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Abstract. Every Morse-Smale diffeomorphism of the circle is conjugate to a diffeomorphism belonging
to the set defined by

$f_{\omega.\epsilon.k}(x)=x+\omega+\frac{\epsilon}{2\pi}\sin(2k\pi x)$ ($0<\omega<1,0<\epsilon<1,$ $k$ with $0<\epsilon k<1$ )

and Morse-Smale diffeomorphisms in the set is $C^{1}$ open and dense, with respect to the relative topology, in
Amol’d tongue.

Morse-Smale diffeomorphisms and the standard family are investigated. Theorem
A examines that the standard family contains an analytic model for each Morse-
Smale diffeomorphism, and in Theorem $B$ the density of the set of all Morse-Smale
diffeomorphisms in the Amol’d tongue is investigated.

Let $f$ be a diffeomorphism of the circle $S^{1}=R/Z$ and $F:R\rightarrow R$ be a lift of $f$ such
that $\mathscr{P}\circ F=f\circ \mathscr{P}$ , where $\mathscr{P}$ denotes the canonical projection from $R$ to $S^{1}$ . A periodic
point of $f$ with the period $m,$ $x$ , is called a sink (source) if $0<|\frac{d}{dx}F^{m}(\overline{x})|<1(|\frac{d}{dx}F^{m}(\overline{x})|>1)$ ,

where $\mathscr{P}(\overline{x})=x$ . If the set of all periodic points of $f,$ $Per(f)$ , is non-empty and consists
of only sinks and sources, then $f$ is called a Morse-Smale diffeomorphism. If
diffeomorphisms $f:S^{1}\rightarrow S^{1}$ and $g:S^{1}\rightarrow S^{1}$ satisfy the relation $f\circ h=h\circ g$ for some
homeomorphism $h:S^{1}\rightarrow S^{1}$ , then we say that $f$ is topologically conjugate to $g$ and that
$h$ is a conjugacy map between $f$ and $g$ . A diffeomorphism $f:S^{1}\rightarrow S^{1}$ is said to be
$C^{1}$ -structurally stable if there is a $C^{1}$ neighborhood $U$ of $f$ such that $f$ is topologically
conjugate to every $g\in U$. We know that every Morse-Smale diffeomorphism $f$ is
$C^{1}$ -structurally stable and the set of all $C^{1}$ Morse-Smale diffeomorphisms $MS$ is open
and dense in the set ofall $C^{1}$ diffeomorphisms ofthe circle with respect to the $C^{1}$ -topology
(cf. [2]).

The set of circle diffeomorphisms defined by
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$f_{\omega.\epsilon.k}(x)=x+\omega+\frac{\epsilon}{2\pi}\sin(2k\pi x)$ $(mod 1)$ $(0<\omega<1,0<\epsilon<1,0<\epsilon k<1)$

is called the standardfamily (cf. [2]).

THEOREM A. Every orientation-preserving Morse-Smale diffeomorphism is topo
logically conjugate to a Morse-Smale diffeomorphism belonging to the standardfamily.

Let $f:S^{1}\rightarrow S^{1}$ be an orientation-preserving diffeomorphism with a lift F. The]

the number $\rho_{0}(F)=\lim_{n\rightarrow\infty}(F^{n}(x)-x)/n$ is independent of $x$ (cf. [2]). If $F_{1}$ and $F_{2}$ ar
two lifts of $f$, then $\rho_{0}(F_{1})-\rho_{0}(F_{2})$ is an integer, and so $\rho(f)=\rho_{0}(F)$ mod 1 is define $i$

The number $\rho(f)$ is called the rotation number of$f\rho(f)$ is rational if and only if $f$ ha
a periodic point (cf. [2]). Since a Morse-Smale diffeomorphism has periodic points, th
rotation number of each Morse-Smale diffeomorphism is rational. On the other hanc
if $f:S^{1}\rightarrow S^{1}$ is a $C^{2}$ orientation-preserving diffeomorphism with irrational rotatio
number, then $f$ is topologically conjugate to the rigid rotation (cf. [6]).

