On the Cyclotomic Unit Group and the *p*-Ideal Class Group of a Real Abelian Number Field

Manabu OZAKI

Waseda University
(Communicated by T. Suzuki)

1. Introduction.

Let p be an odd prime number, which will be fixed throughout the present paper. For any real abelian number field K, let K_{∞} denote the cyclotomic \mathbb{Z}_p -extension of K and K_n its n-th layer over K. Let A_n and $A'_n = A_n/(\langle \text{ideal classes of } K_n \text{ which contain a prime ideal above } p \rangle \cap A_n)$ be the p-Sylow subgroups of the ideal class group and of the p-ideal class group, respectively, of K_n . Let E_n and C_n be the groups of units and of cyclotomic units in the sense of Sinnott, respectively, of K_n (cf. [7]). Denote by B_n the p-Sylow subgroup of the quotient group E_n/C_n . We write $\lambda_p(K)$ and $\mu_p(K)$ for the Iwasawa λ and μ invariants, respectively, of K_{∞}/K .

It is well known that the order of A_n and B_n are "almost" equal. For example, if $p \nmid [K:Q]$ then $\#(A_n) = \#(B_n)$ (cf. [7]). Furthermore, the Iwasawa main conjecture proved by B. Mazur and A. Wiles implies that the characteristic ideals of $\mathbb{Z}_p[[\operatorname{Gal}(K_\infty/K)]]$ -modules $\lim_{n \to \infty} A_n$ and $\lim_{n \to \infty} B_n$ coincide, where the projective limits are taken with respect to the norm maps (cf. [6], [3]). So it arises a natural question: Is there any deeper relation between the Galois module structures of A_n and B_n ?

In the present paper, we shall give an answer to the above question under the assumption that Greenberg's conjecture (cf. [2]) is valid. Specifically, we shall prove the following:

THEOREM 1. Let K be a real abelian number field with $p \nmid [K: \mathbb{Q}]$. If we assume that Greenberg's conjecture is valid for K and p, namely, that the Iwasawa invariants $\lambda_p(K)$ and $\mu_p(K)$ vanish, then A'_n is embedded in B_n as a Galois module (namely, $\mathrm{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ -module) for all sufficiently large n.

We remark that $\mu_p(K)$ always vanishes in the above theorem by the Ferrero-Washington theorem (cf. [1]).

We shall prepare some results about the Galois cohomology groups of cyclotomic unit groups in section 2, and give the proof of Theorem 1 in section 3.

2. Galois cohomology groups of cyclotomic unit groups.

Let $\Gamma_{m,n} = \operatorname{Gal}(K_m/K_n)$ and $N_{m,n} = N_{K_m/K_n}$ for $m \ge n \ge 0$. In this section, we calculate the Tate cohomology groups $\hat{H}^i(\Gamma_{m,n}, C_m)$ for $i = -1,0, m \ge n \ge 0$ by the method of J. M. Kim in [5].

THEOREM 2. Let K be a real abelian number field and p an odd prime with $p \nmid [K: \mathbb{Q}]$. For $m \geq n \geq 0$, we have

$$\hat{H}^{-1}(\Gamma_{m,n}, C_m) \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{\oplus s}$$
 and $\hat{H}^0(\Gamma_{m,n}, C_m) \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{\oplus s-1}$,

where s stands for the number of primes of K above p.

To prove the above theorem, we show the following:

PROPOSITION. Let K be a real abelian number field with $p \nmid [K: \mathbb{Q}]$. Then

$$C_m^{\Gamma_{m,n}} = C_n$$

for all $m \ge n \ge 0$.

PROOF. For a finite abelian group G with $p \nmid \sharp(G)$, and $\chi \in \text{Hom}(G, \mathbf{Q}_p^{\times})$, we put

$$\varepsilon_{\chi} = \frac{1}{\sharp(G)} \sum_{\sigma \in G} Tr_{\mathbf{Q}_{p}(\chi(G))/\mathbf{Q}_{p}}(\chi(\sigma))\sigma^{-1} \in \mathbf{Z}_{p}[G].$$

Then, for any $\mathbb{Z}_p[G]$ -module M, we have $M = \bigoplus \varepsilon_{\chi} M$, where χ runs over all elements of $\operatorname{Hom}(G, \overline{\mathbb{Q}}_p^{\times})$ modulo \mathbb{Q}_p -conjugacy.

