The Integral Representations of Harmonic Polynomials in the Case of $\mathfrak{su}(p, 1)$

Ryoko WADA

Kure University
(Communicated by Ma. Kato)

Introduction.

Let g be a complex reductive Lie algebra and let g = f + p be the complexification of a Cartan decomposition of g_R , where g_R is a noncompact real form of g. Kostant-Rallis [3] showed that polynomials on p are expressed as the tensor product of harmonic polynomials and K-invariant polynomials, where $K = \exp adf$. Related to this result, we showed in [14] that the set of common zero points of all K-invariant polynomials on p is a uniqueness set of holomorphic functions on p (see Proposition 1.1).

On the other hand, for classical harmonic functions on \mathbb{C}^p and functions on the sphere, there are many studies (see, [2], [4], [5], [6], [7], [10], [12], [15], etc.). For example, it is known that harmonic functions on \mathbb{C}^p are represented by an integral on some O(p)-orbits, and the reproducing kernels of these formulas are expressed by the Legendre polynomials (cf. Lemma 1.2). For details, see [7] Lemma 7 and [15] Theorem 2.4. In the Lie algebraic viewpoint, classical harmonic functions on \mathbb{C}^p correspond to harmonic functions on \mathbb{P}^p for the case $\mathbb{P}_{\mathbb{R}} = \mathfrak{so}(p, 1)$, and we can easily rewrite the classical integral formulas in Lemma 1.2 in the Lie algebraic form (A.1)-(A.4) in Appendix.

Our purpose of this paper is to obtain integral representation formulas of harmonic polynomials in the case $g_R = \mathfrak{su}(p, 1)$. Our main results in this paper are described in Theorem 2.2, in which we obtain the similar results to the case $g_R = \mathfrak{so}(p, 1)$. In the case $g_R = \mathfrak{so}(p, 1)$ harmonic functions are expressed in the form of integral on some simple K_R -orbits, where $K_R = \exp \operatorname{ad} f_R$. But in the case $g_R = \mathfrak{su}(p, 1)$ we express the formulas in the form of double integrals on some family of K_R -orbits.

The author would like to thank Professor M. Morimoto for his helpful suggestions.

1. Preliminaries.

In this section we fix the notations and review known results. For details, see [2],

[3], [5], [7], and [15].

Let g be a complex reductive Lie algebra and let $g_{\mathbf{R}}$ be a noncompact real form of g. Let $g_{\mathbf{R}} = f_{\mathbf{R}} + p_{\mathbf{R}}$ be a Cartan decomposition of $g_{\mathbf{R}}$ and let g = f + p be the direct sum obtained by complexifying $f_{\mathbf{R}}$ and $p_{\mathbf{R}}$. In this paper, for a Lie algebra h, we denote by expadh the adjoint group of h. We put $G = \exp \operatorname{adg}$ and $K_{\theta} = \{a \in G; \theta a = a\theta\}$, where $\theta: g \to g$ is the Lie algebra automorphism of order 2 defined by $\theta = 1$ on $f, \theta = -1$ on p. Let K be the identity component of K_{θ} . Then we have $K = \exp \operatorname{ad} f$. Furthermore, we put $K_{\mathbb{R}} = \exp \operatorname{ad} \mathfrak{t}_{\mathbb{R}}$ which acts on the space \mathfrak{p} . Then we have $K_{\mathbb{R}} = K \cap \exp \operatorname{ad} \mathfrak{g}_{\mathbb{R}}$. We denote by S the symmetric algebra on p and we put $J = \{u \in S; au = u \text{ for any } a \in K_{\theta}\}$ and $J_{+} = \{u \in J; \partial(u) = 0\}$. We denote by J' the ring of K-invariant polynomials on \mathfrak{p} and we put $J'_{+} = \{f \in J'; f(0) = 0\}$. Let S' be the ring of all polynomials on p and let S'_{n} be the space of homogeneous polynomials on p of degree n. For $f \in S'$ and $a \in K_{\theta}$, $af \in S'$ is defined by $(af)(x) = f(a^{-1}x)$ $(x \in \mathfrak{p})$. It is known that any element of J' is invariant under K_{θ} ([3] Proposition 10). It is also known that J' has homogeneous generators P_1, \dots, P_r , where $r = \dim \mathfrak{a}_{\mathbb{R}}$ and $\mathfrak{a}_{\mathbb{R}}$ is a maximal abelian subalgebra of $\mathfrak{p}_{\mathbb{R}}$. Let $\mathcal{H} = \{ f \in S'; \partial(u) f = 0 \text{ for any } u \in J_+ \}$ be the space of harmonic polynomials on \mathfrak{p} . We put $\mathcal{H}_n = S'_n \cap \mathcal{H}$ and $J'_n = S'_n \cap J'$. Let $\mathcal{O}(\mathfrak{p})$ and $\mathcal{O}_0(\mathfrak{p}) = \{ f \in \mathcal{O}(\mathfrak{p}); \partial(u) f = 0 \text{ for any } u \in J_+ \}$ be the space of holomorphic functions and the space of harmonic functions on p, respectively. We put $\mathfrak{N} = \{x \in \mathfrak{p}; h(x) = 0 \text{ for any } h \in J'_+\}$ and denote by $\mathcal{O}(\mathfrak{N})$ the space of holomorphic functions on the analytic set \mathfrak{N} . By the Oka-Cartan Theorem we have $\mathcal{O}(\mathfrak{N}) = \mathcal{O}(\mathfrak{p})|_{\mathfrak{N}}$. We put $(J'_+S')_n = J'_+S' \cap S'_n$, and $\mathbb{Z}_+ = \{0, 1, 2, 3, \cdots\}$. Then the following proposition is known.

PROPOSITION 1.1 ([3], [8], [14]). (i) For any $n \in \mathbb{Z}_+$ we have $S'_n = (J'_+ S')_n \oplus \mathscr{H}_n.$

(ii) The restriction mapping $f \to f|_{\mathfrak{N}}$ is a bijection from $\mathcal{O}_0(\mathfrak{p})$ onto $\mathcal{O}(\mathfrak{N})$.

