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Abstract. The aim of this paper is to study the stability of travelling wave solutions with shock profiles
for one-dimensional viscoelastic materials with the non-degenerate and the degenerate shock conditions by
means of an elementary weighted energy method. The stress function is not necessarily assumed to be convex
or concave, and the third derivative of this stress function is also not necessarily assumed to be non-negative
or non-positive. The travelling waves are proved to be stable for suitably small initial disturbance and shock
strength, which improves recent stability results. The key points of our proofs are to choose the suitable
weight function and weighted Sobolev spaces of the solutions.

1. Introduction.

In this paper we study the asymptotic stability of travelling wave solutions with
shock profiles for the system of one-dimensional viscoelastic materials with non-convex
nonlinearity in the form

v,_—ux=0 , (1.1
U, —0o (V) =y, , (1.2)

with the initial data
(v, W)= o = (o, o) (X) > (Vs, uy) as x— +o0. (1.3)

Here, xe R! and >0, v is the strain, u the velocity, u>0 the viscous constant, ¢(v) is
the smooth stress function satisfying

o'(v)>0 for all v under consideration , (1.4)
o’'v)s0 for v<0 under consideration , (1.5)

so that a(v) is neither convex nor concave, and has an inflection point at v=0. We find
that the system (1.1), (1.2) with =0 is strictly hyperbolic, with the characteristic
roots
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A= A0v), where A(v)=./d'(v)

and with the corresponding right eigenvectors

1
'*(”)=< :A(v))‘

Moreover, we see that both characteristic fields are neither genuinely nonlinear nor
linearly degenerate in the neighborhood of v=0. In fact, the quantity
V() - r (0)=A(v)=6"(v)/21/ 0'(V)

changes its sign at v=0, where V denotes the gradient with respect to (v, ).
The travelling wave solutions are solutions of the form

@ uw@E )=V, U)©&), E=x-—st, (1.6)
V, U)() > (vy,us), E—>too0, (1.7)

where s is the shock speed and (v, u,) are constant states at + co. Let the system (1.1),
(1.2) admit the travelling wave solutions, then (v, u;) and s satisfy the Rankine-
Hugoniot condition

{—s(v+—v_)—(u+——u_)=0, (1.8)
—s(u, —u_)—(o(vs)—o(v-))=0,
and the generalized shock condition
L ho)=— [~ 0= v2)+o(0)=0(2)] { So a9

We note that the condition (1.9) with (1.4) and (1.5) implies

v, )<s<Mv.) or —Av)<s<—Av-), (1.10)
and that, especially when ¢”’(v)>0, the condition (1.9) is equivalent to

My )<s<Av.) or —Av,)<s<—Av-), (1.11)

which is well-known as Lax’s shock condition (Lax [5]). We call the condition (1.10)
with s=A(v,) (or s= —A(v,)) and the condition (1.11) as the degenerate and non-
degenerate shock condition, respectively.

Throughout this paper, without loss of generality, let us suppose ¢(0)=0. In fact,
if ¢(0)#0, setting o,(v)=a(v)—a(0), then ¢,(0)=0 and ¢,(v) satisfies equations (1.1),
(1.2) and (1.4), (1.5), (1.8), (1.9) corresponding to ¢(v). Thus, we may denote a,(v) by
a(v) again.

The stability problem of travelling wave solutions for systems has been one of hot
spots and interested many mathematicians (see [2, 3, 4, 6, 7, 8, 10, 11]). In genuinely
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nonlinear cases, the stability theorems have been studied by many authors [3, 6, 7, 10]
etc. See also the references in [8] for the single equation. Recently, the stability in the
non-degenerate shock case of (1.11) without convexity of o(v) was investigated by
Kawashima-Matsumura [4] for the first time. Although it seemed hardly to solve the
stability in the case of the degenerate shock, Mei [9] and Matsumura-Nishihara [8]
proved the stability of degenerate shock profile for a single conservation law and then
Nishihara [10] successfully showed the stability for the system (1.1), (1.2) provided that
the integral of the initial disturbance over (— oo, x], say (¢0> ¥o)(x), have a polynomial
decay O(| x|~ *®/?) (0<a<1) as x— + co. In the papers [4, 10], the authors supposed
as sufficient conditions that the third derivative of the stress function a’’'(v) is positive
and the shock strength |(v, —v_, u, —u_)| is suitably small.

In this paper, we have two purposes. One is to show the stability of travelling wave
solutions without the condition ¢"’(v)>0. Another is to improve the weight in [10] in
the degenerate shock case. The stability theorems are shown even in the degenerate
shock case with the improved weight. Here, the smallness of both the shock strength
and the initial disturbance is assumed. In the degenerate case, the initial disturbances
have the decay order O(| x|~ '/?) as x— + c0. Thus, we improve the results in both [4]
and [10]. Throughout [4, 10] and the present paper, the integrals over R of the initial
disturbances are assumed to be zero. When they are not zero, the stability problem is
open in the case of non-convex nonlinearity. In the genuinely nonlinear case, see the
interesting papers [6, 11].

Proofs are due to an elementary weighted energy method. However, the weight
functions are suitably selected, which play a key role in our procedure. Our plan of
this paper is as follows. After stating the notations and an embedding theorem in the
next section, we will state the properties of the travelling waves in Section 3. In Section
4, the stability theorems and their proofs will be given. Finally, we will complete the
proofs of a priori estimates which are key steps for our stability theorems in Section 5.

2. Notations and an embedding theorem.

L? denotes the space of measurable functions on R which are square integrable,

with the norm
1/2
Il =<I|f(x)|2dX) :

H' (I=0) denotes the Sobolev space of L?-functions f on R whose derivatives oif,j=
1,---, 1l are also L2-functions, with the norm

1= % 10471

1/2
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L2 denotes the space of measurable functions on R which satisfy w(x)V?fe L?, where
w(x)>0 is a weight function, with the norm

1/2
|f|w=<jw(x) |/(x) Izdx> .