We put $G = \operatorname{Gal}(K/\mathbb{Q})$. Let $H_{\chi} = \operatorname{Ker}(\chi)$ for $\chi \in \operatorname{Hom}(G, \overline{\mathbb{Q}}_p^{\times})$, and let $K^{\chi} = K^{H_{\chi}}$. We denote by K_n^{χ} the *n*-th layer of the cyclotomic \mathbb{Z}_p -extension over K^{χ} . Then K_n^{χ}/\mathbb{Q} is a cyclic extension with Galois group $G/H_{\chi} \times \Gamma_{n,0}$. Let $C_{\chi,n}$ be the cyclotomic unit group of K_n^{χ} for $n \ge 0$. Then $C_{\chi,n} \subseteq C_n$ and $N_{K_n/K_n^{\chi}}C_n \subseteq C_{\chi,n}$. Since $\chi(H_{\chi}) = 1$, we see that

$$\varepsilon_{\chi} = \frac{1}{\sharp(G)} \sum_{\sigma \in G \bmod H_{\chi}} Tr_{\mathbf{Q}_{p}(\chi(G))/\mathbf{Q}_{p}}(\chi(\sigma)) \sigma^{-1} \sum_{\tau \in H_{\chi}} \tau.$$

Hence $\varepsilon_{\chi}(C_n \otimes \mathbb{Z}_p) = \varepsilon_{\chi}(C_{\chi,n} \otimes \mathbb{Z}_p)$ for $n \ge 0$. Therefore,

$$C_m^{\Gamma_{m,n}} \otimes \mathbf{Z}_p = \bigoplus \, \varepsilon_{\chi}(C_m \otimes \mathbf{Z}_p)^{\Gamma_{m,n}} = \bigoplus \, \varepsilon_{\chi}(C_{\chi,m} \otimes \mathbf{Z}_p)^{\Gamma_{m,n}} = \bigoplus \, \varepsilon_{\chi}(C_{\chi,m}^{\Gamma_{m,n}} \otimes \mathbf{Z}_p) \,.$$

Since K_m^{χ}/\mathbb{Q} is a cyclic extension, we have $C_{\chi,m}^{\Gamma_{m,n}} = C_{\chi,n}$ by Greither's theorem (cf. [4, Satz 2.1]). Hence we obtain

$$C_m^{\Gamma_{m,n}} \otimes \mathbf{Z}_p = \bigoplus \varepsilon_{\chi}(C_{\chi,n} \otimes \mathbf{Z}_p) = C_n \otimes \mathbf{Z}_p.$$

It follows from the above equation and $(C_m^{\Gamma_{m,n}})^{p^{m-n}} = N_{m,n}(C_m^{\Gamma_{m,n}}) \subseteq C_n$ that $C_m^{\Gamma_{m,n}} = C_n$.

PROOF OF THEOREM 2. Let $f = p^{\delta} f'$ ($\delta = 0$ or 1, and $p \nmid f'$) be the conductor of K and f_n the conductor of K_n . Then $f_n = p^{n+1} f'$ for $n \ge 1$. Put $\eta_{n,d} = N_{\mathbf{Q}(\zeta_d)/K_n \cap \mathbf{Q}(\zeta_d)}(1 - \zeta_d)$ for $d \in \mathbb{N}$ and $n \ge 0$. Let

$$C'_{n} = \mathbf{Z}[\operatorname{Gal}(K_{n}/\mathbf{Q})] \eta_{n,p^{n+1}} \cap E_{n},$$

$$C''_{n} = \mathbf{Z}[\operatorname{Gal}(K_{n}/\mathbf{Q})] \langle \eta_{n,dp^{n+1}} | d | f', d \neq 1 \rangle,$$

$$C = \mathbf{Z}[\operatorname{Gal}(K/\mathbf{Q})] \langle -1, \eta_{0,d} | d | f', d \neq 1 \rangle \cap E_{0}.$$

