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Abstract. Every Morse-Smale diffeomorphism of the circle is conjugate to a diffeomorphism belonging
to the set-defined by

fw's_k(x)=x+w+2isin(2knx) O<w<1,0<es<1, k with 0<ek<1)
T

and Morse-Smale diffeomorphisms in the set is C! open and dense, with respect to the relative topology, in
Arnol’d tongue.

Morse-Smale diffeomorphisms and the standard family are investigated. Theorem
A examines that the standard family contains an analytic model for each Morse-
Smale diffecomorphism, and in Theorem B the density of the set of all Morse-Smale
diffeomorphisms in the Arnol’d tongue is investigated.

Let f be a diffeomorphism of the circle S'=R/Z and F: R - R be a lift of f such
that 2+ F= f - 2, where 2 denotes the canonical projection from R to S'. A periodic
point of f with the period m, x, is called a sink (source) if 0 <| £ Fm(x) | <1(|-& Fm"(%)|>1),
where 2(x)= x. If the set of all periodic points of f, Per(f), is non-empty and consists
of only sinks and sources, then f is called a Morse-Smale diffeomorphism. If
diffeomorphisms f: S' — S! and g: S! —» S satisfy the relation foh=hog for some
homeomorphism 4: S — S, then we say that f is topologically conjugate to g and that
h is a conjugacy map between f and g. A diffeomorphism f: S'—S* is said to be
C-structurally stable if there is a C! neighborhood U of f such that f is topologically
conjugate to every ge U. We know that every Morse-Smale diffeomorphism f is
C!-structurally stable and the set of all C* Morse-Smale diffeomorphisms M.S is open
and dense in the set of all C! diffeomorphisms of the circle with respect to the C*-topology
(cf. [2D).

The set of circle diffeomorphisms defined by
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fw,s,k(x)=x+w+§8—sin(2knx) mod1) (O<w<l,0<e<l,0<ek<])
T .

is called the standard family (cf. [2]).

THEOREM A. Every orientation-preserving Morse-Smale diffeomorphism is topo-
logically conjugate to a Morse-Smale diffeomorphism belonging to the standard family.

Let f: S'—S! be an orientation-preserving diffeomorphism with a lift F. Then
the number p(F)=Ilim,., ,(F"(x)—x)/n is independent of x (cf. [2]). If F, and F, are
two lifts of f, then py(F;)—po(F,) is an integer, and so p(f)=p(F) mod 1 is defined.
The number p(f) is called the rotation number of f. p(f) is rational if and only if f has
a periodic point (cf. [2]). Since a Morse-Smale diffeomorphism has periodic points, the
rotation number of each Morse-Smale diffeomorphism is rational. On the other hand,
if f:S'—>S!is a C? orientation-preserving diffeomorphism with irrational rotation
number, then f is topologically conjugate to the rigid rotation (cf. [6]).

The dynamics of standard family was firstly studied by Arnol’d (cf. [1]). Herman
proved in [4] that if 0<e<1 is fixed and k=1, then the set of parameter w for which
the rotation number is irrational has positive Lebesgue measure. Recently Swigtek [6]
proved that the analogous result is false for homeomorphisms with critical points: under
rather general assumptions which admit the family f, ., with (e, k)=(1, 1), he showed
that the parameter w corresponding to rational numbers constitute a set of full measure.
For (e, k) a fixed parameter Graczyk [3] proved that the set of parameter w which
corresponds to non-linearizable maps with an irrational rotation number is of Hausdorff
dimension 0. If r is a rational number, then the family of C' diffeomorphisms of S!
with the rotation number r, D(r), is connected (D(r) is called the level set). In each level
set the set of Morse-Smale diffecomorphisms, D(r) » M, is dense ([1]).

For fixed k>0 the set

ATk(r) = {(0), 8) : p(fw.a.k) = r}

is called an Arnol’d tongue if r is a rational number. Obviously, 4T,(r) constitutes a
subset of D(r). Moreover define a subset MSy(r)={(w, )€ AT(r) : f,, . € MS}of AT(r).

THEOREM B. MS,(r) is open and dense in an Arnol’d tongue A4T,(r) with respect
to the relative topology.

ProoF OF THEOREM A. We begin with checking a sufficient condition under which
two circle diffefomorphisms are topologically conjugate. Topologically conjugate dif-
feomorphisms have the same cardinality of periodic points. Thus we suppose f and g
are orientation-preserving Morse-Smale diffeomorphisms such that the cardinalities
of Per(f) and Per(g) are equal. Since a Morse-Smale diffeomorphism of the circle has
the same numbers of sinks and sources, the cardinality of sinks of f is equal to that
of g. Denote by S, ={sy, 55, - -+, 5.} and S;={s}, 53, - - -, 5;} the sets of sinks of f and
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g respectively. By the definition of sinks, f(S;)=S, and g(S,)=S,. For xe S' we denote
as X the point in R satisfying 0 <x <1 and 2(x)=x. Without loss of generality we may
assume that §; <§,<--- <§, and §; <53 < - -- <35,

CrLamM. [ is topologically conjugate to g if f(s;)=s,.+, and g(sj)=s,., for a
fixed 0<p<g—1.

It is needless to say that we can find a conjugacy map between f and g by going
on the similar way to prove the structural stability for Morse-Smale circle diffeo-
morphisms. However, to make sure we give a proof for the claim. Indeed, f is Morse-
Smale and so if U,={u;, u,, -+, u,} denotes the set of sources of f, then we may
suppose that §;<#;<§;,, fori=1, - - -, q. Here §,,; =5; + 1. Let O4(x) denote the orbit
of xeS" under f (i.e. Ox)={f%x)};.2). Since f is orientation-preserving, all periodic
points have the same period, say m>0. Then O (u;)={f(u;)}]<,' (1 <i<q). The unsta-
ble manifold of u; (1<i<gq) is defined by Wi(u,)={x: lim,_ _, f™(x)= u-} and chara-
cterized as Wi(u;)=2((5;, 5;1,)) since f is Morse-Smale. Then S'=|()7_, W¥u) 0 S;,.

