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Introduction.

Let g be a complex reductive Lie algebra and let g=f+p be the complexification
of a Cartan decomposition of gg, Where gg is a noncompact real form of g. Kostant-Rallis
[3] showed that polynomials on p are expressed as the tensor product of harmonic
polynomials and K-invariant polynomials, where K=exp adf. Related to this result, we
showed in [14] that the set of common zero points of all K-invariant polynomials on
p is a uniqueness set of holomorphic functions on p (see Proposition 1.1).

On the other hand, for classical harmonic functions on C? and functions on the
sphere, there are many studies (see, [2], [4], [5], [6], [7], [10], [12], [15], etc.). For
example, it is known that harmonic functions on C? are represented by an integral on
some O(p)-orbits, and the reproducing kernels of these formulas are expressed by the
Legendre polynomials (cf. Lemma 1.2). For details, see [7] Lemma 7 and [15] Theorem
2.4. In the Lie algebraic viewpoint, classical harmonic functions on C? correspond to
harmonic functions on p for the case gg =s0(p, 1), and we can easily rewrite the classical
integral formulas in Lemma 1.2 in the Lie algebraic form (A.1)-(A.4) in Appendix.

Our purpose of this paper is to obtain integral representation formulas of harmonic
polynomials in the case gg=su(p, 1). Our main results in this paper are described in
Theorem 2.2, in which we obtain the similar results to the case gg=s0(p, 1). In the case
gr =50( p, 1) harmonic functions are expressed in the form of integral on some simple
Kg-orbits, where Kz =exp adfg. But in the case gg=su(p, 1) we express the formulas in
the form of double integrals on some family of Kg-orbits.

The author would like to thank Professor M. Morimoto for his helpful sugges-
tions.

1. Preliminaries.

In this section we fix the notations and review known results. For details, see [2],
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[3], [5], [7], and [15].

Let g be a complex reductive Lie algebra and let gg be a noncompact real form of
g. Let gr=1g+pgr be a Cartan decomposition of gg and let g=f+ p be the direct sum
obtained by complexifying fz and pg. In this paper, for a Lie algebra §, we denote by
expadl the adjoint group of h. We put G=expadg and K,={aeG; fa=ab}, where
0: g— g is the Lie algebra automorphism of order 2 defined by 6=1o0onf, 6=—1 on
p. Let K be the identity component of K,. Then we have K=exp adf. Furthermore, we
put Kp=expadfg which acts on the space p. Then we have Kzy=Knexpadgg. We
denote by S the symmetric algebra on p and we put J={ueS; au=u for any ae K,}
and J, ={ueJ; du)1 =0}. We denote by J' the ring of K-invariant polynomials on p
and we put J, ={feJ’; f(0)=0}. Let S’ be the ring of all polynomials on p and let S,
be the space of homogeneous polynomials on p of degree n. For f€ S’ and ae K,, afe S’
is defined by (af)(x)=f(a”'x) (xep). It is known that any element of J’ is invariant
under K, ([3] Proposition 10). It is also known that J' has homogeneous generators
P,, -+, P, where r=dimag and ag is a maximal abelian subalgebra of pg. Let
A ={feS’; 0u)f =0 for any ueJ,} be the space of harmonic polynomials on p. We
put #,=S,n ¥ and J,=S, nJ'. Let O(p) and Oy(p)={f € O(p); d(u)f =0foranyueJ,}
be the space of holomorphic functions and the space of harmonic functions on p,
respectively. We put R={xep; i(x)=0 for any heJ,} and denote by O(N) the space
of holomorphic functions on the analytic set ). By the Oka-Cartan Theorem we have
O(R)=0(p)|n. We put (J,.5"),=J,S'"S,,and Z, ={0, 1,2,3, - - - }. Then the following
proposition is known.

ProposiTiON 1.1 ([3], [8], [14]). (i) For any neZ, we have
S$,=4S),® A, .
(i) The restriction mapping f — f|n is a bijection from Oyp) onto O(N).