Since $N_{m,n}\eta_{m,dp^{m+1}} = \eta_{n,dp^{n+1}}$ for $d \in \mathbb{N}$ and $m \ge n \ge 0$, we obtain

(1)
$$N_{m,n}C'_m = C'_n \text{ and } N_{m,n}C''_m = C''_n$$

in particular, we see that $C'_n \subseteq C'_m$ and $C''_n \subseteq C''_m$. Then $C_n = CC'_nC''_n$ for $n \ge 0$ by [4, Folgerung 1.2]. We write K_T and $K_Z \subseteq K$ for the inertia and decomposition subfields, respectively, of K for p. Then $K_T = K \cap \mathbb{Q}(\zeta_{f'})$ and $C \subseteq K_T$.

CLAIM 1. $\operatorname{rank}_{\mathbf{Z}} N_{K_{\mathbf{T}}/K_{\mathbf{Z}}} C = s - 1$.

PROOF. We denote by E_F the unit group of F for any algebraic number field F. Since the conductor of K_T is f', C is the cyclotomic unit group of K_T . It follows from [7] that E_{K_T}/C is finite. Hence $N_{K_T/K_Z}E_{K_T}/N_{K_T/K_Z}C$ is finite. Therefore rank ${}_{\mathbf{Z}}N_{K_T/K_Z}C = \mathrm{rank}_{\mathbf{Z}}N_{K_T/K_Z}E_{K_T} = \mathrm{rank}_{\mathbf{Z}}E_{K_Z} = s - 1$. \square

CLAIM 2.

$$C^{(\sigma_p-1)(p-1)} \subseteq C \cap C'_n C''_n \subseteq \overline{C}$$

for
$$n \ge 0$$
, where $\sigma_p = \left(\frac{K_T/Q}{p}\right)$ and $\bar{C} = \{\varepsilon \in C \mid N_{K_T/K_Z}\varepsilon = \pm 1\}$.

PROOF. Let $d \mid f', d \neq 1$. Then $(1 - \zeta_d)^{\sigma_p - 1} = \prod_{i=1}^{p-1} (1 - \zeta_{pd}^{p+id})$ by [5, p. 516]. Taking the norm from $\mathbf{Q}(\zeta_{pd})$ to $\mathbf{Q}(\zeta_d) \cap K$, we find that $\eta_{0,d}^{(\sigma_p - 1)(p-1)} \in C \cap C_0'' \subseteq C \cap C_n''$. Hence we have $C^{(\sigma_p - 1)(p-1)} \subseteq C \cap C_n'' \subset C_n''$.

Let $\varepsilon = (\prod_{d \mid f', d \neq 1} \eta_{n, p^{n+1} d}^{\alpha_d}) \eta_{n, p^{n+1}}^{\beta}$ be any element in $C \cap C'_n C''_n$, where α_d , $\beta \in \mathbb{Z}[Gal(K_n/\mathbb{Q})]$. Taking the norm $N_{n,0}$, we have

$$\varepsilon^{p^n} = \left(\prod_{d \mid f', d \neq 1} \eta_{0,pd}^{\alpha_d}\right) \eta_{0,p}^{\beta}.$$

By [5, p. 516], it holds that $N_{\mathbf{Q}(\zeta_{pd})/\mathbf{Q}(\zeta_d)}(1-\zeta_{pd}) = \frac{1-\zeta_d^p}{1-\zeta_d}$. Hence

$$\begin{split} N_{K/K_Z} \eta_{0,pd} &= N_{K \,\cap\, \mathbf{Q}(\zeta_{pd})/K_Z \,\cap\, \mathbf{Q}(\zeta_d)} N_{\mathbf{Q}(\zeta_{pd})/K \,\cap\, \mathbf{Q}(\zeta_{pd})} (1 - \zeta_{pd})^{[K \,:\, K_Z(K \,\cap\, \mathbf{Q}(\zeta_{pd}))]} \\ &= N_{K \,\cap\, \mathbf{Q}(\zeta_d)/K_Z \,\cap\, \mathbf{Q}(\zeta_d)} N_{\mathbf{Q}(\zeta_d)/K \,\cap\, \mathbf{Q}(\zeta_d)} (1 - \zeta_d)^{(\sigma_p - 1)[K \,:\, K_Z(K \,\cap\, \mathbf{Q}(\zeta_{pd}))]} = 1 \ . \end{split}$$