 $H_n(\mathbb{C}^p)$ denotes the space of homogeneous harmonic polynomials of degree n on \mathbb{C}^p and $H_{n,p}$ denotes the space of spherical harmonics of degree n on S^{p-1} ($p \ge 3$). It is well known that the restriction mapping $\gamma: f \to f|_{S^{p-1}}$ is a bijection from $H_n(\mathbb{C}^p)$ onto $H_{n,p}$ (cf. [5], [7], etc.). For spherical harmonics, harmonic functions on \mathbb{C}^p and functions on S^{p-1} , we refer the reader to [5], [6], [7], etc.

 $P_{n,p}$ denotes the Legendre polynomial of degree n and dimension p. For z, $w \in \mathbb{C}^p$ we put $z \cdot w = {}^t z w$. We put $N^{p-1} = \{z \in \mathbb{C}^p; z \cdot z = 0, z \cdot \bar{z} = 2\}$. Then the following lemma is known.

LEMMA 1.2 ([2], [5], [6], [7], [15]). (i) We put $h_a(x) = P_{n,p}(x \cdot a)$ and $g_b(x) = (x \cdot b)^n$ $(x, a, b \in \mathbb{C}^p)$. Then $H_{n,p}$ is generated by the set $\{h_a|_{S^{p-1}}; a \in S^{p-1}\}$ and $H_n(\mathbb{C}^p)$ is generated by the set $\{g_b; b \in N^{p-1}\}$.

(ii) For any $f \in H_m(\mathbb{C}^p)$ and $g \in H_n(\mathbb{C}^p)$ it is valid that

(1.1)
$$\dim H_{n,p} \int_{S^{p-1}} f(s) P_{n,p}(s \cdot a) ds = \delta_{m,n} f(a) \qquad (a \in S^{p-1}),$$

(1.2)
$$\dim H_{n,p} \int_{N^{p-1}} f(z)(\bar{z} \cdot w)^n dN(z) = 2^n \delta_{m,n} f(w) \qquad (w \in \mathbb{C}^p).$$

(1.3)
$$\int_{S^{p-1}} f(s)\overline{g(s)}ds = 2^{-2n} \frac{n!\Gamma(p/2)}{\Gamma(n+p/2)} \dim H_{n,p} \int_{N^{p-1}} f(z)\overline{g(z)}dN(z),$$

where ds and dN denote the unique O(p)-invariant measures on S^{p-1} and on N^{p-1} such that $\int_{S^{p-1}} 1 ds = \int_{N^{p-1}} 1 dN(z) = 1$, respectively, and

$$\dim H_{n,p} = \frac{(2n+p-2)(n+p-3)!}{n!(p-2)!}.$$

(iii) For any $f \in \mathcal{O}_0(\mathbb{C}^p)$ we have

(1.4)
$$f(x) = \int_{N^{p-1}} f(z)(1 + (x \cdot \bar{z})/2)(1 - (x \cdot \bar{z})/2)^{-p+1} dN(z) .$$

For $z \in \mathbb{C}^p$ and $a \in \mathbb{S}^{p-1}$ we put

$$\tilde{P}_{n,p}(z,a) = P_{n,p}\left(\frac{z \cdot a}{\sqrt{z \cdot z}}\right)(z \cdot z)^{n/2}.$$

Then $\tilde{P}_{n,p}(\cdot, a)$ belongs to $H_n(\mathbb{C}^p)$ and $\tilde{P}_{n,p}(s, a) = P_{n,p}(s \cdot a)$ for any $s \in S^{p-1}$.

2. The case $g_R = \mathfrak{su}(p, 1)$.

In this section we obtain integral representations of harmonic polynomials on some $K_{\mathbf{R}}$ -orbits in the case $g_{\mathbf{R}} = \mathfrak{su}(p, 1)$ $(p \in \mathbf{Z}_+, p \ge 2)$.

We put $g = \mathfrak{sl}(p+1, \mathbb{C})$ and

$$g_{\mathbf{R}} = \mathfrak{su}(p, 1) = \left\{ \begin{pmatrix} A & x \\ {}^{t}\bar{\chi} & \alpha \end{pmatrix}; A \in \mathfrak{u}(p), \alpha \in \mathfrak{u}(1), \operatorname{Tr} A + \alpha = 0, x \in \mathbb{C}^{p} \right\}.$$

In this case we have

$$\begin{aligned}
\mathbf{f}_{\mathbf{R}} &= \left\{ \begin{pmatrix} A & 0 \\ 0 & \alpha \end{pmatrix}; A \in \mathfrak{u}(p), \alpha \in \mathfrak{u}(1), \operatorname{Tr} A + \alpha = 0 \right\}, \\
\mathbf{p}_{\mathbf{R}} &= \left\{ \begin{pmatrix} 0 & x \\ {}^{t}\bar{x} & 0 \end{pmatrix}; x \in \mathbb{C}^{p} \right\}, \\
\mathbf{f} &= \left\{ \begin{pmatrix} A & 0 \\ 0 & \alpha \end{pmatrix}; A \in M(p, \mathbb{C}), \operatorname{Tr} A + \alpha = 0 \right\}, \\
\mathbf{p} &= \left\{ \begin{pmatrix} 0 & x \\ {}^{t}y & 0 \end{pmatrix}; x, y \in \mathbb{C}^{p} \right\}.
\end{aligned}$$

And we get $G = \operatorname{Ad} SL(p+1, \mathbb{C})$, K is the identity component of $\left\{\operatorname{Ad}\begin{pmatrix} A & 0 \\ 0 & b \end{pmatrix}; |A|b=1\right\}$, and

$$K_{\mathbf{R}} = \operatorname{Ad} S(U(p) \times U(1)) = \left\{ \operatorname{Ad} \begin{pmatrix} A & 0 \\ 0 & b \end{pmatrix}; A \in U(p), b \in U(1), |A|b = 1 \right\}.$$

