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1. Introduction.

Let p be an odd prime number, which will be fixed throughout the present paper.
For any real abelian number field K, let K, denote the cyclotomic Z,-extension of K
and K, its n-th layer over K. Let A4, and A4, = A4,/({ideal classes of K, which contain a
prime ideal above p) N A4,) be the p-Sylow subgroups of the ideal class group and of
the p-ideal class group, respectively, of K,. Let E, and C, be the’ groups of units and
of cyclotomic units in the sense of Sinnott, respectively, of K, (cf. [7]). Denote by B,
the p-Sylow subgroup of the quotient group E,/C,. We write 4,(K) and u,(K) for the
Iwasawa A and p invariants, respectively, of K, /K.

It is well known that the order of 4, and B, are “almost” equal. For example, if
p{I[K: Q] then #(4,) = #(B,) (cf. [7]). Furthermore, the Iwasawa main conjecture proved
by B. Mazur and A. Wiles implies that the characteristic ideals of Z ,[[Gal(K,/K)]]-
modules lim 4, and lim B, coincide, where the projective limits are taken with respect
to the norm maps (cf. [6], [3]). So it arises a natural question: Is there any deeper
relation between the Galois module structures of 4, and B,?

In the present paper, we shall give an answer to the above question under the
assumption that Greenberg’s conjecture (cf. [2]) is valid. Specifically, we shall prove
the following:

THEOREM 1. Let K be a real abelian number field with p {[K : Q). If we assume
that Greenberg’s conjecture is valid for K and p, namely, that the Iwasawa invariants
LK) and p,(K) vanish, then A, is embedded in B, as a Galois module (namely,
Gal(Q/Q)-module) for all sufficiently large n.

We remark that u,(K) always vanishes in the above theorem by the Ferrero-
Washington theorem (cf. [1]).

We shall prepare some results about the Galois cohomology groups of cyclotomic
unit groups in section 2, and give the proof of Theorem 1 in section 3.
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2. Galois cohomology groups of cyclotomic unit groups.

Let I, ,=Gal(K,/K,) and N,, ,=Ng_ for m=n=0. In this section, we calculate
the Tate cohomology groups HXT,,,, C,) for i=—1,0, m>n>0 by the method of
J. M. Kim in [5].

THEOREM 2. Let K be areal abelian number field and p an odd prime withp { [K: Q].
For m>n=>0, we have

H N[y, C)=(Z[p™~"Z)®* and AT, C,)~(Z/p™ "Z)®" 1,

where s stands for the number of primes of K above p.

To prove the above theorem, we show the following:

PROPOSITION.  Let K be a real abelian number field with p }[K : Q]. Then

Clmn=C,

Jor all m>n>0.

ProOF. For a finite abelian group G with p | #(G), and y e Hom(G, Q;), we put

1
*~HG) 4

Then, for any Z,[G]-module M, we have M= @ &,M, where x runs over all elements
of Hom(G, Q) modulo Q,-conjugacy.

We put G=Gal(K/Q). Let H,=Ker(x) for ye Hom(G, Q,), and let K*=K"x. We
denote by K} the n-th layer of the cyclotomic Z ,-extension over K*. Then KZ/Q is a
cyclic extension with Galois group G/H, xT', ,. Let C,, be the cyclotomic unit group
of K} for n>0. Then C, ,=C, and Ny, kxCa = C, 5 Since y(H,)=1, we see that

1 -
*=HG) aeGE)wz Tro, o, (@) ™" :e;;, T
Hence ¢(C,® Z,)=¢,(C, .® Z,) for n>0. Therefore,
Crr®Zy=® e Cu@Z) ™=@ (Cyn® L) ™= B £,(CLa" B Z,).

Since K%/Q is a cyclic extension, we have C;j7"=C,, by Greither’s theorem (cf. [4,
Satz 2.1]). Hence we obtain

Cir"®Z,=@® e/(C,,®Z,)=C,® z,.

It follows from the above equation and (CL")*" "=N,, (CIm")c= C, that CLmn»=C,.
O

€ Z Tro, om0, (100~ €Z,[G] .

PrOOF OF THEOREM 2. Let f=p?f’ (6=0or 1, and pJ( f') be the conductor of X
and f, the conductor of K,. Then f,=p"*'f’ for n>1. Put Nn.a= Nogak.nocall —L2)
for deN and n>0. Let
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Co=2[Gal(K,/ Q)W pn+1 N E,
G =Z[Gal(K,/Q) N gpn+1 | A1 f', d#1),
C=Z[Gal(K/QK—1,7n94| d|f",d#1)> N E,.
Since N, M apm+1 =N apn+: for deN and m>n=>0, we obtain
(1) Npy.Cn=C, and N,,,C,=C),

in particular, we see that C,<=C,, and C,<C,,. Then C,=CC,C, for n>0 by [4,
Folgerung 1.2]. We write K and K; <KX for the inertia and decomposition subfields,
respectively, of K for p. Then K;=Kn Q({,) and C=Kj.

CLamM 1. rankzNg  x, C=s—1.