H', (1>0) denotes the weighted Sobolev space of L2-functions fon R whose derivatives
dif,j=1,---, 1, are also LZ-functions, with the norm

l 1/2
|f|1,w=( ) |a;;f|a) :

CL (I>0) denotes the weighted /-times continuously differentiable space whose functions
f(x) satisfy w(x)difeC°, j=0,1, -, I, with the norm

. ]
Iflc,=sup Y w(x)|0if(x)!.
xeR j=0
Denoting
<x>+={./1+x“, o if x>0 @.1)

1, if x<O0,

we will make use of the space LZ,,, and H sy, (I=1,2). We also denote f(x)~g(x) as
x—>a when C"'g< f <Cg in a neighborhood of a. Here and after here, we denote
generic positive constant by C, without confusions. When C~ l<w(x)<C for xeR, we
note that L2=H°=L2=H® and |- |=|"*llo~!"lw=|"lo, Especially, when w(x)=
{x>,, we have the following embedding theorem.

EMBEDDING THEOREM. There exists the embedding relation HY,, <»H', ie., if
feH,,., then fe H' and the following inequality holds:

W L<Clflicxss - (2.2

Moreover, if fe H.,, , for I<2, then {(x)>Y*fe H' and it holds
IOV 1< Cl iy - (2.3)
When I>1, then H',, <5 C%,y12=>CO i.e., if feH(y,,, then {xHY*feC® and it holds
sup lf(x)|<C sup OV < Clflaays - (2.4)

Furthermore, the embedding relation H' nL2,, < C,y14 <> C°, and
sup /) <C sup OV CUS N+ 1S ey ) (2.5

hold for any 1> 1.
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ProoF. Noting that (x>, >C for all xeR, and |(d*/dx"){x>Y?|<C for xe
(—o0, —0] and xe[+0, +00), and using Sobolev’s embedding theorem H'c—, C°
(I=1), we can prove the embedding results (2.2)-(2.4) by simple but tedious calcula-
tions. By Holder inequality, we have

x

OV f(x) = f ;—y(<y>‘+’2f(y)2)dy

—

X

= f i %(1+y2)‘3’4yf(y)2dy+ f Y210 f')dy

— 00 - 00

SCUSI+1A 12 . + LN,
which proves (2.5).

Let T and B be a positive constant and a Banach space, respectively. We denote
C*%0, T'; B) (k=0) as the space of B-valued k-times continuously differentiable func-
tions on [0, T], and L? (0, T'; B) as the space of B-valued L2-functions on [0, T]. The
corresponding spaces of B-valued functions on [0, c0) are defined similarly.

3. Properties of travelling wave solution with shock profile.

In this section, we state the properties of travelling wave solution with shock
profile. If (v, u)(t, x)=(V, UX&) (E=x—st) is the travelling wave solution with shock
profile connecting (v_, u_) and (v, u.), then (¥, U)(¢) must satisfy

{—sV’—U’=0

3.1
—sU —a(V) =uU". (3.1

Integrating (3.1) over (— o0, + o), we have Rankine-Hugoniot condition (1.8). We
integrate (3.1) and eliminate U, then we obtain a single ordinary differential equation
for V(&)

usV'= —s2V +o(V)y—a=hnV), (3.2)
where
a=—s*vy +o(vy). (3.3)

Letting (v, u,)#(v_, u_) and s>0, we are now ready to summarize a characterization
of the generalized shock condition (1.9) and the results on the existence of shock profile
studied in [4]:

ProrosiTION 3.1 ([4]). Suppose that (1.4) and (1.5) hold. Then the following
Statements are equivalent to each other.

(1) The generalized shock condition (1.9) holds.

(ii) o(vy)<s? ie., Av,)<s.
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(iii)) (vy)<s’<0d'(v.), ie, Mvy)<s<A(v_).
(iv) There exists uniquely a v, € (v, v_) such that ¢'(v,)=s* and it holds
d'(v)<s?® for ve(v,y,v,), s?<d’'(v) for ve(v,,v-), 3.4
ie.,

K,)=0, H(@)<O0 forve(,,v,), HK@W)>0 forve(v,,v.). (3.9

Moreover, if one of the above four conditions holds, then we must have v_ #0. In addition,
v, Sv_ and v, 20 hold when v_20.

PrROPOSITION 3.2 ([4]). Suppose that (1.4) and (1.5) hold.

(i) If (1.1), (1.2) admits a travelling wave solution with shock profile (V(x —st),
U(x —st)) connecting (vy,uy), then (vy,u.) and s must satisfy the Rankine-Hugoniot
condition (1.8) and the generalized shock condition (1.9).

(ii) Conversely, suppose that (1.8) and (1.9) hold, then there exists a shock profile
(V, U)x —st) of (1.1), (1.2) which connects (v, uy). The (V, UX&) (¢ =x—st) is unique up
to a shift in & and is a monotone function of &. In particular, when v, Sv_ (and hence
u, 2u_) we have

u,2UR)2u_, UL=0, (3.6)
v, SV(EOsv_, VAH)s0, 3.7
for all £€ R. Moreover, (V, UNE)— (vy, u.) exponentially as £ - + oo, with the following

_exceptional case: when Av,)=s, (V, UNE)— (v4,u,) at the rate || as £ — + o0, and

|h(V)|=|pusVe|=0(&|72) as & — oo.
For the graphes of a(v) and h(v), see Figures 3.1 and 3.2.
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FIGURE 3.1. Non-degenerate case
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FIGURE 3.2. Degenerate case

Now we give a function of the form

G(v) = h(v)s”(v) — K (v)o’(v) = h(v)? (%((L))) . ve[0,v,], (3.8)
v
which plays an important role in our proof. We know that G(v) is continuous, and G(v)
satisfies, by virtue of (3.5),

GO)=—c'(OH(©0)>0,  G,)=h(v,)d"(v,)<0. (3.9)

According to these facts, we know that there exist some finite or infinite points in
(0, v,) such that G(v)=0. These points divide [0, v, ] into sub-intervals such that G(v)>0
or =0 or <0 on these sub-intervals.