We can also express $K_{\mathbf{R}}$ as $K_{\mathbf{R}} = \left\{ \operatorname{Ad} \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}; A \in U(p) \right\}$. For $X = \begin{pmatrix} 0 & x \\ {}^{t}y & 0 \end{pmatrix} \in \mathfrak{p}$ and $g = \operatorname{Ad} \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \in K_{\mathbf{R}} \ (A \in U(p))$ we have $gX = \begin{pmatrix} 0 & Ax \\ {}^{t}(\overline{A}y) & 0 \end{pmatrix}$. For this Lie algebra g the Killing form B(X, Y) equals $(2p+2)\operatorname{Tr}(XY)$. The generator of J' is B(X, X). We put $P(X) = 4x \cdot y = 2\operatorname{Tr}(X^{2})$. Then $\mathscr{H}_{n} = \{f \in S'_{n}; P(D)f(X) = 0\}$, where $P(D) = 4\sum_{j=1}^{p} \frac{\partial^{2}}{\partial x_{j} \partial y_{j}}$. Furthermore we have $\mathfrak{N} = \{\begin{pmatrix} 0 & x \\ {}^{t}y & 0 \end{pmatrix} \in \mathfrak{p}; x \cdot y = 0\}$. Here we put

$$\Sigma = \left\{ \begin{pmatrix} 0 & x \\ {}^{t}\bar{x} & 0 \end{pmatrix}; x \in \mathbb{C}^{p}, x \cdot \bar{x} = 1 \right\},$$

$$N(r) = \left\{ \begin{pmatrix} 0 & x \\ {}^{t}y & 0 \end{pmatrix} \in \mathfrak{p}; x \cdot \bar{x} = r^{2}, y \cdot \bar{y} = 1 - r^{2} \right\} \subset \mathfrak{N} \qquad (0 \le r \le 1)$$

We put

$$E_0 = \begin{pmatrix} 0 & e_1 \\ {}^t e_1 & 0 \end{pmatrix}, \qquad \tilde{E}_r = \begin{pmatrix} 0 & re_1 \\ (1-r^2)^{1/2t}e_2 & 0 \end{pmatrix},$$

where $e_1 = {}^t(1 \ 0 \cdots 0) \in \mathbb{C}^p$ and $e_2 = {}^t(0 \ 1 \ 0 \cdots 0) \in \mathbb{C}^p$. It is easy to show that $\Sigma = K_{\mathbb{R}}E_0$ and $N(r) = K_{\mathbb{R}}\tilde{E}_r$. We denote by K_0 the isotropy group of E_0 . Then we have

$$K_0 = \{ Ad \begin{pmatrix} 1 & B \\ & B \end{pmatrix}; B \in U(p-1) \}.$$

For $X = \begin{pmatrix} 0 & x \\ {}^t y & 0 \end{pmatrix} \in \mathfrak{p}$ we define the mapping $\Psi \colon \mathfrak{p} \to \mathbb{C}^{2p}$ by $\Psi(X) = \frac{1}{2} \begin{pmatrix} x+y \\ -i(x-y) \end{pmatrix}$. Then the mapping $\Psi|_{\Sigma} \colon \Sigma \to S^{2p-1}$ is bijective and $f \in \mathcal{H}_n$ if and only if $f \circ \Psi^{-1} \in H_{n,2p}$. Therefore, it is clear that $\dim \mathcal{H}_n = \dim H_{n,2p}$. We put $\langle X, Y \rangle = \mathrm{Tr}({}^t X \overline{Y})$ and $Q_{n,p}(X,Z) = \widetilde{P}_{n,2p}(\Psi(X), \Psi(Z))$ for $X, Y \in \mathfrak{p}$ and $Z \in \Sigma$. Then

$$Q_{n,p}(X,Z) = 2^{-n} P_{n,2p} \left(\frac{\langle X,Z \rangle}{\sqrt{P(X)}} \right) P(X)^{n/2}.$$

Then we see that \mathcal{H}_n is generated by $\{Q_{n,p}(\cdot,Z); Z \in \Sigma\}$. It is also known that \mathcal{H}_n is generated by $\{\langle \cdot, Z \rangle^n; Z \in \mathfrak{N}\}$ (see [3]). Let $d\mu_{\Sigma}$ and $d\mu_r$ be the unique $K_{\mathbb{R}}$ -invariant measures on Σ and on N(r) such that $\int_{\Sigma} 1 d\mu_{\Sigma} = \int_{N(r)} 1 d\mu_r = 1$, respectively. For $g = \operatorname{Ad} \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \in K_{\mathbb{R}}$ we obtain

$$\Psi(gX) = M(g)\Psi(X),$$

where

(2.2)
$$M(g) = \frac{1}{2} \begin{pmatrix} A + \overline{A} & i(A - \overline{A}) \\ -i(A - \overline{A}) & A + \overline{A} \end{pmatrix} \qquad (A \in U(p)).$$

Now we define the measure $d\mu$ on Σ by

(2.3)
$$\int_{\Sigma} f(X)d\mu = \int_{S^{2p-1}} f \circ \Psi^{-1}(s)ds,$$

where ds is the unique O(2p)-invariant measure on S^{2p-1} such that $\int_{S^{2p-1}} 1 ds = 1$. Since A belongs to U(p), we see $M(g) \in O(2p)$ from (2.2). From (2.1) we have for any $g \in K_{\mathbb{R}}$

$$\int_{\Sigma} f(gX)d\mu = \int_{S^{2p-1}} f \circ \Psi^{-1}(M(g)s)ds$$
$$= \int_{S^{2p-1}} f \circ \Psi^{-1}(s)ds = \int_{\Sigma} f(X)d\mu.$$

Hence we see that $d\mu = d\mu_{\Sigma}$. Therefore, the following proposition is clear from (2.3) and (1.1).

PROPOSITION 2.1. For $f \in \mathcal{H}_m$ and $X \in \Sigma$ it is valid

(2.4)
$$\dim \mathcal{H}_n \int_{\Sigma} f(Y) Q_{n,p}(Y, X) d\mu_{\Sigma}(Y) = \delta_{m,n} f(X).$$

Next we define the function ρ on [0, 1] by

(2.5)
$$\rho(r) = 2^{2p-2} \frac{\Gamma(p-1/2)}{\pi^{1/2} \Gamma(p-1)} r^{2p-3} (1-r^2)^{p-2}.$$

Under these notations, we state our main theorem of this section.