The dynamics of standard family was firstly studied by Amol’d (cf. [1]). Herma
proved in [4] that if $0<\epsilon<1$ is fixed and $k=1$ , then the set of parameter $\omega$ for whic
the rotation number is irrational has positive Lebesgue measure. Recently $\acute{S}$wiqtek [6
proved that the analogous result is false for homeomorphisms with critical points: unde
rather general assumptions which admit the family $f_{\omega,\epsilon,k}$ with $(\epsilon, k)=(1,1)$ , he showe $($

that the parameter $\omega$ corresponding to rational numbers constitute a set of full measure
For $(\epsilon, k)$ a fixed parameter Graczyk [3] proved that the set of parameter $\omega$ whic
corresponds to non-linearizable maps with an irrational rotation number is ofHausdorf
dimension $0$ . If $r$ is a rational number, then the family of $C^{1}$ diffeomorphisms of $S$

with the rotation number $r,$ $D(r)$ , is connected ($D(r)$ is called the level set). In each levt
set the set of Morse-Smale diffeomorphisms, $D(r)\cap MS$, is dense ([1]).

For fixed $k>0$ the set

$AT_{k}(r)=\{(\omega, \epsilon):\rho(f_{\omega.\epsilon,k})=r\}$

is called an Arnol’d tongue if $r$ is a rational number. Obviously, $AT_{k}(r)$ constitutes
subset of $D(r)$ . Moreover define a subset $MS_{k}(r)=\{(\omega, \epsilon)\in AT_{k}(r) : f_{\omega,\epsilon,k}\in MS\}$ ofA $T_{k}(r)$ .

THEOREM B. $MS_{k}(r)$ is open and dense in an Amol’d tongue $AT_{k}(r)$ with respec
to the relative topology.

PROOF OF THEOREM A. We begin with checking a sufficient condition under whic
two circle diffeomorphisms are topologically conjugate. Topologically conjugate dil
feomorphisms have the same cardinality of periodic points. Thus we suppose $f$ and
are orientation-preserving Morse-Smale diffeomorphisms such that the cardinalitie
of Per$(f)$ and Per$(g)$ are equal. Since a Morse-Smale diffeomorphism of the circle ha
the same numbers of sinks and sources, the cardinality of sinks of $f$ is equal to tha
of $g$ . Denote by $S_{f}=\{s_{1}, s_{2}, \cdots, s_{q}\}$ and $S_{g}=\{s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{q}^{\prime}\}$ the sets of sinks of $f$ an
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$g$ respectively. By the definition of sinks, $f(S_{f})=S_{f}$ and $g(S_{g})=S_{g}$ . For $x\in S^{1}$ we denote
as $\overline{x}$ the point in $R$ satisfying $0\leq\overline{x}<1$ and $\mathscr{P}(\overline{x})=x$ . Without loss of generality we may
assume that $\overline{s}_{1}<\overline{s}_{2}<\cdots<\overline{s}_{q}$ and $\overline{s}_{1}^{\prime}<\overline{s}_{2}^{\prime}<\cdots<\overline{s}_{q}^{\prime}$ .

CLAIM. $f$ is topologically conjugate to $g$ if $f(s_{1})=s_{p+1}$ and $g(s_{1}^{\prime})=s_{p+1}^{\prime}$ for a
fixed $0\leq p\leq q-1$ .