Since $N_{K/K_Z}\eta_{0,p} = N_{K \cap \mathbf{Q}(\zeta_p)/\mathbf{Q}}\eta_{0,p}^{[K:K_Z(K \cap \mathbf{Q}(\zeta_p))]} = p^{[K:K_Z(K \cap \mathbf{Q}(\zeta_p))]}$ and $\eta_{0,p}^{\beta}$ is a unit, we have $N_{K/K_Z}\eta_{0,p}^{\beta} = 1$ by the above equation. Therefore $N_{K/K_Z}\varepsilon^{p^n} = N_{K_T/K_Z}\varepsilon^{p^n[K:K_T]} = 1$. Thus we obtain $C \cap C'_nC''_n \subseteq \overline{C}$.

By the Proposition and (1), we have

(2)
$$\hat{H}^{0}(\Gamma_{m,n}, C_{m}) = C_{n}/N_{m,n}C_{m} = CC'_{n}C''_{n}/C^{p^{m-n}}C'_{n}C''_{n}$$

$$\simeq C/C \cap C^{p^{m-n}}C'_{n}C''_{n} = C/C^{p^{m-n}}(C \cap C'_{n}C''_{n}).$$

CLAIM 3. $C^{p^{m-n}}(C \cap C'_n C''_n) = C^{p^{m-n}} \bar{C}$.

PROOF. Since $p \nmid [K:\mathbf{Q}]$, we see that $\#(\operatorname{Ker}(N_{K_T/K_Z}: C \to C)/C^{\sigma_p-1}) = \#(\hat{H}^{-1}(\operatorname{Gal}(K_T/K_Z), C))$ is prime to p. So we find $p \nmid \#(\bar{C}/C^{(\sigma_p-1)(p-1)})$. Hence $C^{p^{m-n}}C^{(\sigma_p-1)(p-1)} = C^{p^{m-n}}\bar{C}$. The claim follows from Claim 2 and this equation. \square

It follows from Claim 1 that $C \simeq \bar{C} \oplus \mathbf{Z}^{\oplus s-1}$. By (2), Claim 3, and this formula, we see $\hat{H}^0(\Gamma_{m,n}, C_m) \simeq C/C^{p^{m-n}}\bar{C} \simeq (\mathbf{Z}/p^{m-n}\mathbf{Z})^{\oplus s-1}$.

CLAIM 4. $\operatorname{Ker}(N_{m,n}: C_m \to C_n) \subseteq N_{l,m}C_l \text{ for } l \ge m \ge n \ge 0.$

PROOF. Let $C = \bar{C} \oplus C_f$, where $C_f \simeq \mathbb{Z}^{\oplus s-1}$. Let $\varepsilon = \varepsilon_1 \varepsilon_2 \varepsilon_3 \in \operatorname{Ker}(N_{m,n} : C_m \to C_n)$, where $\varepsilon_1 \in \bar{C}$, $\varepsilon_2 \in C_f$, and $\varepsilon_3 \in C'_m C''_m$. Then $1 = N_{m,n} \varepsilon = (\varepsilon_1 \varepsilon_2)^{p^{m-n}} N_{m,n} \varepsilon_3$, hence $N_{m,n} \varepsilon_3 \in C \cap C'_n C''_n \subseteq \bar{C}$ by Claim 2. Therefore $\varepsilon_2 = 1$. It follows from (2) and Claim 3 that $\bar{C} \subseteq N_{l,m} C_l$. So we conclude $\varepsilon = \varepsilon_1 \varepsilon_3 \in \bar{C} C'_m C''_m \subseteq N_{l,m} C_l$.

From $\hat{H}^0(\Gamma_{m,n}, C_m) \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{\oplus s-1}$, Claim 4, and the same argument as in section 3 of [5], we see that $\hat{H}^{-1}(\Gamma_{m,n}, C_m) \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{\oplus s}$. Thus we have completed the proof of Theorem 2. \square

3. Proof of Theorem 1.

Throughout this section, we assume that a real abelian number field K and an odd prime p satisfy the assumption of Theorem 1.