THEOREM 2.2. (i) For any $X \in \mathfrak{p}$ and $Y \in \Sigma$ it is valid that

(2.6)
$$\int_0^1 \rho(r) \left(\int_{N(r)} \langle Z, Y \rangle^m \langle \overline{Z, X} \rangle^n d\mu_r(Z) \right) dr = \frac{n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} Q_{n,p}(X, Y) .$$

(ii) For any $f \in \mathcal{H}_m$ and any $X \in \mathfrak{p}$ we have

(2.7)
$$\int_0^1 \rho(r) \left(\int_{N(r)} f(Z) \langle \overline{Z, X} \rangle^n d\mu_r(Z) \right) dr = (\dim \mathcal{H}_n)^{-1} \delta_{m,n} f(X) .$$

(iii) For any $f \in \mathcal{H}_m$ and $g \in \mathcal{H}_n$ we have

(2.8)
$$\int_{\Sigma} f(X) \overline{g(X)} d\mu_{\Sigma}(X) = \frac{n! \Gamma(p) \dim \mathcal{H}_n}{\Gamma(n+p)} \int_{0}^{1} \rho(r) \left(\int_{N(r)} f(X) \overline{g(X)} d\mu_r(X) \right) dr .$$

To prove Theorem 2.2, we need some lemmas.

LEMMA 2.3 ([2], [5], [7], [15]). (i) For $\theta \in \mathbb{R}$ we have

(2.9)
$$P_{n,2p}(\cos\theta) = \int_0^1 {\{\cos\theta + (2r^2 - 1)i\sin\theta\}^n \rho(r)dr}.$$

(ii) Let α , $\beta \in \mathbb{C}^{2p}$, $\alpha \cdot \alpha = \beta \cdot \beta = 0$. Then we have

(2.10)
$$\int_{S^{2p-1}} (s \cdot \alpha)^m (\overline{s \cdot \beta})^n ds = \frac{2^{-n} n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} (\alpha \cdot \overline{\beta})^n.$$

(iii) If X and Y belong to \mathfrak{N} , we get

(2.11)
$$\int_{\Sigma} \langle X, Z \rangle^{m} \langle \overline{Y, Z} \rangle^{n} d\mu_{\Sigma}(Z) = \frac{n! \Gamma(p)}{\Gamma(n+p)} \, \delta_{m,n} \langle X, Y \rangle^{n} \, .$$

PROOF. (i) It is well known that the following equation holds for $0 \le t \le 1$:

$$P_{n,2p}(t) = \frac{\Gamma(p-1/2)}{\sqrt{\pi}\Gamma(p-1)} \int_{-1}^{1} \{t \pm i(1-t^2)^{1/2}x\}^n (1-x^2)^{p-2} dx$$

(see [5], [7]). From this formula and (2.5) we get (2.9) by putting $r = \sqrt{(x+1)/2}$.

(ii) Suppose $\alpha \cdot \alpha = \beta \cdot \beta = 0$. Then we have $(z \cdot \alpha)^m \in H_m(\mathbb{C}^{2p})$ and $(z \cdot \overline{\beta})^n \in H_n(\mathbb{C}^{2p})$. Hence (2.10) follows from (1.2) and (1.3).

(iii) We put $X = \begin{pmatrix} 0 & a_1 \\ {}^ta_2 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & b_1 \\ {}^tb_2 & 0 \end{pmatrix} \in \mathfrak{N}$ and $Z = \begin{pmatrix} 0 & x \\ {}^t\bar{x} & 0 \end{pmatrix} \in \Sigma$ $(x = z + iw, z, w \in \mathbb{R}^p)$. Then we have by (2.10)

$$\int_{\Sigma} \langle X, Z \rangle^{m} \langle \overline{Y}, \overline{Z} \rangle^{n} d\mu_{\Sigma}(Z)
= \int_{S^{2p-1}} \left\{ \begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix} \cdot \begin{pmatrix} \overline{z+iw} \\ z-iw \end{pmatrix} \right\}^{m} \left\{ \begin{pmatrix} \overline{b_{1}} \\ b_{2} \end{pmatrix} \cdot \begin{pmatrix} z+iw \\ z-iw \end{pmatrix} \right\}^{n} dz dw
= \int_{S^{2p-1}} \left\{ \begin{pmatrix} a_{1}+a_{2} \\ -i(a_{1}-a_{2}) \end{pmatrix} \cdot \begin{pmatrix} z \\ w \end{pmatrix} \right\}^{m} \left\{ \begin{pmatrix} \overline{b_{1}+b_{2}} \\ -i(b_{1}-b_{2}) \end{pmatrix} \cdot \begin{pmatrix} z \\ w \end{pmatrix} \right\}^{n} dz dw
= \frac{2^{-n} n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} \left\{ (a_{1}+a_{2}) \cdot (\overline{b_{1}+b_{2}}) + (a_{1}-a_{2}) \cdot (\overline{b_{1}-b_{2}}) \right\}^{n}
= \frac{n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} \langle X, Y \rangle^{n}$$

because $(a_1 + a_2) \cdot (a_1 + a_2) - (a_1 - a_2) \cdot (a_1 - a_2) = 4a_1 \cdot a_2 = 0$ and $(b_1 + b_2) \cdot (b_1 + b_2) - (b_1 - b_2) \cdot (b_1 - b_2) = 4b_1 \cdot b_2 = 0$. Q.E.D.