It is needless to say that we can find a conjugacy map between $f$ and $g$ by going
on the similar way to prove the structural stability for Morse-Smale circle diffeo-
morphisms. However, to make sure we give a proof for the claim. Indeed, $f$ is Morse-
Smale and so if $U_{f}=\{u_{1}, u_{2}, \cdots, u_{q}\}$ denotes the set of sources of $f$, then we may
suppose that $\overline{s}_{i}<\overline{u}_{i}<\overline{s}_{i+1}$ for $i=1,$ $\cdots,$ $q$ . Here $\overline{s}_{q+1}=\overline{s}_{1}+1$ . Let $O_{f}(x)$ denote the orbit
of $x\in S^{1}$ under $f$ (i.e. $O_{f}(x)=\{f^{j}(x)\}_{j\in Z}$). Since $f$ is orientation-preserving, all periodic
points have the same period, say $m>0$ . Then $O_{f}(u_{i})=\{f^{j}(u_{i})\}_{j=0}^{m-1}(1\leq i\leq q)$ . The unsta-
ble manifold of $u_{i}(1\leq i\leq q)$ is defined by $W_{f}^{u}(u_{i})=\{x:\lim_{n\rightarrow-\infty}f^{mn}(x)=u_{i}\}$ and chara-
cterized as $W_{f}^{u}(u_{i})=\mathscr{P}((\overline{s}_{i},\overline{s}_{i+1}))$ since $f$ is Morse-Smale. Then $S^{1}=\bigcup_{i=1}^{q}W_{f}^{u}(u_{i})uS_{f}$ .
On the other hand, denote as $U_{g}=\{u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{q}^{\prime}\}$ the set of sources of $g$ , and define
$O_{g}(x)(x\in S^{1})$ and $W_{g}^{u}(u_{i}^{\prime})(i=1, \cdots, q)$ in the same way as given for $f$ From the as-
sumption of the claim, s\’i has the same period $m$ of $s_{1}$ , and so does $u_{i}^{\prime}(i=1, \cdots, q)$ . By
the same argument we have $O_{g}(u_{i}^{\prime})=\{g^{j}(u_{i}^{\prime})\}_{j=0}^{m-1}$ and $W_{g}^{u}(u_{i}^{\prime})=\mathscr{P}((\overline{s}_{i}^{\prime},\overline{s}_{i+1}^{\prime}))$ for $i=$

$1,$ $\cdots,$ $q$ .
Take and fix an arbitrary $1\leq i\leq q$ , and put $W_{f}^{u}(O_{f}(u_{j}))=\bigcup_{j=0}^{m-1}W_{f}^{u}(f^{j}(u_{i}))$ and

$W_{g}^{u}(O_{g}(u_{i}^{\prime}))=\bigcup_{j=0}^{m-1}W_{g}^{u}(g^{j}(u_{i}^{\prime}))$ . Notice that $W_{f}^{u}(O_{f}(u_{i}))$ is an $f$-invariant set (i.e.
$f(W_{f}^{u}(O_{f}(u_{i})))=W_{f}^{u}(O_{f}(u_{i})))$ and that $W_{g}^{u}(O_{g}(u_{i}^{\prime}))$ is g-invariant. It is checked that
$f|W_{f}^{u}(O_{f}(u_{i}))$ is topologically conjugate to $g|W_{g}^{u}(O_{g}(u_{i}^{\prime}))$ . To show this, fix four points
$a\in \mathscr{P}((\overline{s}_{i},\overline{u}_{i})),$ $b\in \mathscr{P}((\overline{u}_{i},\overline{s}_{i+1})),$ $a^{\prime}\in \mathscr{P}((\overline{s}_{i}^{\prime},\overline{u}_{i}^{\prime}))$ and $b^{\prime}\in \mathscr{P}((\overline{u}_{i}^{\prime},\overline{s}_{i+1}^{\prime}))$ . Since $u_{i}$ and $u_{i}^{\prime}$ are
sources of $f$ and $g$ respectively and they have the same period $m>0$ , we have

$[\overline{f^{m}(a)},\overline{a}]\cup[5,\overline{f^{m}(b)}]\subset(\overline{s}_{i},\overline{s}_{i+1})$ , $[\overline{g^{m}(a^{\prime})},\overline{a}^{\prime}]\cup[5^{\prime}, \overline{g^{m}(b^{\prime})}]\subset(\overline{s}_{i}^{\prime},\overline{s}_{i+1}^{\prime})$ .

Let $\phi:\mathscr{P}([\overline{f^{m}(a)},\overline{a}]\cup[5,\overline{f^{m}(b)}])\rightarrow \mathscr{P}([\overline{g^{m}(a^{\prime})},\overline{a}^{\prime}]u[5, \overline{g^{m}(b^{\prime})}])$ be a hemeomorphsim
such that