ProorF. We denote by E the unit group of F for any algebraic number field F.
Since the conductor of K is f’, C is the cyclotomic unit group of K. It follows from
[7] that Eg, /C s finite. Hence Ng_ x,Ex,/Nk,/k,C is finite. Therefore rank; Nk, x,C=
rank, Ny g, Ex,=rankzEx, =s—1. [

CLamM 2.

Cer- V-V CnC,ClcsC
K7/Q

for n>0, where ap=( )and C={ee C| Ng x,£=*1}.

ProOF. Letd|f’,d#1.Then(1—{,)% '=[]7=+ (15 %) by [5, p. 516]. Taking
the norm from Q({,4) to Q({,) N K, we find that {3~ PP Ve Cn C{=Cn C,. Hence
we have Ce»~De-DcCA C,Cl.

Let e=(]]4  an1Mi%ne1aMim+s be any element in Cn C,C,, where a, fe
Z[Gal(K,/Q)]. Taking the norm N, ,, we have

ap"=< H "8?pd>"g,p .

By [5, p. 5161, it holds that Nog, ol —Cpd) = ‘1"?’. Hence
—b&d

3 [K: Kz(K A Qpa)]
NiikoM0.pa= Nk n 00Kz n@taNot,ak negall =Epd) - 7 7

_ — DK : Kz{(K nQ( ))) .
= Nk notarkz neeaNewak nagall — )07~ DK KK N0 = 7

Since Ng/x,M0.,= Nk o yallbs 2 " WrM = plK:KzKn Qo) and § , is a unit, we have
Ngx,n8,,=1 by the above equation. Therefore N x,e”" =Nk, x,e” ¥ ¥m1=1. Thus we
obtain CnC,C/'<=C. O
By the Proposition and (1), we have
(2) H(T,,,, C,)=C,/N,,,Cru=CC,C;/CP""C,C!
~C/Cn CP"C.Cl=C/CP™(C A C.CY).
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CLam 3. CP""(Cn C.C!)=CP"""C.

ProoF. Since p{[K:Q], we see that #(Ker(Ng,x,: C—C)/C°* )=
#(A~'(Gal(K;/Kz), C)) is prime to p. So we find p}#(C/C°»~P®-V)  Hence
CcrmrCler~ Ve~ D= CP"""C. The claim follows from Claim 2 and this equation. [J

It follows from Claim 1 that C~C@® Z®*~!. By (2), Claim 3, and this formula,
we see H(T',, ,, C,)~C/CP" "C~(Z/p™ "Z)®~1,

CLamMm 4. Ker(N,,: C,—C)EN,,C, for I>m>n=>0.

PrOOF. Let C=C@® C,, where C,~Z®*"! Let e=¢,¢,6;€Ker(N,,,: C,,— C,),
wheree, € C, ¢, Cp,and e5€ C,,C,,. Then 1 =N, ,£=(g,6,)"" "N, €3, hence N, .€3€Cn
C,C, = C by Claim 2. Therefore &, =1. It follows from (2) and Claim 3 that CS N, ,,C,.
So we conclude ¢=¢,e,€ CC,,C,=N,,,C.. [0

From AT, C.)~(Z/p™ "Z)®*~!, Claim 4, and the same argument as in
section 3 of [5], we see that A~ Y(I" mns Cm) =(Z/p™"Z)®*. Thus we have completed the
proof of Theorem 2. []

3. Proof of Theorem 1.

Throughout this section, we assume that a real abelian number field X and an odd
prime p satisfy the assumption of Theorem 1.

Let 7, and P, denote the ideal group and the principal ideal group, respectively,
of K,. Denote by I'P the subgroup of I, such that 4,=I?/P, for n>0. We write
P..: (1 <i<s) for the primes of K, above p for n>0, where s stands for the number of
primes of K above p. Here, we note that all primes of K above p are totally ramified
in K, since p{[K : Q]. We write ¢, for the non-p-part of the class number of K, and
put S,=<{P;u|1<i<sd><IP for n>0. We note t,|t,, for m>n>0. Let D,=S,P,/
P,=A,. Then A,~A,/D,.

Taking the cohomology sequence of the exact sequence of Galois modules

00— Cm_—’Em'_’Em/Cm—’O s
we get the exact sequence of Galois modules
0 - Bn - Br{;m’n -_— IAI~ 1('r'm,m Cm) - ﬁ— 1(r,m,it’ Em) —_— ﬁ— 1(l-'m,m Bm)

for m>n=>0. Since 1,(K)=p,(K)=0 from the assumption, and #(4,)=#(B,) (cf. [7]),
there exists a number n, >0 such that B,,= B, for all m>n,, where we regard B, as a
subgroup of B,, by the injective map induced from the natural inclusion E, < E,,: Note
that the Proposition provides the injectivity of the map B,— B,, for m>n>0. Hence
A~ YT, ,, B,)~B, for all m>n>n, with p™~"B, =0. We will identify A~XT,, ,, E,,)
with PI=»/P, by the Galois module isomorphism

Pgm'"/Pn = FI— 1(I-'m,m Em) s

(®)mod P,— o~ 'mod E}mn~1 |
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where y,, ,€T, , is a fixed generator of I',, ,. So we have the exact sequence of Galois
modules

3) 0—s BT, Cp) 1 PLmn/P, — B,

for m>n>n, with p™~"B, =0. We shall show in the following that Coker(f)=~A4, as
Galois modules if m>n is sufficiently large, which implies Theorem 1.
We shall prepare some lemmas to prove Theorem 1.