LEMMA 2.4. Let $L_n \in \mathcal{H}_n$. If $L_n(kX) = L_n(X)$ for any $k \in K_0$, then $L_n(X)$ is expressed as follows:

(2.12)
$$L_{n}(X) = \sum_{(l,m) \in A} C_{l,m} x_{1}^{l} y_{1}^{m} (x' \cdot y')^{(n-l-m)/2},$$

where $\Lambda = \{(l, m) \in \mathbb{Z}_{+}^{2} : n \equiv l + m \pmod{2}\}, C_{l,m} \in \mathbb{C}, X = \begin{pmatrix} 0 & x \\ t_{y} & 0 \end{pmatrix} \in \mathfrak{p}, x = \begin{pmatrix} x_{1} \\ x' \end{pmatrix}, y = \begin{pmatrix} y_{1} \\ y' \end{pmatrix}, x_{1}, y_{1} \in \mathbb{C} \text{ and } x', y' \in \mathbb{C}^{p-1}.$

PROOF. Since L_n is a homogeneous polynomial of degree n, L_n can be expressed as follows:

(2.13)
$$L_{n}(X) = \sum_{\substack{0 \le l, m \le n \\ 0 \le l + m \le n}} x_{1}^{l} y_{1}^{m} A_{l,m}(^{l}(x' \ y')),$$

where $A_{l,m}$ is a homogeneous polynomial of $\binom{x'}{y'}$ of degree n-l-m. For any $k = \operatorname{Ad} \binom{1}{B} \binom{1}{k} \in K_0$ $(B \in U(p-1))$

$$kX = \begin{pmatrix} 0 & 0 & x_1 \\ 0 & 0 & Bx' \\ y_1 & {}^{t}(\bar{B}y') & 0 \end{pmatrix}.$$

From (2.13) we have

$$L_{n}(kX) = \sum_{\substack{0 \le l, m \le n \\ 0 \le l + m \le n}} x_{1}^{l} y_{1}^{m} A_{l,m}({}^{t}(Bx' \ \overline{B}y')).$$

Since $L_n(X) = L_n(kX)$ for any $B \in U(p-1)$,

(2.14)
$$A_{l,m}({}^{t}(Bx' \ \bar{B}y')) = A_{l,m}({}^{t}(x' \ y')).$$

In general it is known that $f \in J'_+$ if and only if f is fixed under $K_{\mathbf{R}}$ (cf. [3] p. 800). Let $g' = \mathfrak{sl}(p, \mathbf{C})$ and let $g' = \mathfrak{f}' + \mathfrak{p}'$ be the complexification of a Cartan decomposition of $g'_{\mathbf{R}} = \mathfrak{su}(p-1, 1)$. Then $\begin{pmatrix} 0 & x' \\ {}^t y' & 0 \end{pmatrix}$ belongs to \mathfrak{p}' and $A_{l,m}({}^t(x' \ y'))$ is exp ad $\mathfrak{f}'_{\mathbf{R}}$ -invariant from (2.14). Therefore, we have

$$(2.15) A_{l,m}({}^{t}(x' \ y')) = C_{l,m}(x' \cdot y')^{(n-l-m)/2},$$

where $C_{l,m}$ is some constant. Since $x' \cdot y'$ is a homogeneous polynomial of degree 2, (2.12) follows from (2.15). Q.E.D.

LEMMA 2.5. For any $X \in \mathfrak{p}$ we have

$$(2.16) \qquad \int_0^1 \rho(r) \left(\int_{N(r)} \langle Y, E_0 \rangle^m \langle \overline{Y, X} \rangle^n d\mu_r(Y) \right) dr = \frac{n! \Gamma(p)}{\Gamma(n+p)} \, \delta_{m,n} Q_{n,p}(X, E_0) \, .$$

PROOF. For any $X \in \mathfrak{p}$ we put

(2.17)
$$F(X) = \int_0^1 \rho(r) \left(\int_{N(r)} \langle Y, E_0 \rangle^m \langle \overline{Y, X} \rangle^n d\mu_r(Y) \right) dr.$$

Then $F \in \mathcal{H}_n$ because $N(r) \subset \mathfrak{N}$. Furthermore, F is K_0 -invariant because the inner product \langle , \rangle and $d\mu_r$ are $K_{\mathbb{R}}$ -invariant. Hence, by Lemma 2.4 F(X) can be expressed as follows:

$$F(X) = \sum_{(l,m) \in A} C_{l,m} x_1^l y_1^m (x' \cdot y')^{(n-l-m)/2}.$$

We put $X_{\theta} = \begin{pmatrix} 0 & e^{i\theta}e_1 \\ {}^{\prime}(e^{-i\theta}e_1) & 0 \end{pmatrix} \in \Sigma$, $h_{\theta} = \operatorname{Ad}\begin{pmatrix} e^{-i\theta}I_p & 0 \\ 0 & 1 \end{pmatrix} \in K_{\mathbb{R}} \ (\theta \in \mathbb{R})$. So we have $X_{\theta} = h_{\theta}^{-1}E_0$ and $gh_{\theta} = h_{\theta}g$ for any $g \in K_{\mathbb{R}}$. We put

$$G_r(X_{\theta}) = \int_{N(r)} \langle Y, E_0 \rangle^m \langle \overline{Y, X_{\theta}} \rangle^n d\mu_r(Y) .$$

Then it is valid that for any $g \in K_{\mathbb{R}}$

$$(2.18) G_{r}(X_{\theta}) = \int_{N(r)} \langle Y, E_{0} \rangle^{m} \langle \overline{Y, h_{\theta}^{-1} E_{0}} \rangle^{n} d\mu_{r}(Y)$$

$$= \int_{N(r)} \langle Y, E_{0} \rangle^{m} \langle \overline{h_{\theta} Y, E_{0}} \rangle^{n} d\mu_{r}(Y)$$

$$= \int_{N(r)} \langle g^{-1} Y, E_{0} \rangle^{m} \langle \overline{h_{\theta} g^{-1} Y, E_{0}} \rangle^{n} d\mu_{r}(Y)$$

$$= \int_{N(r)} \langle g^{-1} Y, E_{0} \rangle^{m} \langle \overline{g^{-1} h_{\theta} Y, E_{0}} \rangle^{n} d\mu_{r}(Y)$$

$$= \int_{N(r)} \langle Y, g E_{0} \rangle^{m} \langle \overline{h_{\theta} Y, g E_{0}} \rangle^{n} d\mu_{r}(Y).$$