$\phi(a)=a^{\prime}$ , $\phi(f^{m}(a))=g^{m}(a^{\prime})$ , $\phi(b)=b^{\prime}$ , $\phi(f^{m}(b))=g^{m}(b^{\prime})$ ,

and let $D=\mathscr{P}((\overline{f^{m}(a)},\overline{a}$] $\cup[5, \overline{f^{m}(b))}$). Then $W_{f}^{u}(u_{i})\backslash \{u_{j}\}$ can be written as the disjoint
union $W_{f}^{u}(u_{i})\backslash \{u_{i}\}=\bigcup_{k\in Z}f^{mk}(D)$ of $f^{mk}(D)$ . Thus we can construct a map
$\tilde{h}_{i}$ : $W_{f}^{u}(u_{i})\rightarrow W_{g}^{u}(u_{i}^{\prime})$ satisfying $\tilde{h}_{i}(x)=g^{mk}\circ\phi\circ f^{-mk}(x)$ for $x\in f^{mk}(D)(k\in Z)$ and
$\tilde{h}_{i}(u_{i})=u_{i}^{\prime}$ . It is easily checked that $\tilde{h}_{i}$ is a homeomorphism with $\tilde{h}_{i}\circ f^{m}(x)=g^{m}\circ\tilde{h}_{i}(x)$

$(x\in W_{f}^{u}(u_{i}))$ . Thus, if we define $h_{i}$ : $W_{f}^{u}(O_{f}(u_{i}))\rightarrow W_{g}^{u}(O_{g}(u_{i}^{\prime}))$ by $h_{i}(x)=g^{j}\circ\tilde{h}_{i}\circ f^{-j}(x)$ for
$x\in f^{j}(W_{f}^{u}(u_{i}))(j=0, \cdots, m-1)$ , then $h_{i}$ is a conjugacy map between $f|W_{f}^{u}(O_{f}(u_{i}))$ and
$g|W_{g}(O_{g}(u_{i}^{\prime}))$ .

From the assumption of the claim it follows that $f(u_{i})=u_{j}$ ($j=p+i$ mod q) and
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$g(u_{i}^{\prime})=u_{j}^{\prime}$ ($j=p+i$ mod $q$). Thus we can choose $I\subset\{1, \cdots, q\}$ such that $U_{f}$ and $U_{g}$ are
decomposed as disjoint unions $U_{f}=\bigcup_{i\in I}O_{f}(u_{i})$ and $U_{g}=\bigcup_{i\in I}O_{g}(u_{i}^{\prime})$ of distinct orbit:
respectively. Since $S^{1}=\bigcup_{i\in I}W_{f}(O_{f}(u_{i}))\cup S_{f}$ and $S^{1}=\bigcup_{i\in I}W_{g}(O_{g}(u_{i}^{\prime}))\cup S_{g}$ are disjoin)
unions, we can define a homeomorphism $h:S^{1}\rightarrow S^{1}$ by

$h(x)=\left\{\begin{array}{ll}h_{i}(x), & if x\in W_{f}(O_{f}(u_{i})), i\in I,\\s_{i}^{\prime}, & if x=s_{i}, i=1, \cdots, q,\end{array}\right.$

where $h_{i}(t\in I)$ is defined as above. It is easy to check that $h$ is a conjugacy map betweer
$f$ and $g$ . Therefore the above claim holds.

We are now ready to confirm the conclusion ofTheorem A. Let $f$ be a Morse-Smalt
diffeomorphism and let $s_{i}(i=1, \cdots, q)$ be as above. Suppose that $f(s_{1})=s_{p+1}$ for $som($

$0\leq p\leq q-1$ . If we define

$F(x)=x+\frac{p}{q}+\frac{\epsilon}{2\pi}\sin(2q\pi x)$ ,

for $\epsilon$ with $0<\epsilon q<1$ , then $\mathscr{P}\circ F\circ \mathscr{P}^{-1}=f_{p/q,\epsilon,q}$ is a circle diffeomorphism. Moreover
$f_{p/q.\epsilon,q}$ is Morse-Smale. Indeed, write $F_{0}(x)=x+(\epsilon/2\pi)\sin(2q\pi x)$ . Then $\mathscr{P}\circ F_{0}\circ \mathscr{P}^{-1}=f_{(}$

is clearly a Morse-Smale diffeomorphism. Since

$F^{q}(x)=x+p+\frac{\epsilon}{2\pi}\sum_{i=0}^{q-1}\sin[2q\pi F^{i}(x)]$

$=x+p+\frac{\epsilon}{2\pi}\sum_{i=0}^{q-1}\sin[2q\pi F_{0}^{i}(x)]=F_{0}^{q}(x)+p$ ,

we have $f_{p/q.\epsilon.q}^{q}=f_{0}^{q}$ . This implies that $f_{p/q.\epsilon.q}$ is also a Morse-Smale diffeomorphism
Since $f_{p/q,\epsilon,q}^{q}=f_{0}^{q}$ , we have