We now only pay our attention to the case in which there are finite number of the
points v;€(0, v, ) defined as follows:

v, =sup{v | G(v)=00n [0, v]},
v,=sup{v | G(v)<O0on[v,,v]},
v3i—1=sup{v | Gv)=00n[vy;_,, v]},
vy =sup{v | G(v)<Oon[v, -, v]} .

(3.10)

In this case, the graph of G(v) looks like the following Figure 3.3.

G(0) G®)

e (N 3

FIGURE 3.3
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The function G(v) may have infinitely many v;’s, whose case will be remarked later.
See Remark 5.6. By our choice (3.10), we get the properties of G(v) as follows:

PROPOSITION 3.3. There exist the odd number points, without loss of generality, say
n points (n is an odd number), v;€(0,v,), i=1, - - -, n, such that G(v;)=0 and

{G(U)ZO on Iy =[v3;_505;-4], j=1,2,---,(n+1)/2,

) (3.11)
G(v)<0 on I,;=[vy;_41,05], j=1,2,---,(n+1)/2,

where v, and v, . , denote 0 and v, respectively. Especially, G(v)<0 on (v,, v,].

ProoF. By the continuity of G(v) and (3.9), and our choice (3.10), we see easily
that Proposition 3.3 is true.

We also denote I, and I, , as the following intervals
105(09 0] s In+25[v*’ U_] . (3'12)

Since V(&) is monotonic on [v,,v_] (see (3.7)), there exist the unique numbers &,
& (i=1,2,---,n), and &, such that V({0)=v,=0, V(§)=v;, i=1,- -, n and V({,)=
v,=0,4+, (see Proposition 3.3). Here, we also denote by R; (i=0,1,---,n+1,n+2)
the following sub-intervals of (— o0, +): Ro=[&y, + ), R;=[&;, &i-1] i=1,- -, n,
Ryey=[lss1, E1=[E4> ], Ry s =(— 0, &,], respectively. It is clear that R=|J! > R,.

4. Stability theorems.

In this section, we shall state the stability theorems of travelling wave solutions
with shock profiles for (1.1)~(1.3) without the condition ¢"(v)>0. To state our result
in the degenerate case, we set

é(v)=a(v)—a’'O)v . 4.1)
Then we have 6(0)=d'(0)=d"(0), 6'(v)s0 for vs0 and
0<—0(v,)<—v,6y) for v, <0<v_ 4.2)

by an observation of the graph of the function '(v), v, <v <0 (see Figure 4.1).

c'(v)
NERERRREEREE AR G',)
:/ -o@.)
L 0 ,,

FiGuRre 4.1
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We assume that there is a constant § (0 <d < 1) such that
—O'_(U+)<—5_U+5"(v+) aS v+_)_0- (4.3)

We note that § can be taken as §=1/4+¢ if 6(0) (=0""(0))>0, where ¢>0 is any
given constant. In fact, we have

_ o (0 o
—600= L Vo3 4o0}),  —0,5w)=—

3

which mean that (4.3) holds for §>1/3 as v, —0.
Now, without loss of generality, we restrict our attention to the case

s>0 and v, <0<v_, ie., usV,=n(V)<O0. “4.4)

O.III 0
2(! ) v} +o(v3),

Let (V, U)(x —st) be a pair of travelling wave solutions connecting (v, u,). We assume
the integrability of (vy— V, uy— U)(x) over R and express that integral in the form

fw Vo=V, to—U)(x)dx=xXo(v+ —v_, ur —u_)+pr_(v-), (4.5)

-0

where r_(v_) is the right eigenvector evaluated at v=v_. We note that the coefficients
B and x, are uniquely determined by (4.5) provided that (v,— V, uo— U) is integrable
over R. Throughout this paper, we assume that f=0. Then the shifted function
(V, UXx —st+x,) is also a pair travelling wave solution with shock profile connecting
(v4, uy) such that

J. (Vo(x)— V(x + xq), ug(x)— U(x + x0))dx =0 . 4.6)
We also suppose x,=0 for simplicity.
Let us define (¢, ¥,) by

(Gor Wo)x)= j " (vo— Vi tg—UYp)dy . @.7)

Our main theorems are the following.

THEOREM 4.1 (Non-degenerate case: A(v,)<s<A(v_)). Suppose (1.4), (1.5), (1.8),
(4.4), (4.6), and (¢o, Yo)e H?. Then there exists a positive constant 8, such that if
|y —v_,us—u )|+ (Po, Yo)ll2 <8y, then (1.1)~(1.3) has a unique global solution
(v, u)(t, x) satisfying :

v—VeC%[0, w); HY)n L3([0, ) ; HY),
u—UeC[0, ©); H)n L*([0, ) ; H?).

Furthermore, the solution verifies
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sup | (v, ult, x)—(V, U)x—st)| =0 as t— oo . 4.8)
xeR

THEOREM 4.2 (Degenerate case: A(v,)=s<A(v_)). Suppose (1.4), (1.5), (1.8), (4.4)
and (4.6). Assume |(v, —v_,u, —u_)|<1 and (4.3), then the following holds:

(i) Suppose that (¢o, ¥o) € HZ,y ., then there exists a positive constant 5, such that
if | (o> Yo) l2,cxy . <02, then (1.1)~(1.3) has a unique global solution (v, u)(t, x) satisfying

v—VeC[0, 0); Hyy,)NLA([0, 0) ; Hiyia),
u—UeC[0, ©); Hiyy,)NLA([0, ) ; HE, ).
Furthermore, the solution verifies the asymptotic stability (4.8).
(ii) Suppose that (¢po, Yo)e H* L%, . and ¢, € L,534. Then there exists a posi-
tive constant &3 such that if (@0, Yo)llz+1(Pos ¥o) lcxy. +1Po.xlcxyys <83, then (1.1)-
(1.3) has a unique global solution (v, uXt, x) satisfying
v—VeCo[0, w0); H*nLZ,, )nL*[0, ) ; H' nL%,4),
u—UeC°[0, w0); H' nL%,, )nL*([0, ) ; H*NL%,,).
Furthermore, the solution verifies the asymptotic stability (4.8).