Let dg be the Haar measure on $K_{\mathbb{R}}$ such that $\int_{K_{\mathbb{R}}} 1 \ dg = 1$. (2.18) gives

$$G_{r}(X_{\theta}) = \int_{K_{\mathbf{R}}} G_{r}(X_{\theta}) dg$$

$$= \int_{K_{\mathbf{R}}} \left(\int_{N(r)} \langle Y, gE_{0} \rangle^{m} \langle \overline{h_{\theta}Y, gE_{0}} \rangle^{n} d\mu_{r}(Y) \right) dg$$

$$= \int_{N(r)} \left(\int_{K_{\mathbf{R}}} \langle Y, gE_{0} \rangle^{m} \langle \overline{h_{\theta}Y, gE_{0}} \rangle^{n} dg \right) d\mu_{r}(Y) .$$

Since $K_{\mathbf{R}}E_0 = \Sigma$, and Y and $h_{\theta}Y$ belong to $N(r) \subset \mathfrak{N}$, we have from (2.11)

(2.19)
$$\int_{K_{\mathbf{R}}} \langle Y, gE_{0} \rangle^{m} \langle \overline{h_{\theta}Y, gE_{0}} \rangle^{n} dg = \int_{\Sigma} \langle Y, Z \rangle^{m} \langle \overline{h_{\theta}Y, Z} \rangle^{n} d\mu_{\Sigma}(Z)$$
$$= \frac{n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} \langle Y, h_{\theta}Y \rangle^{n}.$$

For any $Y = \begin{pmatrix} 0 & a \\ {}^tb & 0 \end{pmatrix} \in N(r)$ we have $h_{\theta}Y = \begin{pmatrix} 0 & e^{-i\theta}a \\ {}^t(e^{i\theta}b) & 0 \end{pmatrix}$, $a \cdot \bar{a} = r^2$, and $b \cdot \bar{b} = 1 - r^2$. Therefore, we get

(2.20)
$$\langle Y, h_{\theta} Y \rangle = e^{i\theta} a \cdot \bar{a} + e^{-i\theta} b \cdot \bar{b} = e^{i\theta} r^2 + e^{-i\theta} (1 - r^2)$$
$$= \cos \theta + (2r^2 - 1)i \sin \theta .$$

If n = m, we have from (2.19) and (2.20)

(2.21)
$$G_r(X_{\theta}) = \frac{n!\Gamma(p)}{\Gamma(n+p)} \int_{N(r)} \{\cos\theta + (2r^2 - 1)i\sin\theta\}^n d\mu_r(Y)$$
$$= \frac{n!\Gamma(p)}{\Gamma(n+p)} \{\cos\theta + (2r^2 - 1)i\sin\theta\}^n.$$

From (2.17), (2.21), and (2.9) we have

$$F(X_{\theta}) = \frac{n!\Gamma(p)}{\Gamma(n+p)} \int_{0}^{1} \rho(r) \{\cos\theta + (2r^{2}-1)i\sin\theta\}^{n} dr$$
$$= \frac{n!\Gamma(p)}{\Gamma(n+p)} P_{n,2p}(\cos\theta) = \frac{n!\Gamma(p)}{\Gamma(n+p)} Q_{n,p}(X_{\theta}, E_{0}).$$

On the other hand, we have

(2.22)
$$F(X_{\theta}) = \sum_{l=0}^{n} C_{l,n-l} e^{i(2l-n)\theta}.$$

Since $F \in \mathcal{H}_n$, we have

$$\begin{split} P(D)F(X) = 4 \sum_{\substack{(l,m) \in A \\ 0 \le l+m \le n-2}} \left(\left\{ C_{l+1,m+1}(l+1)(m+1) + C_{l,m} \frac{(n-l-m)(n-l-m+2p-4)}{4} \right\} \\ & \cdot x_1^l y_1^m (x' \cdot y')^{(n-l-m-2)/2} \right) = 0 \; . \end{split}$$

If $(l, m) \in \Lambda$ and $0 \le l + m \le n - 2$, we have from this equality

(2.23)
$$C_{l,m} = \frac{-4(l+1)(m+1)}{(n-l-m)(n-l-m+2p-4)} C_{l+1,m+1}.$$

(2.23) shows that we can determine all coefficients of F(X) uniquely by $C_{l,n-l}$ $(l=0,1,\cdots,n)$. If we put $H(X)=(n!\Gamma(p)/\Gamma(n+p))Q_{n,p}(X,E_0)$, H belongs to \mathcal{H}_n and H(kX)=H(X) for any $k\in K_0$. Hence we can express

(2.24)
$$H(X) = \sum_{(l,m) \in A} D_{l,m} x_1^l y_1^m (x' \cdot y')^{(n-l-m)/2},$$

where $D_{l,m} \in \mathbb{C}$. In addition, $D_{l,m}$ also satisfies (2.23). Furthermore, since $H(X_{\theta}) = F(X_{\theta})$, we have $D_{l,n-l} = C_{l,n-l}$ by (2.22) and (2.24). Therefore, for any $(l,m) \in \Lambda$ we obtain $D_{l,m} = C_{l,m}$, which implies (2.16).

When $n \neq m$, we have $C_{l,n-l} = 0$ $(l = 0, 1, \dots, n)$ because $F(X_{\theta}) = 0$. Therefore, we get F(X) = 0 by (2.23). Q.E.D.