H,(C?) denotes the space of homogeneous harmonic polynomials of degree n on
C? and H, , denotes the space of spherical harmonics of degree n on S?~! (p=3).
It is well known that the restriction mapping y: f — f|s»-1 is a bijection from H,(C?)
onto H, , (cf. [5], [7], etc.). For spherical harmonics, harmonic functions on C? and
functions on S?~!, we refer the reader to [5], [6], [7], etc.

P, , denotes the Legendre polynomial of degree n and dimension p. For z, we C?
we put z+w="zw. We put N°"'={zeC?;z-z=0, z- 7=2}. Then the following lemma
is known.

Lemma 1.2 ([2], [5], (6], [7], [15]). (i) We put h(x)=P, (x-a) and g,(x)=
(x+b)" (x,a,beC?). Then H, , is generated by the set {h,|s»-1;aeSP™'} and H,(CP)
is generated by the set {g,; be N°~1}.

(i) For any fe H,(CP) and ge H,(CP) it is valid that
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(1.1) dimH, , J )P, (s @)ds=5,,.f(@) (aeSPY),
sp-1

(1.2) dimH, , j f@)E - wydN(z)=2"5,,.f(w)  (weCP).
N2 -1

n!I'(p/2)
I'(n+p/2)
where ds and dN denote the unique O(p)-invariant measures on S~ and on N?~* such
that {¢, ,lds={,,.. 1dN(z)=1, respectively, and

(1.3) f f(s)g(s)ds=2"2" dimH,,,pj F(2)9(2)dN(2)
Sp-1 Np-—1

_ @n+p—2)n+p-3)!

dimH, ,=
nl(p—2)!
(iii)) For any f € 0,(CP) we have
(1.4) f(X)=J S +(x+2)/2)(1 —(x - 2)/2) P 1dN(2) .
Np-1

For zeC? and ae S?~! we put

P,z a)=P, p<%>(z Lz

Then P, ,( , a) belongs to H,(C?) and P, (s, a)=P, (s a) for any se S? ™1,

2. The case gg=su(p, 1).

In this section we obtain integral representations of harmonic polynomials on some
Kg-orbits in the case gg=su(p, 1) (peZ.,,p=>2).
We put g=sl(p+1,C) and

ggr =su(p, 1)={<:; ;c> ; Aeu(p), aeu(l), Tr4+a=0, xeC"}.

In this case we have
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And we get G=AdSL(p+1, C), K is the identity component of {Ad(g 2) | Alb= 1},

and

Kg=AdS(U(p) x U(1))={Ad(‘(‘)1 2) : Ae U(p), be U(1), | 4 |b=1} :

We can also express Ki as KR={Ad('; ?);AeU(p)}. For X=<f) ;>ep and
y

g= Ad(g ?) € Ky (4 € U(p)) we have gX = <t(;_) ) on ) For this Lie algebra g the Killing
y

form B(X, Y) equals (2p+2)Tr(XY). The generator of J' is B(X, X). We put P(X)=
4x-y=2Tr(X?. Then #,={f€S,; P(D)f(X)=0}, where P(D)=4)%_, 0%/0x;0y;.

Furthermore we have = {(lo g)ep ;X y=0}. Here we put
y

Z={(0_ x);xeC",x-f:l},
'x 0

0 e ~ 0 re,
Em(e, §) B(amrpne, )

where ¢, ='(1 0---0)eC? and e,=0 1 0---0)eCP?. It is easy to show that 2 =KgE|,
and N(r)=KgE. We denote by K, the isotropy group of E,. Then we have

KO={Ad(1 B 1);BeU(p——l)}.