REMARK 4.3. In the stability results in [4, 10] both ¢"’(v)>0 and smallness of
shock strength |(v, —v_,u, —u_)| are assumed as sufficient conditions. In the non-
degenerate shock case, Theorem 4.1 deletes the condition ¢’”(v)>0. In the degenerate
shock condition, A(v,)=s<A(v_), the condition (4.3) in Theorem 4.2 seems to be much
weaker than the condition ¢”"(v)>0, and also the weight is improved compared to that
in Nishihara [10]. As an example of o(v), we have

v x 1
a(v)=bv+j J yk<5in—+2)dydx, k=1,3,5,---,
oJo y

v 1
j xk (sin—+ 2) dx
o x

Then, note that ¢’”’(v) does not exist for k=1 and ¢""(v) changes the sign on [v,,v_]
for k>3.

where b is a constant satisfying

b> max
vy <v<O0

In order to show the stability, we make a reformulation for the problem (1.1)—(1.3)
as in [3, 4, 6, 7, 10] by changing the unknown variables as

(vs U)(t, x) = (V9 U)(f) + (¢¢a l/’{)(t9 é) s C =x—st. (4°9)
Then the problem (1.1)—(1.3) is reduced to the following ““integrated”™ system



NONLINEAR STABILITY 251

¢ — s¢¢ - lﬁg =0
Y=Y —0'(V)pe— e =F (4.10)
(@, ¥)(0, &)= (o, ¥0)(©)

with
F=0o(V+¢g)—a(V)—a'(V)p:.

For any fixed Te€(0, o0), let us define the soluﬁon spaces of (4.10) by

X0, T)={(¢, ¥)e C*([0, T1; H?), ¢, L*([0, T1; H'), . L*([0, T]; H?)},
X100, T)={(¢, ¥)e CU[0, T1; HZ, ), d:€ LX[O, T1; Higy1r2),
Yee LX([0, o) ; H, )},
X500, T)={(¢, )€ C°([0, T1; H* N Ly, ,), ¢ LA([0, T]; H' n LE;34),

Y. L*([0, T]; H*n L%, )} .

Setting

No)=sup (6. V@lz.  N:i))= P [(6 9D z.cor. »

Ny(t)= Sup (1@, WY@z +] (6, Y)D) |es . +1 DD ey

we have, by the embedding theorem in Section 2,

Supzer| (9, Y)(1, §) | <CN(1),

SUPger [ (@, Y)(1, )| < Csupecr | CE Y, Y)(8, ) |<CNL (),
SuPser | W(1, §) | S Csupe | KE>YHY(L, E) IS CNL(1)

Supeer | (@, ¥)(1, O)|SCN, (1) .

Theorem 4.1 and Theorem 4.2 can be regarded as the direct consequences from
the following theorem.

4.11)

THEOREM 4.4. (A) (Non-degenerate case): Suppose the assumptions in Theorem
4.1. Then there exists a positive constant &, such that if ||(¢pg, Vo)l <84, then (4.10) has
a unique global solution (¢, Y) e X (0, o©) satisfying

t
I(é, ¥)OII3 +f {leDNE+ Y (D3} dr < Cli(dos ¥o)lI3 (4.12),
0
Jor any t>0. Moreover, the stability holds in the following sense:

SUD [ (95, Y1, =0 as 100 4.13)
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(B) (Degenerate case): Suppose the assumptions in Theorem 4.2, then we have the
following:

(i) There exists a positive constant 8 such that if | (o, ¥o) l2,ce5. <Oss then (4.10)
has a unique global solution (¢, ¥) € X,(0, 00) satisfying

| (¢, ¥)(D |§,<§>+ +j {| ¢¢(T) |§.<¢>‘+”+ | ‘/’g(f) |§,<§>+}d7
0

<Cl (@0, Vo) 35 (4.12),

for any t=0. Moreover, the stability (4.13) holds.
(i) There exists a positive constant 86 such that if |[(¢o, Yolll2+1(Po, Yol lcey. +
| Po.¢l¢ey34 <O, then (4.10) has a unique global solution (¢, V) € X ,(0, o) satisfying

18, YIOI3+1 (D, YO 7y, +1 D) Kee
+ j {ld@N3 +1 D) 2oy + We(DIF +1¥ (D) ey } e
V]

< C(lI(@o> Y3 +1(P0, Wo) Iy +1 Do, |Ze53/4) (4.12),
for any t=0. Moreover, the stability (4.13) also holds.

Theorem 4.4 is proved by a weighted energy method combining the local existence
with a priori estimates.

ProPOSITION 4.5 (Local existence). For any 6,>0, there exists a positive constant
T, depending on 8, which satisfies the following.

(A) (Non-degenerate case): If (o, Yo)€H 2 and \|(¢o, Vo)l 2 < b, then the problem
(4.10) has a unique solution (¢, ¥) € X,(0, T,) satisfying ||(¢, YO 2 <26, for 0<t<T.

(B) (Degenerate case): (i) If (¢o, Yo)e HZy, and | (o, Vo) l2.ce5. <6, then the
problem (4.10) has a unique solution (¢, W)€ X,(0, To) satisfying |(d, ¥)B)|2,¢e5 . <20,
for 0<t<T,.

() If (¢o¥o)eH? NL%,,, and $o.:€Ls4  1(Pos Yoz +1(¢0> Yo ¢y . +
| @o.2l¢ey34 <00, then the problem (4.10) has a unique solution (¢, ¥) € X,(0, Ty) satisfying
(P, YION 2 +1(Ps ¥)O) ey, 1 bl < 20, for 0<t<T,.