PROOF OF THEOREM 2.2. (i) From Lemma 2.5 we have for any $X \in \Sigma$

$$\int_{0}^{1} \rho(r) \left(\int_{N(r)} \langle Z, E_{0} \rangle^{m} \langle \overline{Z, X} \rangle^{n} d\mu_{r}(Z) \right) dr$$

$$= \frac{n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} P_{n,2p} \left(\frac{1}{2} \langle X, E_{o} \rangle \right).$$

For any $Y \in \Sigma$ there exists some $g \in K_{\mathbb{R}}$ such that $Y = gE_0$. Hence we have

$$(2.25) \qquad \int_{0}^{1} \rho(r) \left(\int_{N(r)} \langle Z, Y \rangle^{m} \langle \overline{Z}, \overline{X} \rangle^{n} d\mu_{r}(Z) \right) dr$$

$$= \int_{0}^{1} \rho(r) \left(\int_{N(r)} \langle Z, gE_{0} \rangle^{m} \langle \overline{Z}, \overline{X} \rangle^{n} d\mu_{r}(Z) \right) dr$$

$$= \int_{0}^{1} \rho(r) \left(\int_{N(r)} \langle g^{-1}Z, E_{0} \rangle^{m} \langle \overline{g^{-1}Z, g^{-1}X} \rangle^{n} d\mu_{r}(Z) \right) dr$$

$$= \int_{0}^{1} \rho(r) \left(\int_{N(r)} \langle Z, E_{0} \rangle^{m} \langle \overline{Z}, g^{-1}X \rangle^{n} d\mu_{r}(Z) \right) dr$$

$$= \frac{n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} P_{n,2p} \left(\frac{1}{2} \langle g^{-1}X, E_{0} \rangle \right)$$

$$= \frac{n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} P_{n,2p} \left(\frac{1}{2} \langle X, Y \rangle \right) = \frac{n! \Gamma(p)}{\Gamma(n+p)} \delta_{m,n} Q_{n,p}(X, Y) .$$

It is clear that the restriction mapping $f \to f|_{\Sigma}$ is bijective. Since the left-hand side of (2.25) and $(n!\Gamma(p)/\Gamma(n+p))\delta_{m,n}Q_{n,p}(X, Y)$ belong to \mathcal{H}_n , we obtain (2.6) from (2.25).

(ii) For any $f \in \mathcal{H}_m$ there exist some positive integer M, $a_k \in \mathbb{C}$ and $Y_k \in \Sigma$ $(k=1, 2, \dots, M)$ such that

(2.26)
$$f(Z) = \sum_{k=1}^{M} a_k Q_{m,p}(Z, Y_k).$$

(2.26) implies

(2.27)
$$\int_{0}^{1} \rho(r) \left(\int_{N(r)} f(Z) \langle \overline{Z}, \overline{X} \rangle^{n} d\mu_{r}(Z) \right) dr$$

$$= \sum_{k=1}^{M} a_{k} \int_{0}^{1} \rho(r) \left(\int_{N(r)} Q_{m,p}(Z, Y_{k}) \langle \overline{Z}, \overline{X} \rangle^{n} d\mu_{r}(Z) \right) dr.$$

Let C_n be the coefficient of the highest power in $P_{n,2p}(t)$. Then it is known that

(2.28)
$$C_n = \frac{2^n \Gamma(n+p)}{n! \Gamma(p) \dim \mathcal{H}_n}$$

(cf. [5], [7]) and $Q_{m,p}(Z, Y_k) = 2^{-m} C_m \langle Z, Y_k \rangle^m$ for $Z \in N(r) \subset \mathfrak{N}$. Hence the right-hand side of (2.27) equals

$$2^{-m}C_{m}\sum_{k=1}^{M}a_{k}\int_{0}^{1}\rho(r)\left(\int_{N(r)}\langle Z,Y_{k}\rangle^{m}\langle\overline{Z,X}\rangle^{n}d\mu_{r}(Z)\right)dr$$

$$=2^{-n}C_{n}\sum_{k=1}^{M}a_{k}\frac{n!\Gamma(p)}{\Gamma(n+p)}\delta_{m,n}Q_{n,p}(X,Y_{k})=(\dim\mathscr{H}_{n})^{-1}\delta_{m,n}f(X)$$

by (2.6), (2.26) and (2.28).

(iii) For any $g \in \mathcal{H}_n$ there exist some positive integer M, $X_k \in \Sigma$ and $a_k \in \mathbb{C}$ $(k=1, 2, \dots, M)$ such that $g(Z) = \sum_{k=1}^{M} a_k Q_{n,p}(Z, X_k) = 2^{-n} C_n \sum_{k=1}^{M} a_k \langle Z, X_k \rangle^n$ for $Z \in \mathbb{R}$. Hence, we get from (2.7) and (2.4)

(2.29)
$$\int_{0}^{1} \rho(r) \left(\int_{N(r)} f(Z) \overline{g(Z)} d\mu_{r}(Z) \right) dr = 2^{-n} C_{n} (\dim \mathcal{H}_{n})^{-1} \delta_{m,n} \sum_{k=1}^{M} \overline{a}_{k} f(X_{k})$$
$$= 2^{-n} C_{n} \int_{\Sigma} f(Z) \overline{g(Z)} d\mu_{\Sigma}(Z) .$$

Finally (2.8) follows from (2.28) and (2.29).

Q.E.D.

We put $\mathcal{O}_{\lambda}(\mathfrak{p}) = \{ f \in \mathcal{O}(\mathfrak{p}) ; (P(D) + \lambda^2) f = 0 \}$, where $\mathcal{O}(\mathfrak{p})$ denotes the space of holomorphic functions on \mathfrak{p} and $\lambda \in \mathbb{C}$. From Theorem 2.2 and [15] Theorem 2.4 we have

COROLLARY 2.6 (cf. [15] Theorem 2.4). For any $\lambda \in \mathbb{C}$ the restriction mapping $\alpha_{\lambda} \colon F \to F|_{\mathfrak{N}}$ is a bijection from $\mathcal{O}_{\lambda}(\mathfrak{p})$ onto $\mathcal{O}(\mathfrak{N})$ and $\alpha_{\lambda}^{-1}f$ is expressed as follows:

$$\alpha_{\lambda}^{-1} f(X) = \int_{0}^{1} \rho(r) \left(\int_{N(r)} f(Z) K_{\lambda}(X, Z) d\mu_{r}(Z) \right) dr \qquad (X \in \mathfrak{p}),$$

where

$$K_{\lambda}(X,Z) = \sum_{n=0}^{\infty} \dim \mathcal{H}_n \Gamma(n+p) \left(\frac{\lambda \sqrt{P(Z)}}{4}\right)^{-n-p+1} J_{n+p-1}(\lambda \sqrt{P(Z)}/2) \langle X,Z \rangle^n,$$

and $J_{\nu}(t)$ is the Bessel function of order ν . In particular if $\lambda = 0$ and $\langle X, X \rangle < t$ (t > 0),

(2.30)
$$\alpha_0^{-1} f(X) = \int_0^1 \rho(r) \left(\int_{N(r)} f(Z) \frac{1 + \langle X/t, Z \rangle}{(1 - \langle X/t, Z \rangle)^{2p-1}} d\mu_r(Z) \right) dr.$$

Appendix.