ForX=(,° ;)EPwedeﬁnethemapping'I’:p—+C2”bySI’(X)=%( ’_:*y)).Then
y —ix—y

the mapping ¥|;: £—S??7! is bijective and fe#, if and only if f-¥ 'eH,,,
Therefore, it is clear that dims#,=dimH,,,, We put <X, Y)>=Tr(XY) and
0, ,(X, Z)=P, , (¥(X), ¥(Z)) for X, Yep and Ze Z. Then
-n <X’ Z n,
Qn,p(Xa Z)=2 Pn,2p<——> P(X) 2
V P(X)
Then we see that i, is generated by {Q, ( , Z); ZeX}. It is also known that J, is
generated by {< , Z)>" ZeR} (see [3]). Let du; and dyu, be the unique Kg-invariant
measures on X and on N(r) such that {;ldu;={,, 1du,=1, respectively. For

g= Ad( '; (1)) € Kg we obtain
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(2.1) ¥Y(gX)=M(g)¥(X),
where
1 A+A i(A—A)
2.2) M(g)_—Z_(——i(A—Z) T ) (4 U(p).
Now we define the measure du on 2 by
(2.3) J f(X)du=J fo¥T(s)ds,
P S2p-1

where ds is the unique O(2p)-invariant measure on S22~ ! such that |, , lds=1. Since
A belongs to U(p), we see M(g)e O(2p) from (2.2). From (2.1) we have for any ge Ky

j flgX )du=J S ¥~ Y M(g)s)ds

=J fe Y"1(S)a's=j S(X)dp .
S2p—1 X

Hence we see that du=dus. Therefore, the following proposition is clear from (2.3) and
(1.1).
ProrosITION 2.1. For fes#, and Xe X it is valid

(2.4) dimaﬁ,j SO, (Y, X)dug(Y)=0,,/(X).
p)
Next we define the function p on [0, 1] by
_ - F(p— 1/2) -3 2\p—2
(2.5) p(r)—22p ZW;——I)—"ZP (l—r )p .

Under these notations, we state our main theorem of this section.

THEOREM 2.2. (i) For any Xep and Ye X it is valid that

! P n!I'(p)
2.6 Z, Y™ Z, X Ydu(Z) Jdr=———11 65, .0, (X, V).
(2.6) L p(r)( Nm( Y>™< >rdp( )) r Tti+p) 1@l )
(i) For any fe€ H#, and any Xep we have
1 L .
(2.7 j P(r)< fZXzZ, x >"dur(Z)>dr=(dim9?i.)_15m,nf (X).
0 N(r)

(ii) For any fe€ H#,, and ge H, we have

n'[(p)dims#, (!
I'(n+p) 0

(2.8) ff(X)bTX—)dﬂz(Xh p(r)( f(X)EGF)du,(X)>dr.
z N(r)
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To prove Theorem 2.2, we need some lemmas.

Lemma 2.3 ([2], [5], [7], [15]). () For R we have

1
2.9) P, ,,(cos0)= f {cos 0+ (2r* —1)isin0}"p(r)dr .
(4]
(i) Let a, BeC??, a-a=p-f=0. Then we have
S M. R\ _2"‘n'l"(p) . n
(2.10) sz_ 1 (s )"(s - B) ds—————r(n+p) Omnla* B) .
(iii) If X and Y belong to N, we get
@.11) J (X, ZYCY, ZdugZ) =" 5 x, vy
: I'(n+p)

Proor. (i) It is well known that the following equation holds for 0<7¢<1:
I'(p—1/2)
JrI(p—1)
(see [5], [7]). From this formula and (2.5) we get (2.9) by putting r=./(x+1)/2.

(i) Suppose a-a=f-f=0. Then we have (z - o)™ e H,(C??) and (z * B)"e H,(C??).
Hence (2.10) follows from (1.2) and (1.3).

0 a 0 b
X= ! Y= !
(i1) We put <ta2 0 ), ~<'b2 0

weRP). Then we have by (2.10)

1
Prap0)= f {4i(1 =122}l — x 2P~ 2dx
-1

)e% and Z=('0 x

B )62 (x=z4+iw, z,
x 0

f (X, ZY™Y, Z)y'dus(Z)
= A GG -2 e
s2p-1 a, z—iw <b2 zZ—Iiw
Lo A ) Ry ) () e
s2p-1 —i(a;—a,) w —i(by—0b,) w

_ 27"\ (p)
I'(n+p)

_ n'I(p)
B I'(n+p)

Smailay+ay) - (by+by)+(a;—ay) - (b, —by)}"