PROPOSITION 4.6 (A priori estimates). (A) (Non-degenerate case): Let (¢,¥)e
X,o(0, T) be a solution for a positive T. Then there exists a positive constant 6, inde-
pendent of T such that if No(T) <6, then (¢, ¥) satisfies the a priori estimate (4.12),
for 0<t<T.

(B) (Degenerate case): (i) Let (¢, ¥)e X,(0, T) be a solution for a positive T.
Then there exists a positive constant dg independent of T such that if N{(T)<0g, then
(¢, ¥) satisfies the a priori estimate (4.12), for 0<t<T.

(i) Let (¢, ¥) e X,(0, T) be a solution for a positive T. Then there exists a positive
constant 4 independent of T such that if N(T)<dy, then (¢, ) satisfies the a priori
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estimate (4.12), for 0<t<T.

Proposition 4.5 can be proved in the standard way. So we omit the proof. We shall
prove Proposition 4.6 in the next section.

S. The proofs of a priori estimates.

The section is a key step to complete the proofs of the stability theorems. At first,
we introduce our desired weight functions which play a key role for our a priori esti-
.mates. Let us define a weight function w(v) by

wo(v) = (v —v3)/h(v), vel,,
_ W2j—1(v)=k2j-1'('—1)/h(v)a UeI2j—1s
M= o) =ka; - 1/0'0), vel,,, -1
Wn+2(U)=kn+1‘1/O',(U), UEIn+29

where j=1,---,(n+1)/2, I,(i=0,1, -+, n+1,n+2) are as in (3.10)~(3.12) and k, =02,

k= —k,d'(v;)/hv,), k2j—1 = _kzl'—zh(vzj—z)/o"(vzj—2)’ k2j= '—ij-—l GI(UZj—l)/h(UZj—l)’jz
2,--+,(n+1)/2. Note k;>0 (i=1,2,---,n+1). We also denote by r(£) another weight
function in the form

Hg={ TiTE B 52)

1, as £<é,,

where &, is defined as such number that V(£,)=0 in the section 3. Then we know that
w(V)eC®v,,v_1, w(V)¢Cl(v,,v_], but wy(V)eC*(I,),i=0,1, -+, n+1,n+2, and r(&)
has the same property as w(V). Moreover, we find

non-degenerate case: w(V(£))~Const., Li=L?, (5.3),
degenerate case: W(V(E))~r(E)~<E>,, LEZ=L}=L%,, . (5.3),

Now we are going to prove part (B) of Proposition 4.6 by the following two subsections.
Since part (A) of Proposition 4.6 can be proved in the same procedure as (B), we omit
its details and only give a remark in the following sub-section.

5.1. The proof of Proposition 4.6 B(i). Let (¢, Y)e X,(0, T) be a solution of
(4.10). On the every interval R; (i=0, 1, - - -, n+2), multiplying the first equation of
(4.10) by (w;0")(V)¢ and the second equation of (4.10) by w;(V)¥ and adding these
equations, we have

1
> {wioYV)$? +w, (VI 2}, — {wi0 ) V)Y + pwi (VI o}

—-;—{(Wi«'f’)(V)d>2 +wi (VW2 e+ uw (VIE + Ai(e, &)= Fw (V)Y , (5.4)
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where

At é)=%<wia')'(vwg¢2 +uw(V)V b,

+ WY (V)Veb +%WQ(V)V¢¢2 . i=0,1,- -, n+2. (5.5)
Integrating (5.4) over R; and adding these integrated equations, we obtain
1 d n+2
- ——J (WoYV)P* + WV WHdE+p Y, | wVWEdE
2 dt Jr i=0 Jg,
n+2
+3 | A Qde= f Fw(V)d¢ . (5.6)
i=0 R; R

Step 1. When £€R,, ie., velo=(v,,0], we can check the facts wy(v)<O,
(Woa'Y(v) <0 and (woh)'(v)=2, similar to Nishihara [11]. By (5.5), (4.4) and Cauchy’s
inequality, and noting
l1—a

2s

- 2L wo(OhOWI(t, £o)* = — ( + —a—> wo(O)RON(t, &o)* ,
s 2s

where a is a constant which will be suitably chosen as 0 <a <1, we obtain
1
f A2, §)d = —2—SW6(0)h(0)¢(t, £o)?
Ro

+f s—;”‘—[(woa')'(V)(¢+i-//)2—M:(L)w]dc
Ro S S

_ 0
>— 12 % WolOHOW(, ¢o>2+21wa(0)f — (WY (e, &)+ f ~Yeyra
S Ro aé Ro §

S

> =S Wy OO, Eo*—E- J' wo(VIWIdE+ J Lepowra, )
Ro Ro S

S

where
PV)=2—awo(O)H (V) + a?wo(0)*h(V)/wo(V) . (5.8)
LEMMA 5.1. Suppose that (4.3) holds. Let o.=(1—35)?, then p(V)>&(2 —J).

ProoOF. Since ¢”’'(V)<0(V'<0), and ¢'(V)>0 (i.e., o'(V) is decreasing on I, and
a(V) is increasing on [v,,v_]), we have 0<(s>—d'(V))/(s*— o' (0) <1, O< —(V—v,)/
(V+v,)<1, and 0<(s>—(o(V)—o( )V —0,))/(s*—(6(0)—0(v,))(—v.))< 1. Noting
wo(0)= v2 ' (0)/h(0)? and (5.8), we obtain
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(0 KO s —a(V)
Pd¥)=2 “( Ho) >{s2—o'(0)

—a V—uv, <52_ o(V)—oa(v.,) )2/(52_ o(0)—o(v,) )2}
V4o, V—v, —v,
v, h(0) )2

HO) (5.9

22—oc(l+oc)<
By (4.3), we find

v, HO) | —0,50,) 1
hO) | G(vy)—v,6(,) 1-8

Due to (5.9) and a=(1—-5)?, we obtain p,>5(2—35). This completes the proof of
Lemma 5.1.