$S_{f_{p/q,\epsilon,q}}=S_{f_{p/q,\epsilon.q}^{q}}=S_{f_{0}^{q}}=S_{f_{0}}=\{\mathcal{P}(\frac{2i-1}{2q});i=1,$ $\cdots,$ $q\}$ .

Write $s_{i}^{\prime}=\mathscr{P}((2i-1)/(2q))(i=1, \cdots, q)$ . Then
$f_{p/q.\epsilon.q}(s_{1}^{\prime})=f_{p/q,\epsilon,q}(\mathscr{P}(1/(2q))=\mathscr{P}\circ F(1/(2q))$

$=\mathscr{P}(1/(2q)+p/q)=\mathscr{P}((2p+1)/(2q))=s_{p+1}^{\prime}$ ,

which ensures, by the above claim, that $f$ is topologically conjugate to $f_{p/q,\epsilon.q}$ .

PROOF OF THEOREM B. Let $k$ be a positive integer and $r$ be a rational numbe
with $0\leq r\leq 1$ . To prove the density of $MS_{k}(r)$ in an Amol’d tongue, take $(\omega_{0}, \epsilon)\in AT_{k}(’$

and a diffeomorphism $f_{\omega_{O}.\epsilon.k}$ belonging to the standard family with $\rho(f_{\omega 0,\epsilon.k})=r$ . $Writ|$

$r=p/q$ , where $p$ and $q$ are non-negative relatively prime integers. A diffeomorphisn
$F_{\omega_{O},\epsilon,k}$ of $R$ defined by $F_{\omega 0\cdot\epsilon.k}(x)=x+\omega_{0}+(\epsilon/2\pi)\sin(2k\pi x)$ is a lift of $f_{\omega_{O},\epsilon,k}$ . For th
simple notations we write $f_{\omega 0},$ $F_{\omega_{O}}$ instead of $f_{\omega_{O}.\epsilon,k},$ $F_{\omega_{O},\epsilon,k}$ respectively. Since $\rho(f_{\omega_{0}})=p/q$

each periodic point of $f_{\omega 0}$ is a fixed point of $f_{\omega_{O}}^{q}$ and so we can find $l\in Z$ such tha
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$F_{\omega_{O}}^{q}(x)=x+l$ for $x\in \mathscr{P}^{-1}(Per(f_{\omega_{O}}))$ . Fix $l$ and take a diffeomorphism $f_{\omega}=f_{\omega,\epsilon,k}$ from the
standard family. Then $F_{\omega}$ : $R\rightarrow R(\omega\in R)$ defined by $F_{\omega}(x)=x+\omega+(\epsilon/2\pi)\sin(2k\pi x)$ is a
lift of $f_{\omega}$ . Write

$G(\omega, x)=F_{\omega}^{q}(x)-(x+l)$

for $\omega,$ $x\in R$ .
It is checked that $\frac{\partial}{\partial\omega}G(\omega, x)>0$ . Indeed, if we write $F(\omega, x)=F_{\omega}(x)$ and $F_{\omega}^{j}(x)$

$=F(\omega, F_{\omega}^{j-1}(x))$ for $j\geq 1$ , then

$\frac{\partial}{\partial\omega}F_{\omega}^{j}(x)=\frac{\partial}{\partial\omega}(F(\omega, F_{\omega}^{j-1}(x)))$

$=(\frac{\partial}{\partial\omega}F)(\omega, F_{\omega}^{j-1}(x))+(\frac{\partial}{\partial x}F)(\omega, F_{\omega}^{j-1}(x))\frac{\partial}{\partial\omega}F_{\omega}^{j-1}(x)$

$=1+(1+k\epsilon\cos(2k\pi F_{\omega}^{j-1}(x)))\frac{\partial}{\partial\omega}F_{\omega}^{j-1}(x)$ .