OmnlX, Y7

because (al+a2)'(a1+a2)_(a1—a2)'(a1_a2)=4a1.az———o and (b1+b2)'(b1+b2)—‘
(bl—bz)'(bl —b2)=4b1 ‘b2=0. Q.E.D.
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LemMA 2.4, Let L e #,. If L (kX)=L,X) for any ke K,, then L,(X) is expressed
as follows:

(2.12) LX)= Y Cxiyrx -y)n-t-m2,

(I,m)eA

‘where A = {,meZ?: ; n=I14+m (mod2)}, C,,,€C, X=(20 ;)ep, x=<xf),y=<y"), X1,
y P
y,€Cand x', y eCP 1,

ProoF. Since L, is a homogeneous polynomial of degree n, L, can be expressed
as follows:

(2.13) L(X)= Y xiyfd.l&x y),

xr

where 4,, is a homogeneous polynomial of ( ) of degree n—/—m. For any
y

1
k=Ad( B )eKo (Be U(p—1))
1

0 0 X4
kX=(o 0 B)
y1 '(By) 0

AkX)= Y xiy7A,.((Bx" By').

From (2.13) we have

Since L, (X)=L,(kX) for any Be U(p—1),
(2.14) A w((Bx" By )=A,,('(x" y').

In general it is known that feJ’, if and only if f is fixed under Ky (cf. [3] p. 800). Let
g'=sl(p, C) and let g¢'=f"+p’ be the complexification of a Cartan decomposition of

gr=su(p—1, 1). Then (10’ ’;) belongs to p” and 4,,,((x" »’)) is exp ad fg-invariant from
y
(2.14). Therefore, we have

(2.15) A" YN =Cp =y =tmmiz
where C,,, is some constant. Since x’ -y’ is a homogeneous polynomial of degree 2,
(2.12) follows from (2.15). Q.E.D.

LeEmMMA 2.5. For any Xep we have
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! =T n!l(p)
(2.16) J P(")( Y, Ex)™Y, X)du( Y))dr = 0 1O (X, Eo) -
0 N I'(n+p)
Proor. For any Xep we put
1 -
(2.17) F(X)= f p(f)( (Y, Eo)™Y, X du,( Y))dr -
0 N(r)

Then F e #, because N(r)= N. Furthermore, Fis K,-invariant because the inner product
¢, ) and du, are Kg-invariant. Hence, by Lemma 2.4 F(X) can be expressed as follows:

FX0= ) Cuxiyflx-y)" 7™,
(I,m)e A
0
t(e—ioel)

and ghy= heg for any ge Kx. We put

I

i0 —i0
We put X0=( eoe’)eZ, h9=Ad<e 0 d ?)eKR (6€R). So we have X,=h, 'E,

G(Xo)=| (Y, Ep)"Y, Xp>"du(Y).
N(r)
Then it is valid that for any ge Ky
(2.18) G(Xo)= (Y, Eg>™Y, hg 'Eq)"du,(Y)
J N(r)
r‘ —
= < Ys E0>m<h0 Ys EO>"dur(Y)
J N(r)
= {g™'Y, Eg>"Chog™ 'Y, Eod"du(Y)
J N(r)
r‘

= Kg™'Y, Eq)™{g™ thyY, Eo>"du(Y)
J N(r)

r

= Y, gEo>"<{hyY, gEo>"du,(Y) .
J N(r)

Let dg be the Haar measure on Ky such that j ke 1 d9=1. (2.18) gives

Gr(X 0) = Gr(X B)dg

J KR

= (J‘ Y, gEo>™<heY, gEo)"du,( Y))dg
v Kr N(r)

= (J Y, gEo>"<hyY, 9E0>"dg)dﬂr( Y).
Kr

J N(r)
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Since KgE,=2Z, and Y and h,Y belong to N(r)c 9, we have from (2.11)
(2.19) j (Y, gEo>™hoY, gEo)"dg = J Y, ZY"™hY, Z"dpus(Z)
Kr z

_ n!I'(p)

- 5, (Y, h¥>".
I'(n+p) < o

0 a
‘b 0
Therefore, we get
(2.20) Y, hyY>=e®a-a+e ®b-b=e"r*+e *(1—r?)
=cosf+(2r*—1)isinf .
If n=m, we have from (2.19) and (2.20)