LEMMA 5.2.  Consider the non-degenerate case. For any fixed a (0<a<1), if

|vy—v_ | is suitably smqll, then there exits a positive constant C, depending on a, such
that p(V(£))=>C, for any E€R.

ProoF. Let H(v,)= —v,h(0)/h(0)>0 be a function on v,. Due to (1.9), (5.10)
and s*=(o(v,)—o(v_))/(v, —v_), where, v, and v_ are independent, we know
lim,, ,oH(v.) exists with the type of “0/0” as follows:

lim H(p,)= lim _—"+(@©0)=s)

= 5.11
vy—0 vy =0 0'(0)—0'(U+)+520+ ( )

For an arbitrary given constant ¢, >0, by (5.11), there exists a 6=05(¢,)>0 such that
if |v, | <6, then 0<H(v,)<1+e¢, holds. Thus, by (5.9), we get

PV(O)=22—a(l+a)(1+¢,)*=C,, for £eR

by choosing such positive constant e, that e, <./2/(«(1+a)) — 1 for any ae(0, 1).
By Lemma 5.1, substituting (5.7) into (5.6), we have

1 d , U 2
ERrT L {(wo)(V)$> +w(V )2} d& +7f wo(VYzdg

Ro
n+2 _
1Y | wrwzde— =L w0hOw( &)
i=1 JR, 2s

n+2

A, é)d{sf Fw(VWd¢ . (5.12)

R

[ - Les-dwi oraes
Re 28

i=1 JR;

Step 2. Due to the continuity of w(V), ie., w;(v)=w;, (), and wj(0)=
—w1(0)h'(0)/h(0), K'(v,)=0 (see (3.5)), we have
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1— -
~ s“ WolOROW(t, £ =— : — Wy OO £’
n+1
2 2 (0 0= Y G =W IRV 607}
1—o nt+1 n+1
== ) —(wi(V)h'(V)nlz(t,é Bi(t, ©)d¢,  (5.13)
S i=1Jg, 0 i=1 Jg,

where
Bi(t, O)=[wi(V)K(V)+w,(V)H'(V)IV
+2w; (VW (Ve , i=1,---,n+1. (5.19)
Substituting (5.13) into (5.12), we have

%di f (WX V)P +w(V )2 dE+E f wo(V)pide
t Jr 2 Ro

n+2

'S wovwrde+ j e s o2

i=1 Ry Ro

nt+1
+ Zl (Adz, §)+——B(t é))df+J Ay (2, é)désj Fw(VydS. (5.15)
= R; R; R

Using Cauchy’s inequality and usV,=h(V), we obtain

n+1

Z (At é)+———B , O)d¢

R;
= _1_ Y 2_ Wi (V) ’ 7
—J.Ri { > Wi Y(VIVAsd+ ) [ v V) K(V)+h (V):lupz

+n )] 2D v+ s';“ h'(V)]wg}dc

> f g ORGP f wi(VIWEE,
R, S 2 Jr,

i=1,--,n+1, (5.16)
where
o o Wi(V) | h(V) | wi(V) _ RY) 2
ZV)=H )+ K)ot = [wi(V)+(1 a)W], (5.17)
yi(V)=w;a') (V). (5.18)

We can prove the following
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LEMMA 5.3. It holds
Zi(V)ZO, y,(V)SO for VGI,-, i=1,"', n+15 (5.19)
provided the shock strength is suitably small.

PROOF. Since the weight functions wy;j(V) on I,; are different from w,;_,(V)
only;_,,j=1,--,(n+1)/2, we have to divide the arguments into two parts to discuss
(5.19) as follows.

Part 1. When Vel,;, ie., (€R,;, j=1, -, (n+1)/2, noting wyj=ky;6'(V)™1,
a"(V)=h"(V)=0 and G(V)<0, i.e., 0<h(V)/h(V)<a"(V)/a'(V), we have y, ;(V)=0 and

Zz,-(V)=s2 a'(V) + h(V) I:_ o’(V) +(—a H(V) :lz

a'(V) o a'(V) hV)
20'(V) | h(V) ( a"(V) )2 _a2oW ..
=S O.I(V) + o O"(V) =s O'l(V) (1 q21,a(V))ZO s
where
__ hV)e"(v)
92;.(V)= W >0,

and maxy.;, 4, (V)<1if |v, —v_|«].
Part 2. When Vel ,, ie, Ce€R,j_y, j=1,-'-,(n+1)/2, since Wyjg1=
—kz;-1/A(V), 6"(V)=h"(V) =0, h(V)<0 and G(V)>0, we have

Y2j-1(V) =(W2j— 16)Y (V)= W’zj— 1V)a'(V)+ Wwyi—1(V)a"(V)
K ,: K(V)'(V) d"(V)
=Kzj—1 -

]= —k2;- 1 G(V)/WV)*<0,

h(V)2 h(V)
e o WaimaV) B[ wh V) h'(V)T
Za ) =R O o [wz,--l(V)“L(l “uv)
— VY — (1 — h,(V)z
=H(V) =1~ = 220,

Thus, we have proved Lemma 5.3.
By (5.15), (5.16) and (5.19), we obtain

1 d
> 7 L (wo'XV)? +w(V?)dé +%j wo(V )W 2dE

Ro

n+1
+ 2y w;(VW2dé+p f Was2(V I EdE
2 i=1 JR, Rp+2

. f e S-S, erde + j Ay alt, E
Ro 28 R

n+2
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sj Fw(VWdéE . (5.20)
R

Step 3. Now we consider the last term in the left hand side of (5.20). When
Vel,,,,ie., E€eR, ,=(—00,¢,], dueto Kawashima and Matsumura [4], we have