Thus if $\frac{\partial}{\partial\omega}F_{\omega}^{j-1}(x)>0$ for $j\geq 2$ , then we have $\frac{\partial}{\partial\omega}F_{\omega}^{j}(x)>0$ by $0<\epsilon k<1$ . $\frac{\partial}{\partial\omega}F_{\omega}(x)$

$=\frac{\partial}{\partial\omega}F(\omega, x)=1$ and so $\frac{\partial}{\partial\omega}G(\omega, x)>0$ .
Take and fix $x_{0}\in \mathscr{P}^{-1}(Per(f_{\omega_{O}}))$ . Then, $G(\omega_{0}, x_{0})=0$ and $\frac{\partial}{\partial\omega}G(\omega_{0}, x_{0})>0$ . By the

implicit function theorem there is an open interval $J_{x_{O}}$ containing $x_{O}$ and an analytic
function $\omega:J_{x_{O}}\rightarrow R$ such that $\omega(x_{0})=\omega_{0}$ and $G(\omega(x), x)=0$ for $x\in J_{x_{O}}$ . Thus,

$(\frac{\partial}{\partial\omega}c)(\omega(x), x)\frac{d}{dx}\omega(x)+(\frac{\partial}{\partial x}c)(\omega(x), x)=0$

for $x\in J_{x_{O}}$ , which implies that $\frac{d}{dx}\omega(x)=0$ if and only if $(\frac{\partial}{\partial x}G)(\omega(x), x)=0$ .
There is an open subinterval $\hat{J}_{x_{O}}\subset J_{x_{O}}$ containing $x_{0}$ such that $G(\omega(x), x)=0$ and

$\frac{d}{dx}\omega(x)\neq 0$ for $x\in\hat{J}_{x_{O}}\backslash \{x_{0}\}$ . Indeed, a complex function $\tilde{F}_{\omega_{O}}(z)=z+\omega_{0}+\frac{\epsilon}{2\pi}\sin(2k\pi z)$

$(z\in C)$ is a transcendental entire function and so $\tilde{F}_{\omega_{O}}$ is not univalent. If there is an
interval $J\subset R$ and $F_{\omega_{O}}^{q}(x)=x+l$ for $x\in J$, then it holds that $\tilde{F}_{\omega_{O}}^{q}(z)=z+l(z\in C)$ and so
$\tilde{F}_{\omega_{O}}^{q}$ is univalent, which is a contradiction. Thus $F_{\omega_{O}}^{q}(x)\neq x+l$ for some $x\in J$. Since $G(\omega, x)$

and $\frac{d}{dx}\omega$ is analytic on $J_{x_{O}}$ , there is an open subinterval $\hat{J}_{x_{O}}\subset J_{x_{O}}$ containing $x_{0}$ such
that $G(\omega(x), x)=0$ and $\frac{d}{dx}\omega(x)\neq 0$ for $x\in\hat{J}_{x_{O}}\backslash \{x_{0}\}$ .

Since $G(\omega, x)$ is analytic with respect to $x$ , the set $R_{\omega}=\{x\in[0,1):G(\omega, x)=0\}$ is
a finite set for each fixed $\omega$ , and so write $R_{\omega_{0}}=\{x_{0}, x_{1}, \cdots, x_{m}\}$ . Then we can find an
open interval $\hat{J}_{x_{j}}$ and an analytic function $\omega_{i}$ defined on $\hat{J}_{x_{i}}$ such that $G(\omega_{i}(x), x)=0$

and $\frac{d}{dx}\omega_{i}(x)\neq 0\wedge$ for $x\in\hat{J}_{x_{i}}\backslash \{x_{i}\}(i=0,1, \cdots, m)$ . Taking each $\hat{J}_{x_{i}}$ small enough we may
suppose $ J_{x_{i}}\cap\hat{J}_{x_{j}}=\emptyset$ if $i\neq j$ . Denote as $\Omega_{x_{i}}=\{\omega_{i}(x):x\in\hat{J}_{x_{i}}\}$ an interval containing $\omega_{0}$