0 e-l‘G

For any Y=( ‘) 0

)eN(r) we have h9Y=< a), a-a=r? and b-b=1-r2

1
(2.21) G(Xp) =-ri£(£)— {cosO+(2r?—1)isin0}"du(Y)
I'(n+p) Jye
1
=m {cosO+(2r? —1)isin6}" .
I'(n+p)
From (2.17), (2.21), and (2.9) we have
n'I'(p) [} ) ..
Xy)=——"— rM{cosB+(2r* —1)isin0}"dr
HX,) Totn) ) pr} (2r<—1) }
n'I'(p) n!I'(p)
=—>"_P, O)=—"—0, (X, Ep) .
Fitp) ,2p(c0s0) Titp) Q. (Xos Eo)
On the other hand, we have
(2.22) F(Xp)= ). C,,,,_,e"‘z"""’.
I1=0

Since Fe J#,, we have

PDF(X)=4 Y ({Cl+1,m+ ((+Dm+1)+Cp

(I,m)ed
O<l+m=<n—2

(n—l—m)(n—l-—m+2p——4)}
4

. xiy;"(X’ .yr)(n—l-m—Z)/2>=0 .

If (I, m)e A and 0<I+m<n—2, we have from this equality

—4(l+1)m+1)

(2.23) =
(n—I—mn—I—m+2p—4)

Lm I+1,m+1 -+
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(2.23) shows that we can determine all coefficients of F(X) uniquely by Cin-i
((=0,1, ---,n). If we put H(X)=(n!I'(p)/I(n+p))Q, (X, E,), H belongs to #, and
H(kX)=H(X) for any k€ K,. Hence we can express

(2.24) HX)= ) Dypxiyfx’y)n=tomiz,
(I,m)ea
where D, , € C. In addition, D, ,, also satisfies (2.23). Furthermore, since H(X,)=F(X,),
we have D,,_,=C;,_, by (2.22) and (2.24). Therefore, for any (I, m)e A we obtain
D, ,,= C,,, which implies (2.16).
When n#m, we have C,,_,=0 (I=0, 1, - - -, n) because F(X,)=0. Therefore, we
get F(X)=0 by (2.23). Q.E.D.

PROOF OF THEOREM 2.2. (i) From Lemma 2.5 we have for any XeZX

1 -
f P(r)< Z,Ey)™Z, X Ydu(Z ))dr
N(r)

0

_ nlI'(p) 1
- F(n +P) 5m,nPn.2p<2 <X9 Eo>> .

For any Ye X there exists some g€ Ky such that Y=gE,. Hence we have

(2.25) flp(r)( J (Z,Y)KZ, X >"dur(2)>dr
N(r)

0

r1 r
= P(r)< (Z, gEo>"™}Z, X)"du(Z ))dr

JO N(r)
1 r .
= p(f)( K97'Z,Eod>™g7'Z, g~ X)"du(Z ))dr
JO J N(r)

= p(r)( (Z,Ep»)™Z, g™ ' X)rdu(Z ))dr

Jo N(r)
_ n!I'(p)
I'(n+p)

_ n!'I'(p)
B I'(n+p)

6m,nPn,2p<% (g_lX, EO>)

n!'I'(p)

W 5m,nQn.p(X’ Y) .

5m.nPn,2p(%' <X$ Y>)=
It is clear that the restriction mapping f — f|; is bijective. Since the left-hand side of
(2.25) and (n'I'(p)/T(n+ p))o,, Q. (X, Y) belong to H#,, we obtain (2.6) from (2.25).