_ Wn+22(V) Vgl: w;l+2(V; h’(V)+h”(V):||//2d£
S

j‘ An+2(t1 é)dé =
Rn+2

Rnp+2 Wpi2

+ I %(w,ﬁ 20 (VXsp+y)?dE+p j Was 2A(VIV ¥ cde
Rn+2 s R

Ve g i VYsb+wRde

2 —% W..+z(V)l//§d¢‘+f oy

Rn+2 Rn+2

—J —Izliwn+2(V)Zn+2(V)l/f2d§ , (5.21)
Rn+2 S

where y, 4 2(V)=(W,.,0'(V) and

zn+2(V)=h"(V)+h'(V)l”ﬁglm(m[M]’ |

n+2 ) Wn+2(V)
As in [4], it is easily checked that

Yuia(V)=0 and z,,,(V)=0 (5.22)

provided |v, —v_ |«1.
Substituting (5.21)~(5.22) into (5.20) and integrating the resultant inequality over
[0, t], we have the following first Key Lemma.

KEeEy LEMMA S5.4. It holds that

| (&, !//)(t)|§¢>++J~ I¢¢(T)l§¢>+dt+jj | Vel¥(z, )*didr
(o) 0 v Ro

< C(| (do Vo) |%¢) .t Ny(®) J | ¢¢(T) l%g) 12 d‘f) . (5.23)
0

REMARK 5.5. In the non-degenerate case, noting Lemma 5.2 and (5.3);, we
get

(¢, ¢)(t)II2+J |I¢¢(t)||2df+Jj | Vel Y(z, )*dide
(o] 0 Y Ro

< C(II(¢o, Yo)ll2+ No(®) j II¢¢(1)||2dt> .
0
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Thus, we can prove part (A) of Proposition 4.6 corresponding to the procedure in
[4, 10].

REMARK 5.6. G(v) may have infinitely many v;’s defined in (3.10), so that there
are cluster points. But, both endpoints 0 and v, are not cluster points by (3.9). Denote
a cluster point by # with v} — & as j— co. Then, we have lim;_, , ki=k'< + oo and also
lim;, , k5., /ks ;= — h(§")/0"(5"). Due to this, at each cluster point, by changing Z:’: (‘;" to
Y., ;» the procedures in steps 2-3 are still available.

The next Key Lemma is to estimate the last term in (5.23) for suitably small N, (z).

KEYy LEMMA 5.7. It holds that

| @) |%§>‘+/2 +(1— CNl(t))j | de(7) |%¢>‘+/2 dt < C(|(¢o, ¥0) l%¢>+ +| Po,x |f§>‘+/2) . (5.29)
0

ProOOF. From equations (4.10), we have

PP —Spupe:+0' (V)4 sy, —y,=—F. (5.25)

Since L3, = Ljs=L%;,,, consider our problem in the weighted space L2, at first.
(i) On the interval [y, + 0)=R,, i.e., ve (v, 0], multiplying (5.25) by r(£)*/2 o
(here r(&)=1+¢—¢&,, see (5.2)), we get

SO 83— 2 (MO $8 e+ D)2

| +r()V2(V)pE +sr(&) b s —r(E) VY e = — Fr( O3, . (5.26)
By the first equation in (4.10), we note that

_r(f)1/2¢,¢g= —{r(é)1/2¢¢¢}t+r(é)1/2|/,¢§t= _ {r(é)l/zwd’;‘}t"'r(é)l/Z'//(S(ﬁg"‘wg)g
= — {r(§)1/2¢¢¢}t+ {r(é)I/Zl//(sng + '/’r:)}g —sr(§)1’21//¢¢§ _ r(§)1’21/1§

—ir«:)-”zwg—{ir(é)-mw} Loy, (5.27)
2 4 ;8
and

<&;1(8)'20'(V)$F +(160'(0)e,) ™ s7r() 32y (5.28)

’ —%r«:)—”zwg

where 0<eg, <1.
Substituting (5.28), (5.27) into (5.26), and integrating it over R,, we have
H d +o d + +

© % 1/2 42 N e 1/2 SH —1/2 42
s ), OO e | O g aze ) Lo HO) ¢ 3de
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+

_ * 12, 297 s? }_)J‘Ho -3/2,2
+(1—¢) . r(&)2e' (V)P ds (160’(0)32 + 5)).. r(&)~*y*dE

+

—j ) r(&)'*yzd¢ +—‘l‘—r(fo)_ V2y(t, &o)* < —J r¢)'2¢ Fdc , (5-29)
%o So

where { - -} = —(sp/2r(&)*$Z + r(&)"*Y(s¢; + ). Moreover, by Cauchy’s inequality,
we find the fact

+

rEo) e, £ = —%r(cor 16 Lo —(%(r(é)' Uy, £2)de

- —%r(éo)’”‘f i {—%r(é)'s"«ﬁ’w(é)' *"2¢~/f¢}dé

4
1 + o0

2—4- {%—r(c)—SM‘pz_r(é)—Slzll,z_r(é)‘l/g}dé ’ (5.30)
%o

where r({y)=1.
Substituting (5.30) into (5.29), we have

i_d_ e 1/2 42 __d_ T 1/2
7 ar ), OV Hewcomgr ), rOPoebd
+ 2N g2+ (1 —2) ® KO e (V)oRdE+ f " COurde
&o %o $o
<CN,(®) wr(é)"2¢§d¢+c j wr(é)tlf%dé, (5.31)
%o $o
where
YT { e S _}
C. (0= T r®) 2200) 6;. (5.32)

Since r(£)=0( &]) as & — oo, we know there exists a larger number ¢, (>¢&,) such
that

ng(f)ZO on [é**; + w) ’ lczz(é) | SC on [éo, é**] . (5°33)