Let I_n and P_n denote the ideal group and the principal ideal group, respectively, of K_n . Denote by $I_n^{(p)}$ the subgroup of I_n such that $A_n = I_n^{(p)}/P_n$ for $n \ge 0$. We write $\mathfrak{P}_{n,i}$ $(1 \le i \le s)$ for the primes of K_n above p for $n \ge 0$, where s stands for the number of primes of K above p. Here, we note that all primes of K above p are totally ramified in K_∞ since $p \nmid [K: \mathbb{Q}]$. We write t_n for the non-p-part of the class number of K_n , and put $S_n = \langle \mathfrak{P}_{n,i}^{t_n} | 1 \le i \le s \rangle \subseteq I_n^{(p)}$ for $n \ge 0$. We note $t_n | t_m$ for $m \ge n \ge 0$. Let $D_n = S_n P_n / P_n \subseteq A_n$. Then $A'_n \simeq A_n / D_n$.

Taking the cohomology sequence of the exact sequence of Galois modules

$$0 \longrightarrow C_m \longrightarrow E_m \longrightarrow E_m/C_m \longrightarrow 0,$$

we get the exact sequence of Galois modules

$$0 \longrightarrow B_n \longrightarrow B_m^{\Gamma_{m,n}} \longrightarrow \hat{H}^{-1}(\Gamma_{m,n}, C_m) \longrightarrow \hat{H}^{-1}(\Gamma_{m,n}, E_m) \longrightarrow \hat{H}^{-1}(\Gamma_{m,n}, B_m)$$

for $m \ge n \ge 0$. Since $\lambda_p(K) = \mu_p(K) = 0$ from the assumption, and $\sharp(A_n) = \sharp(B_n)$ (cf. [7]), there exists a number $n_0 \ge 0$ such that $B_m = B_{n_0}$ for all $m \ge n_0$, where we regard B_{n_0} as a subgroup of B_m by the injective map induced from the natural inclusion $E_{n_0} \subseteq E_m$: Note that the Proposition provides the injectivity of the map $B_n \to B_m$ for $m \ge n \ge 0$. Hence $\hat{H}^{-1}(\Gamma_{m,n}, B_m) \simeq B_n$ for all $m \ge n \ge n_0$ with $p^{m-n}B_{n_0} = 0$. We will identify $\hat{H}^{-1}(\Gamma_{m,n}, E_m)$ with $P_m^{\Gamma_{m,n}}/P_n$ by the Galois module isomorphism

$$P_m^{\Gamma m,n}/P_n \simeq \hat{H}^{-1}(\Gamma_{m,n}, E_m) ,$$

$$(\alpha) \bmod P_n \mapsto \alpha^{\gamma_{m,n}-1} \bmod E_m^{\gamma_{m,n}-1} ,$$

where $\gamma_{m,n} \in \Gamma_{m,n}$ is a fixed generator of $\Gamma_{m,n}$. So we have the exact sequence of Galois modules

$$(3) 0 \longrightarrow \hat{H}^{-1}(\Gamma_{m,n}, C_m) \xrightarrow{f} P_m^{\Gamma_{m,n}}/P_n \longrightarrow B_n$$

for $m \ge n \ge n_0$ with $p^{m-n}B_{n_0} = 0$. We shall show in the following that $\operatorname{Coker}(f) \simeq A'_n$ as Galois modules if $m \ge n$ is sufficiently large, which implies Theorem 1.

We shall prepare some lemmas to prove Theorem 1.

LEMMA 1. Let $n \ge 0$. Then we have

$$P_m^{\Gamma_{m,n}}/P_n = \langle I_n^{(p)}/P_n, (P_m \cap S_m)P_n/P_n \rangle$$

for sufficiently large $m \ge n$.