In this appendix, we state the integral representations of harmonic polynomials in the case $g_{\mathbf{R}} = \mathfrak{so}(p, 1)$ which are reformulation of Lemma 1.2. When $g_{\mathbf{R}} = \mathfrak{so}(p, 1)$ $(p \in \mathbb{Z}_+, p \ge 3)$, we have

$$g = \left\{ \begin{pmatrix} A & z \\ {}^{t}z & 0 \end{pmatrix}; A \in \mathfrak{so}(p, \mathbf{C}), z \in \mathbf{C}^{p} \right\},$$

$$\tilde{\mathbf{f}} = \left\{ \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \in M(p+1, \mathbf{C}); A \in \mathfrak{so}(p, \mathbf{C}) \right\},$$

$$\mathfrak{p} = \left\{ \begin{pmatrix} 0 & z \\ {}^{t}z & 0 \end{pmatrix} \in M(p+1, \mathbf{C}) : z \in \mathbf{C}^{p} \right\}.$$

Furthermore, we have

$$K_{\mathbf{R}} = \left\{ \operatorname{Ad} \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}; A \in SO(p) \right\}.$$

For
$$g = \operatorname{Ad} \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \in K_{\mathbb{R}}$$
 and $Z = \begin{pmatrix} 0 & z \\ z & 0 \end{pmatrix} \in \mathfrak{p}$ we have

$$gz = \begin{pmatrix} 0 & Az \\ {}^{t}(Az) & 0 \end{pmatrix}.$$

For $Z \in \mathfrak{p}$ we put $P(Z) = z \cdot z$. Then the generator of J'_+ is P(Z) and \mathscr{H}_n can be identified with $H_n(\mathbb{C}^p)$. We put $\Sigma = \{Z \in \mathfrak{p} \; ; \; z \cdot \bar{z} = 1\}$, $N = \{Z \in \mathfrak{p} \; ; \; P(Z) = 0, \; z \cdot \bar{z} = 2\}$. Then Σ and N are simple $K_{\mathbb{R}}$ -orbits. For $Z \in \mathfrak{p}$ we define $\varphi(Z) = z$ and $Q_n(Z, X) = P_{n,p}(\varphi(Z), \varphi(X))$ $(X \in \Sigma)$. μ_{Σ} and μ_N denote the unique $K_{\mathbb{R}}$ -invariant measures on Σ and N such that $\int_{\Sigma} 1 d\mu_{\Sigma} = \int_{N} 1 d\mu_{N} = 1$, respectively. From (1.1)–(1.4) we have the following formulas which are similar to (2.4), (2.7), (2.8) and (2.30).

(A.1)
$$\dim \mathcal{H}_n \int_{\Sigma} F(Z) Q_n(Z, X) d\mu_{\Sigma}(Z) = \delta_{m,n} F(X) ,$$

(A.2)
$$\dim \mathcal{H}_n \int_N F(Z) \langle \overline{Z, Y} \rangle^n d\mu_N(Z) = 2^n \delta_{m,n} F(Y) ,$$

(A.3)
$$\int_{\Sigma} F(Z) \overline{G(Z)} d\mu_{\Sigma}(Z) = 2^{-2n} \frac{n! \Gamma(p/2)}{\Gamma(n+p/2)} \dim \mathcal{H}_n \int_{N} F(z) \overline{G(z)} d\mu_{N}(z) ,$$

(A.4)
$$H(X) = \int_{N} H(Z)(1 + \langle X/2, Z \rangle)(1 - \langle X/2, Z \rangle)^{-p+1} d\mu_{N}(Z),$$

where $F \in \mathcal{H}_m$, $G \in \mathcal{H}_n$, $H \in \mathcal{O}_0(\mathfrak{p})$, $X \in \Sigma$ and $Y \in \mathfrak{p}$.

References

- [1] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press (1978).
- [2] K. II, On a Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J. 38 (1986), 57-69.
- [3] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
- [4] M. Morimoto, Analytic functionals on the Lie sphere, Tokyo J. Math. 3 (1980), 1-35.
- [5] M. MORIMOTO, *Hyperfunctions on the Sphere*, Sophia Kokyuroku in Math. 12 (1982), Dept. of Math. Sophia Univ. (in Japanese).
- [6] M. Morimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, *Complex Analysis*, Banach Center Publ. 11 (1983), PWN-Polish Scientific Publishers, 223—250.
- [7] C. MÜLLER, Spherical Harmonics, Lecture Notes in Math. 17 (1966), Springer.
- [8] H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), 513-537.
- [9] A. TERRAS, Harmonic Analysis on Symmetric Spaces and Applications II, Springer (1988).
- [10] R. WADA, On the Fourier-Borel transformations of analytic functionals on the complex sphere, Tôhoku Math. J. 38 (1986), 417-432.
- [11] R. WADA, A uniqueness set for linear partial differential operators of the second order, Funkcial. Ekvac. 31 (1988), 241–248.
- [12] R. WADA, Holomorphic functions on the complex sphere, Tokyo J. Math. 11 (1988), 205-218.
- [13] R. WADA, A uniqueness set for linear partial differential operators with real coefficients, Proc. Japan Acad. Ser. A 66 (1990), 278-280.
- [14] R. WADA and A. KOWATA, Holomorphic functions on the nilpotent subvariety of symmetric spaces, Hiroshima Math. J. 21 (1991), 263—266.
- [15] R. WADA and M. MORIMOTO, A uniqueness set for the differential operator $\Delta_z + \lambda^2$, Tokyo J. Math. 10 (1987), 93–105.

Present Address:

2-31-201 Akebono-machi, Kaita-cho, Aki-gun, Hiroshima, 736-0031 Japan.