Due to (5.23) in Key Lemma 5.4 and the boundedness of | V| on [{o, 44l noting (5.33)
and w(V)~ (&>, ~r(£), we obtain

t ["&ee t
j j | C.,(O) 1 ¥(z, &)*dEdr < C(l (@0 YO l2ey, +N 1(t)f | (1) l%ngdt) , (5.34)
0J¢&o o

f " C (O, E2dE0. (5.35)
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Then we can rewrite (5.31) as

u d

B e (Ve [ 0 g
t ), :

dt J,,
+ oo

+(1—¢,) r(ﬁ)llza'(V)¢§d5+j . C..(Oy*d¢
%o : aox

(< +
< J | C, () [ Y2dE+ CN,(t) r(&)2¢zdl+C J r(&)yzdc . (5.36)

$o go So

(ii) On the another interval (— 0, &1, i.e., ve[0, v_], multiplying (5.25) by ¢,,
and integrating it over (— o0, &,] (here r(£)=1), we have

_ d &o
2 dtJ‘ ¢§§ { }lg & 7,

<CN,(0) |- ¢¢dé+C f W2de . (5.37)

&o

¢¢¢ d¢+ J o'(V)pide

0

The continuity of (¢) at &, admits the addition of (5.36) and (5.37). Noting
T 1/2 H 2 1 2
r(©)Y* | o | dE S‘Z— | ¢ |r(§)1/2+7| ¥ e s

and (5.34)-(5.35), Key Lemma 5.4, and {&), ~r(&), we obtain (5.24).
bBy Key Lemma 5.4 and Key Lemma 5.7, we have the following
LEMMA 5.8. It holds that

| (6, Y)O 2y, + j |Ye(x) 2y, dr < Cll o, Yo) 2y, +1 o clier ) » (5-39)
(o)

t
| dA1) |?¢) 12 +j | §e(7) |?¢> y2dt < C(| ®o> ¥o) I%@ Ll Do |%¢>1+/2) , (5.40)
0

provided N(T) is suitably small.

Next, we shall derive the higher order estimates on the solution (¢, ¥). Let us
differentiate equations (4.10) in &, and multiply the first equation by w(V)a(V)¢, and
the second one by w(V )y ,, respectively. We add them and integrate the resultant equation
over [0, £] X R, similar to the procedures in Lemma 5.1-Lemma 5.8. Then, by the fact
w(V)~<(&> o ~r(&) and L2, =L%,, =L2;, we have

LEMMA 5.9. It holds that

|(¢¢, '/’g)(t) lw(V)+J‘ W/g;(f) |w(V)dT <C(l(¢0, ¥o) ﬁ,w(V)‘*‘ | d’o,gg |\2v(V)1/2) s (5.41)
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t
| Peelt) 12 wyrz+ j | @ee(7) [wry12dt < C(l (do, Yo) 13wy +1 Do, I‘zv(V)‘/z) (5.42)
0

for suitably small N(T).
Similarly, the second order estimate of the solutions can be proved as follows.

LEMMA 5.10. It holds that

| (Pees Ve)®) 2e5 . + j |¥eee(0) 122y, AT < Cl (o> ¥0) 2,25 (5.43)
0

for suitably small N,(T).

THE PROOF OF PROPOSITION 4.6 B(i). Combining Lemmas 5.8-5.10, we have

| (&, Y)O15.ce5. +J‘ {l$e(0) I%,<¢>‘+’2 + | Y y(7) |%,<¢>+}dTS C|l(do> ¥o) 3.ce5.
0

for suitably small N,(T).
Thus, we have completed the proof of (i) of part (B) in Proposition 4.6.

5.2. The proof of Proposition 4.6 B(ii). Let (¢, ¥)eX,(0, T) be a solution of
(4.10). By the same procedures as in the last sub-section, we establish the key estimates
corresponding to Lemmas 5.4-5.7 by the weight functions w(V) and r(£). Noting w(V) ~
(&, ~r(f), and L%y,=L%, =LZ,, we obtain the following lemma.

LEMMA 5.11. It holds that

| (&, ¥)(¥) I%o,, +J' | ‘/’g(T) |§§>+ dt < C(|(do, ¥o) |%¢)+ +| d’o,g |§¢>?{‘) s (5.44)
0

t
| ¢¢(t) |%§>-’:,/‘ +f | ¢§(T) |§¢>a/4df < C(| (d’Oa '/’0) |%¢> . +| ¢o,¢ |%e:>i/") . (5-45)
(i}

Next, we shall derive the higher order estimates on the solution (¢, ¥) without
weight function. This procedure is simpler than the previous one. According to Lemma
5.11, we can prove the following Lemmas by the same way as in [4, 10]. So, we only
give the sketch of the proofs.

Multiplying the second equation of (4.10) by —y,, and integrating it over [0, 7]
x R, we have by Lemma 5.11

LEMMA 5.12. It holds that

"'/’g(t)uz'*'j |||/’¢¢(T)||2dTSC("(¢o,ga '/’o,;)“z‘l‘ | (b0, ¥o) |§§>+ +| ¢o,¢ |%.:>3+/‘) (5.46)
- Jo

Sfor suitably small N,(T).
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When we differentiate (5.25) in £ and multiply it by ¢, and integrate the resultant
equation over [0, f] x R, we get

LeEMMA 5.13. It holds that

Pl 24 j @ee(D)l 2dr
0

SClllgoell+ 1Wo,el* +1(Po, o) 265, + o e I%oif‘) (5.47)
Sor suitably small N,(T).

Differentiating the second equation of (4.10) in ¢ and multiplying it by — s,
and integrating the resultant equation over [0, ] x R, we obtain

LEMMA 5.14. }It holds that

I ¢§¢(t)'| 2+ J‘ | ‘Sb:g.:(‘t) I 2dr
0

< C(”d’o,g, wo,gnf + | (¢o: ‘/’0) |§.§>+ + | d’o,c |§¢>1+/2) (5-48)
for suitably small N,(T).

Finally, combining Lemmas 5.11-5.14, we complete the proof of Proposition
4.6 B(ii).
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