for $i=0,$ $\cdots,$ $m$ . Notice that $\Omega_{x_{i}}$ is not always an open interval. Since $R_{\omega_{O}}$ is a finite set,
there is amaximal subset $R$ of $R_{\omega_{O}}$ such that $\bigcap_{x_{i}\in R}\Omega_{x_{i}}\supsetneq\{\omega_{0}\}$ . Thus $I_{\omega_{O}}=\bigcap_{x_{i}\in R}\Omega_{x_{i}}$ is
an interval containing $\omega_{0}$ and satisfies that if $\omega\in I_{\omega_{O}}$ and $x_{i}\in R$ , then $G(\omega, x)=0$ for
some $x\in\hat{J}_{x_{i}}$ . Thus $f_{\omega}$ has a periodic point of the period $q$ if $\omega\in I_{\omega_{O}}$ , from which $\rho(f_{\omega})$
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is a rational number. Since $\rho(f_{\omega})$ is continuous with respect to $\omega$ (under the distance
between $\rho(f_{\omega})$ and $\rho(f_{\omega},)$ defined by $|\rho(f_{\omega})-\rho(f_{\omega},)|(mod 1))$ and $\rho(f_{\omega_{O}})=r$, we have
$\rho(f_{\omega})=r$ for every $\omega\in I_{\omega 0}$ . Thus $f_{\omega}(\omega\in I_{\omega_{0}})$ is a member of $AT_{k}(r)$ .

It remains to check that $f_{\omega}(\omega\in I_{\omega_{O}})$ is Morse-Smale. Since every periodic points of
$f_{\omega}$ has the same period $q$ , it suffices to show that $\frac{d}{dx}F_{\omega}^{q}(x)\neq 1$ for each $x\in \mathscr{P}^{-1}(Per(f_{\omega}))$ .
For a fixed $\omega\in I_{\omega_{O}}$ we have that $x\in \mathscr{P}^{-1}(Per(f_{\omega}))$ if and only if $G(\omega, x)=0$ . Thus $f_{\omega}$ is
Morse-Smale $if\frac{\partial}{\partial x}G(\omega, x)\neq 0$ for each $x\in\{z;G(\omega, z)=0\}$ . Suppose that $\frac{\partial}{\partial x}G(\omega, x)=0$

for some $x\in\{z;G(\omega, z)=0\}$ and $\omega\in I_{\omega_{0}}$ . If $\omega$ is sufficiently close to $\omega_{0}$ , then $G(\omega, x)=0$

implies that $x\in\hat{J}_{x_{i}}$ for some $0\leq i\leq m.$ Since $\frac{\partial}{\partial\omega}G(\omega, x)>0$ , we have that $\omega=\omega_{i}(x)$ and
that $x\in\hat{J}_{x_{i}}\backslash \{x_{i}\}$ when $\omega\neq\omega_{0}$ . By the assumption $\frac{\partial}{\partial x}G(\omega_{i}(x), x)=0$ and so $\frac{d}{dx}\omega_{i}(x)=0$ ,

which contradicts the fact that $G(\omega_{i}(x), x)=0$ and $\frac{d}{dx}\omega_{i}(x)\neq 0$ for $x\in\hat{J}_{x_{i}}\backslash \{x_{i}\}$ . If $\omega$ is
sufficiently close to $\omega_{0}$ and $G(\omega, x)=0,$ then $\frac{\partial}{\partial x}G(\omega, x)\neq 0$ . Thus $f_{\omega}$ is Morse-Smale.

Take $\omega_{n}\in I_{\omega_{0}}\backslash \{\omega_{0}\}$ and suppose that $\omega_{n}\rightarrow\omega_{0}(n\rightarrow\infty)$ . Then $f_{\omega_{n},\epsilon,k}\in AT_{k}(r)\cap MS$

and $f_{\omega_{n}.\epsilon,k}\rightarrow f_{\omega_{O},\epsilon.k}(n\rightarrow\infty)$ with respect to the $C^{1}$ -topology. Thus $MS_{k}(r)$ is $C^{1}$ -dense in
$AT_{k}(r)$ . The $C^{1}$ -openness of $MS_{k}(r)$ in $AT_{k}(r)$ (with respect to the relative topology) is
easily checked from the fact that $MS$ is open in the set of $C^{1}$ diffeomorphisms of the
circle.
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