ) )
vsina v—vcosa

2u(1 + tu)? 2tv2X1 +tu)
A+’ +(@v)>  (1+tu)?+(tv)?
(2t?X1 +tu) 2t%p3
(+t)?+(v)>  (1+tw)? +()?

We have the following system of the differential equations for {X,, e,, e,, e;}:
(V&1 =0i(e)e; +wi(e)es=e,+hyy ey

V..e; =wi(er)e, +wi(e)es=h,, ey

V..e;=wj(e,)e; + w3(e)es=—e, +h,, -e,
(40) X 3
Ve, =w;3(e;)e; +wi(ez)es=h,y, ey
V.e;s =w§(el)e1 + w%(el)eg; =—hyre;—hyye,
‘V.e; =w§(e2)el +w§(e2)e2 =—hy,°e;—hy,e,,

where h;;’s are given in (39), and {e, =v0X,/0u, e,=vdX,/0v, e;} is a system of ortho-
normal vector fields. When t=0, we have h,; =2v, h,, =h,, =h,,=0. Thus the integral
curve of e, is a geodesic. The surface X, is realized as the following one:

41) X o(u, v)=(csin(2u), c cos(2u), 2cv),

or
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c c 2cv
42 Xo(u, v)= -cos(2u), ———-sinQu), ——— |,
“2) ol ) <1+4v2 cos(au), 1 g7 S 1+4u2>
where ¢ is a constant. We can see easily that X(u, v) satisfies (40), and X y(uo, v) is a
geodesic for fixed uy. When t = 0o, we have hy; = 2u®v/(u” +v%), hy, = hyy = 2uv?/(u* +v?),
hy,=2v3/(u? +v?). The surface X, is realized as the following hyperbolic cylinder [12]:

u v
43 X (1, v)= () W4 (") ——
“3) o) («:(cp) ——10). L) u2+v2)

where exp(¢@)=+/u®>+v2. The functions { and # depending on ¢ are defined by the
following equation:

d d .
—C—=Ccosy, ~—’1—=Cs1ny,
do do
where y is the function of ¢, which satisfies
d
—y———siny= —2e%.
do .

Case 2. We consider the case b> —4ad > 0. By taking an isometric transformation
such that ur>u+(—b +./b*>—4ad)/(2a), we may assume that H is

v
T aP+vd)+bu
Furthermore, by
ur> “ o
ut+v?’ w402’
and ur—u—a/b, we may assume that |
. v
(44) Hu, v)=——-.
: bu
By (11) and (44), we have
Ja  sina cosa—1 Jdu l—cosa sina
45) = + ( ) , = +
ou u v ov u v

We can easily check Aax=0. This system is integrable, and general solutions of this
system are

(46) tan i = JL_ s
2 tu?—v3)+1
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where ¢ is any real number. Therefore we get a 1-parameter family of isometric im-
mersion X, preserving the mean curvature H =v/(bu): The second fundamental tensors

h;;’s of X, are given by

v v v
1 —+—Ccosa —Ssina
u

' u u
@n =] b ‘.
—sina ———cosa
u u u
20(t(w® —v?) +1)? 4uvt(tu® —vH+1)
_ _1_ u{t?(u? +v?)? +2t(u* —v?) + 1} u{t?(u? +v¥)? + 2t —v?) + 1}
b 4uv?t(t(u® —v?) +1) 8t2uv3 '

u{t?(u? +v?)* + 2t(u* - v*) + 1} u{t*(u? +v%)? + 2t(u* —v?) + 1}

We get again the total differential equation (40) for X,, where h;’s are given in (47).
When t=0, it follows that h,, =h,; =h,, =0, h;; =2v/(bu). Thus the integral curve of
e, is a geodesic. The surface X, is realized as the following:

(48) Xo(u, v)= 2( Isin lof " du, Jcos loﬁ “ du, v)

When b=1, this formula is the same as that of H-deformable surfaces in Euclidean
3-space [7]. But the first and the second fundamental forms are different from those
of Euclidean case.

Case 3. We consider the case b> —4ad <0. By taking isometric transformations
such that u—u+ b/(2a), and u—au, u—av, we may assume that

v

49 H=——" |
(49) uw+v2+d

where d is a positive number. By (11) and (49), we have

Ox _ 2u sina+ w =o' +d (cosa+1)— 2
(50) ou  uwr+vi+d o(u?+v*+d) v
oo 2u u>—v2+d

= 1—cosa)+——————sina.
ov u2+vz+d( ) (u? +v%+d)

This system is integrable, and general solutions are given by

zﬁ(u—vcot%, sin /2 ):0 s

v

for an arbitrary function y. We get a 1-parameter family of isometric immersions X,
preserving the mean curvature H =v/(u? + v2 +d): The second fundamental tensors A;;’s
of X, are given by
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(51) (hij)=____v___<1+cosoc sin o )

(u?+v%+d) \sina 1 —cosa
Therefore we have proved the following:

THEOREM 3. Let M be a piece of surface with constant Gaussian curvature K=0
or K= —1 in the hyperbolic 3-manifold H>*(— 1), which does not contain any umbilic point.
Suppose that M admits a non-trivial isometric deformation preserving the mean curvature
Sfunction H.

1. If K=0, then H becomes constant. Consequently M is an equidistance surface from
a geodesic line in H3*(—1), and the H-deformation is given by (27).
2. If K= —1, then we get

2.1. H=v, and the second fundamental forms of M are determined by (39) for some
t and the H-deformation of M starts from the surface which is given by (41) or (42),
or

2.2. H=v/(bu) for any real number b, and the second fundamental forms of M are
determined by (47) for some t and the H-deformation of M starts from the surface which
is given by (48),
or

2.3. H=v/(u?+v?+d) for a positive number d, and the second fundamental forms
of M are determined by (51).
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