(i) For any fei#, there exist some positive integer M, q,eC and Y,eX
(k=1,2, ---, M) such that

M

(226) f(Z)= Z aka.p(Zs Yk) .

k=1
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(2.26) implies

(2.27) J P(V)(j f(ZXZ, X >"dur(Z))dr
N(r)

M _
Z j p(r)( O rZ, Y )XZ, X>"du,(2))dr.
k= 0 N

Let C, be the coefficient of the highest power in P, ,,(t). Then it is known that
2" (n+p)
n'I'(p)dim J#,

(cf. [51, [7]) and @, ,(Z, Y)=2""C,(Z, Y, )" for Ze N(r)cR. Hence the right-hand
side of (2.27) equals

(2.28)

n=

1

M _
27"C, Y @ p(r)( (Z, V)™ Z, X>"du,(2)>dr
N{@)

k=1 0

_2-nC, Y g, D)
k=1 I'(n+p)
by (2.6), (2.26) and (2.28).
(ili) For any geJ#, there exist some positive integer M, X,e2 and ,eC
(k=1,2, -+, M) such that g(Z)=YM K @,0,,Z X)=2""C, Y a{Z, X;>" for
Z e 9t. Hence, we get from (2.7) and (2.4)

6m,nQn,p(X’ Yk) = (dlm MI) - 16m,n\f(‘X’)

M

1 S
(2.29) J p(f)( f (Z)g(Z)d#r(Z))dr=2"" WAdim ) 18, D A S (X
N@r)

0 k=1
=2""C, J f(Z2)g9(Z)duZ) .
)

Finally (2.8) follows from (2.28) and (2.29). Q.E.D.

We put O0,(p)={f€0(p) ; (P(D)+A%)f =0}, where O(p) denotes the space of holo-
morphic functions on p and A€ C. From Theorem 2.2 and [15] Theorem 2.4 we have

COROLLARY 2.6 (cf. [15] Theorem 2.4). For any A€C the restriction mapping
a,: F— F|y is a bijection from 0,(p) onto O(R) and a; ' f is expressed as follows:

1
o L f(X)= J p(f)( f)K(X, Z)du(Z ))dr (Xep),
0 N(r)

where

K(X.Z)= ¥ dim#, In +p>(—‘-——vf(z) )—"*“IJ,.+,,_1(A\/P(Z)/2)<X,Z>",
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and J (t) is the Bessel function of order v.
In particular if =0 and (X, X )<t (t>0),

- ! 1+4X/t, Z)
2.30 ! = z
(2.30) %y f(X) L P(r)< N(r)f( ) (A —<X/t. Z5)

d,u,(Z))dr .

Appendix.

In this appendix, we state the integral representations of harmonic polynomials in
the case gg=so(p, 1) which are reformulation of Lemma 1.2. When gg=s0(p, 1)
(peZ,,p=3), we have

g={<lA z) ; Aeso(p,C),zeC"},
z 0

f={(A g>eM(p+l, C); Aeso(p, C)},

p={<,0 (Z))GM(p+1,C):zeC”}.

Furthermore, we have
an{Ad< : (1)> ; AeSO(p)}.

0 :z
'z 0

z—( 0 Az)
9=\ o0 )

For Zep we put P(Z)=z - z. Then the generator of J', is P(Z) and #, can be identified
with H,(C?). We put Z={Zep;z-z=1}, N={Zep; P(Z)=0, z-2=2}. Then X and
N are simple Kg-orbits. For Zep we define ¢(Z)=z and Q,Z, X)=P, (9(Z), ¢(X))
(XeZ2). uy and uy denote the unique Kg-invariant measures on X and N such that
{sldus={f, lduy=1, respectively. From (1.1)-(1.4) we have the following formulas
which are similar to (2.4), (2.7), (2.8) and (2.30).

For g=Ad(:)4 ?)GKR and Z=< )ep we have

(A.1) - dim 5, f F(Z)Q.Z, X)du(Z) =0, .F(X),
z

(A.2) dimﬁﬁj F(Z)XZ, Y)"dun(Z)=2"5,, .F(Y),
N
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- _, nIT(p2) . J —
(A.3) LF(Z)G(Z)a'Mz(Z)—2 Tntpl) dim 7, NF(Z)G(Z)duN(Z),
(A.4) H(X)=J H(Z)1+<{X/2, ZX)1—<X/2, Z>) " tdun(Z),
N

where Fe #,, Ge #,, He Oy(p), Xe X and Yep.
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