PROOF. Since $\lambda_p(K) = \mu_p(K) = 0$, $I_n^{(p)} = I_n \cap P_m \subseteq P_m^{\Gamma_{m,n}}$ for sufficiently large $m \ge n$ by [2, Proposition 2]. Let (α) be any ideal in $P_m^{\Gamma_{m,n}}$. Then there exist $\mathfrak{A} \in I_n$ and $\mathfrak{P} \in \langle \mathfrak{P}_{m,i} \mid 1 \le i \le s \rangle$ such that $(\alpha) = \mathfrak{A}\mathfrak{P}$. Since $\mathfrak{A}^{t_m} \in I_n^{(p)} = I_n \cap P_m$, we see $\mathfrak{P}^{t_m} \in P_m \cap S_m$. Thus we have $(P_m^{\Gamma_{m,n}})^{t_m} \subseteq \langle I_n^{(p)}, P_m \cap S_m \rangle$. Since $p \nmid t_m$ and $P_m^{\Gamma_{m,n}}/P_n$ is a finite p-group, we obtain $P_m^{\Gamma_{m,n}}/P_n \subseteq \langle I_n^{(p)}/P_n, (P_m \cap S_m)P_n/P_n \rangle$. This inclusion and $P_m \cap S_m \subseteq P_m^{\Gamma_{m,n}}$ imply Lemma 1. \square

LEMMA 2. Let $n \ge n_0$. Then

$$(P_m \cap S_m)P_n/P_n \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{\oplus s},$$

$$((P_m \cap S_m)P_n/P_n) \cap I_n^{(p)}/P_n = D_n$$

for sufficiently large $m \ge n$.

PROOF. Since $I_n \cap S_m \subseteq I_n^{(p)}$ and $I_n^{(p)} \subseteq P_m$ for sufficiently large $m \ge n$ ([2, Proposition 2]), we have the following inclusions of groups for such $m \ge n$:

$$P_n \cap S_m \subseteq I_n \cap S_m \subseteq P_m \cap S_m \subseteq S_m$$
.

We note that $I_n \cap S_m = S_m^{p^{m-n}} = S_n^{t_m/t_n}$, and that $S_m/P_m \cap S_m \simeq D_m$. Since $n \ge n_0$, it follows that $D_m \simeq D_n$ by the norm map $N_{m,n}$. Hence we have $S_m/P_m \cap S_m \simeq D_n$. So we find that $I_n \cap S_m/P_n \cap S_m \simeq S_n^{t_m/t_n}/P_n \cap S_n^{t_m/t_n} \simeq D_n$ and $S_m/I_n \cap S_m = S_m/S_m^{p^{m-n}} \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{\oplus s}$. Therefore we obtain

$$\#(P_m \cap S_m/P_n \cap S_m) = p^{(m-n)s}.$$

Let $\mathfrak{P} \in P_m \cap S_m$. Taking the norm operator $N_{m,n}$ from I_m to I_n , we have $\mathfrak{P}^{p^{m-n}} = N_{m,n}\mathfrak{P} \in P_n \cap S_m$. Hence

$$(P_m \cap S_m/P_n \cap S_m)^{p^{m-n}} = 1.$$

It follows from $S_m \simeq \mathbb{Z}^{\oplus s}$ that

$$(6) p-\operatorname{rank}(P_m \cap S_m/P_n \cap S_m) \leq s.$$

From (4), (5), and (6), we obtain $(P_m \cap S_m)P_n/P_n \simeq P_m \cap S_m/P_n \cap S_m \simeq (\mathbb{Z}/p^{m-n}\mathbb{Z})^{\oplus s}$. The second assertion of the lemma follows from $I_n^{(p)} \cap P_m \cap S_m = I_n^{(p)} \cap S_m = S_n^{t_m/t_n}$.

LEMMA 3. Let M be a finite abelian p-group. We assume that M has subgroups N and H such that $N \simeq (\mathbb{Z}/p^e\mathbb{Z})^{\oplus r}$, $p^{[e/2]}H=0$, and M=N+H for some $e \geq 0$, $r \geq 0$, where $[\]$ stands for the Gaussian symbol. Then, for any subgroup $N' \subseteq M$ with $N' \simeq (\mathbb{Z}/p^e\mathbb{Z})^{\oplus r}$, we have

$$M=N'+H$$
, $N'\cap H=N\cap H$.