LeMMA 1. Let n>0. Then we have
Pymn [P, =LIP|P,, (P,, " S,)P,/P,>
Sfor sufficiently large m>n.

PrOOF. Since 4,(K)=pu,(K)=0, I{P’=1I, ~n P, < P{m~ for sufficiently large m>n by
[2, Proposition 2]. Let (x) be any ideal in PI=» Then there exist AWel, and
PBe (P, |1<i<s) such that (x) =AP. Since A" P =1, N P,, we see P€ P,, N S,,.
Thus we have (PLm~ym<I®, P, n S,>. Since pft, and PL=~/P, is a finite p-group,
we obtain P ~/P,=<IP/P,, (P, N S,)P,/P,>. This inclusion and P,, N S,, < PL=r imply
Lemmal. [
LeMMA 2. Let n>n, Then
(PO Sy)P,/P,~(Z[p™ " "ZL)®*,
(Pw O S)P,/P,) N P[P, =D,
Sfor sufficiently large m>n.

PrOOF. Since I, N S,,< I and IP’ < P, for sufficiently large m > n ([2, Proposition
2]), we have the following inclusions of groups for such m>n:

P.nS,csl,nS,csP,nS, =S, .

We note that I, n S,,=SE" "= S/ and that S,,/P,, N S,,~D,,. Since n>n,, it follows
that D, ~D, by the norm map N, , Hence we have S,/P,NS,~D,. So we find
that I, S,,/P, N S, ~Sm™/P. A S""~D and S,/[,NS,=S,/SE" "~(Z/p™ "Z)®:.
Therefore we obtain

C)) #(Pp O Sp/Py N Sp)=p™7"".

PM“‘"_

Let PeP, N S,. Taking the norm operator N,,, from I, to I,, we have P
N, BeP,nS,. Hence

) (P, S, /P,AS, )" "=1.

It follows from S,,~Z®" that
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(6) p-rank(P,,n S,,/P, 0 S,)<s.

From (4), (5), and (6), we obtain (P,, N S,)P,/P,~P,N S, /P, S,~(Z/p™ "Z)®°. The
second assertion of the lemma follows from I " P, N S,,=I" N S, =S"" O

LeMMA 3. Let M be a finite abelian p-group. We assume that M has subgroups N
and H such that N~(Z/p°Z)®", p®*>X H=0, and M= N+ H for some e>0, r>0, where
[ 1 stands for the Gaussian symbol. Then, for any subgroup N' =M with N' ~(Z/p°Z)®",
we have

M=N'+H, N nH=NnH.

ProoF. Write N=@ ., Zn,and N'=@ ;_, Zn;, where Zn;~Zn;~Z/p°Z. From
the assumption of the lemma, there exist (a;;)€ M(Z) and h;€ H, 1 <i<r such that

(7) n;= Z a,‘jnj"‘hi, ISlSV
=1
Multiplying (7) by p¢~!, we obtain
peini= Y ayp*'n;, 1<i<r,
j=1

since p*~'H=0 from the assumption of the lemma. Hence we find p* 'N'=p¢~ !N,
and (@;modp)e GL(Z/pZ). Therefore there exists a matrix (b;;)e M(Z) such that
(bijMa;;)=E, (mod p°), where E, € M (Z) denotes the identity matrix. From (7), we have

r
Zbij”}=”i+h.-', hieH, 1<i<r.
i=1

It follows from the above equation that N N’ + H. Hence we have M= N'+ H. Since
(b;;mod p?)e GL(Z/p°Z), it holds N'=@_, Z(n;+h;). Let x=>_, c{n;+h{) be any
element in N'n H. Then 0=p!“?Ix=3"_ ¢,p'®?n,. Hence we have p'®?|c; for all
1<i<r. So we can see x=)|_,cmeN by the assumption p'“2!H=0. Therefore
N' nH=Nn H. Since M=N'+ H, the same argument shows Nn H=N' ~ H. Thus
we conclude Nm H=N'nH. [].

PrROOF OF THEOREM 1. Let n>n,. Put M=PIm~/P, N=(P,nS,)P,/P,, N' =
Im(f)~H 'y Cn) and H=IP/P,=A4, for m>n with p"~"B, =0, where f is the
homomorphism in (3). By Theorem 2, Lemma 1, and Lemma 2, the above group
M, N, N’, and H satisfy the assumption of Lemma 3 if m>n is sufficiently large.
Therefore Coker(f)=M/N'=N+H/N'=N'+H/N'~H/N'n H=H/Nn H=A,/D,~
A, by Lemmas 1, 2 and 3. This completes the proof of Theorem 1. []

REMARK. The author wants to know if Im(f)=(P,, n S,)P,/P, or not.
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