PROOF. Write $N = \bigoplus_{i=1}^r \mathbb{Z}n_i$, and $N' = \bigoplus_{i=1}^r \mathbb{Z}n_i'$, where $\mathbb{Z}n_i \simeq \mathbb{Z}n_i' \simeq \mathbb{Z}/p^e\mathbb{Z}$. From the assumption of the lemma, there exist $(a_{ij}) \in M_r(\mathbb{Z})$ and $h_i \in H$, $1 \le i \le r$ such that

(7)
$$n'_{i} = \sum_{j=1}^{r} a_{ij} n_{j} + h_{i}, \qquad 1 \le i \le r.$$

Multiplying (7) by p^{e-1} , we obtain

$$p^{e-1}n'_i = \sum_{j=1}^r a_{ij}p^{e-1}n_j, \qquad 1 \le i \le r,$$

since $p^{e-1}H=0$ from the assumption of the lemma. Hence we find $p^{e-1}N'=p^{e-1}N$, and $(a_{ij} \mod p) \in GL_r(\mathbb{Z}/p\mathbb{Z})$. Therefore there exists a matrix $(b_{ij}) \in M_r(\mathbb{Z})$ such that $(b_{ij})(a_{ij}) \equiv E_r \pmod{p^e}$, where $E_r \in M_r(\mathbb{Z})$ denotes the identity matrix. From (7), we have

$$\sum_{j=1}^{r} b_{ij} n'_{j} = n_{i} + h'_{i}, \qquad h'_{i} \in H, \quad 1 \le i \le r.$$

It follows from the above equation that $N \subseteq N' + H$. Hence we have M = N' + H. Since $(b_{ij} \mod p^e) \in GL_r(\mathbb{Z}/p^e\mathbb{Z})$, it holds $N' = \bigoplus_{i=1}^r \mathbb{Z}(n_i + h_i')$. Let $x = \sum_{i=1}^r c_i(n_i + h_i')$ be any element in $N' \cap H$. Then $0 = p^{\lfloor e/2 \rfloor} x = \sum_{i=1}^r c_i p^{\lfloor e/2 \rfloor} n_i$. Hence we have $p^{\lfloor e/2 \rfloor} \mid c_i$ for all $1 \le i \le r$. So we can see $x = \sum_{i=1}^r c_i n_i \in N$ by the assumption $p^{\lfloor e/2 \rfloor} H = 0$. Therefore $N' \cap H \subseteq N \cap H$. Since M = N' + H, the same argument shows $N \cap H \subseteq N' \cap H$. Thus we conclude $N \cap H = N' \cap H$. \square

PROOF OF THEOREM 1. Let $n \ge n_0$. Put $M = P_m^{\Gamma_m,n}/P_n$, $N = (P_m \cap S_m)P_n/P_n$, $N' = \operatorname{Im}(f) \simeq \hat{H}^{-1}(\Gamma_{m,n}, C_m)$ and $H = I_n^{(p)}/P_n = A_n$ for $m \ge n$ with $p^{m-n}B_{n_0} = 0$, where f is the homomorphism in (3). By Theorem 2, Lemma 1, and Lemma 2, the above group M, N, N', and H satisfy the assumption of Lemma 3 if $m \ge n$ is sufficiently large. Therefore $\operatorname{Coker}(f) = M/N' = N + H/N' = N' + H/N' \simeq H/N' \cap H = H/N \cap H = A_n/D_n \simeq A_n'$ by Lemmas 1, 2 and 3. This completes the proof of Theorem 1. \square

REMARK. The author wants to know if $\text{Im}(f) = (P_m \cap S_m)P_n/P_n$ or not.

References

- [1] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
- [2] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- € 3] C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier 42 (1992), 449–499.
- [4] C. Greither, Über relativ-invariante Kreiseinheiten und Stickelberger-Elemente, Manuscripta Math. 80 (1993), 27-43.
- [5] J. M. Kim, Cohomology groups of cyclotomic units, J. Algebra 152 (1992), 514-519.
- [6] B. MAZUR and A. WILES, Class fields of abelian extensions of Q, Invent. Math. 76 (1984), 179-330.
- [7] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.

Present Address:

DEPARTMENT OF INFORMATION AND COMPUTER SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO, SHINJUKU-KU, TOKYO, 169–50 JAPAN. *e-mail*: ozkm@mn.waseda.ac.jp