On the other hand, denote as U, = {uj, uj, - -, u,} the set of sources of g, and define
O,x) (xeS") and W,u;) (i=1, - -+, q) in the same way as given for f. From the as-
sumption of the claim, s; has the same period m of s, and so does u; (i=1, - - -, q). By

the same argument we have O/ (u/)={g'(u/)}7o' and W¥u{)=2(5],5,,) for i=
L, q.

Take and fix an arbitrary 1<i<gq, and put WO (u,)) -U'" ! Wi f J(u;)) and
WO, u)=) ;" 01 Wi(g'(u;)). Notice that W¥O,(u;) is an f-invariant set (i.e.
JWHO ;)= WO 4(u;))) and that WJ(O,u;)) is g-invariant. It is checked that
SIWHO,(w,)) is topologically conjugate to g|W¥O,(u;)). To show this, fix four points
ae P((s;, u;)), beP((u;, 5;+,)), a' € Z((5},u})) and b’ e P((u;, 5!, ). Since u; and u] are
sources of f and g respectively and they have the same period m >0, we have

Lf™@a), a]u b, "=y 5ivy) ,  [9™a), a1V F, g"(B)] <51 5ivi) -

Let ¢ : 2([f™(a), a] v [b, f™(b)]) - 2([g™(@a’), a’] v [b, g"(b')]) be a heineomorphsim
such that

dl@)=a’, ¢(fMa@)=g™a’), ¢®)=b", S(Mb)=g"(b"),

and let D=2((f"(a), @] v [b, f™(b))). Then W(u;)\{u;} can be written as the disjoint
union  WHu)\{u;} =), /™ D) of f™(D). Thus we can construct a map
hi: Wiu)—> WHu) satisfying h(x)=g™o¢o f " (x) for xef™ (D) (keZ) and
hi(u;)=u]. Tt is easily checked that %, is a homeomorphism with £, f™(x)=g™ o k;(x)
(xe Wi(w;)). Thus, if we define h; : WHO,(u;)) > WX O,(u])) by hi(x)=g’ o h;o f ~i(x) for
xe fAWiu;)) (j=0, - - -, m—1), then A, is a conjugacy map between f| W% O (u,)) and
9| W2Ou).

From the assumption of the claim it follows that f(u;)=u; (j=p+imod ¢) and
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g(uj)=uj (j=p+imod g). Thus we can choose /={l1, - -, g} such that U; and U, are
decomposed as disjoint unions U= J,_, O/;) and U,={J,_, O,(u;) of distinct orbits
respectively. Since S* =), WHO{w;)) v S, and S' =), , Wi(O,(u;)) U S, are disjoint
unions, we can define a homeomorphism 4 : S* - S* by

’

Si if x=s;,, i=1,---,¢q,

where h; (ieI) is defined as above. It is easy to check that 4 is a conjugacy map between
f and g. Therefore the above claim holds.

We are now ready to confirm the conclusion of Theorem A. Let f be a Morse-Smale
diffeomorphism and let s; (i=1, - - -, q) be as above. Suppose that f(s,)=s,,; for some
0<p<qg-—1. If we define

F)=x+L2 +-5 sinQ2qnx),
q 2=

for ¢ with 0<eg<]1, then PoFo P '=f,, .. is a circle difftomorphism. Moreover,
So/a.e.q 18 Morse-Smale. Indeed, write Fo(x)=x +(¢/2rn)sin(2qnx). Then P o Fy P~ 1=£,
is clearly a Morse-Smale diffeomorphism. Since

q—1
Fi)=x+p+ zi Y sin[2gnFi(x)]
T i=0

q-—1 .
=x+,,+_2-1 Y sin[2gnFix)] = Fi(x)+p ,
T i=0

we have f%,..=f%. This implies that f,, ., is also a Morse-Smale diffeomorphism.
Since f4,,.,=/%, we have

2i—1 ]
Sfp/q,t:,q=Sf;/q,e,q=sfg=sf0={g< 2q ): l=1, Tt q} .

Write s, =2(2i—1)/(29)) (i=1, - - -, g). Then
So1a.e.a50) =1 pa...d(P(1/29) =2 - F(1/(29))
=2(1/29)+p/d)=2((2p+ 1)/29) =5p+1
which ensures, by the above claim, that f is topologically conjugate to f,, ...

Proor oF THEOREM B. Let k be a positive integer and r be a rational number
with 0 <r<1. To prove the density of MS,(r) in an Arnol’d tongue, take (@, )€ AT, (r)
and a diffeomorphism f,,, ., belonging to the standard family with p(f,,,..)=r. Write
-r=p/q, where p and g are non-negative relatively prime integers. A diffeomorphism
F,,.x of R defined by F, . (x)=x+wo+(e/2n)sin(2knx) is a lift of f, . For the
simple notations we write f,, , F,, instead of f,, ., Fo,...x T€SPectively. Since p(f,,,)=p/q,
each periodic point of f, is a fixed point of %, and so we can find /eZ such that
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F{ (x)=x+1for xe #~ (Per(f,,)). Fix / and take a diffeomorphism f, = So.ex from the
standard family. Then F,, : R —» R (weR) defined by F,(x)=x + w +(¢/2n) sin(2knx) is a
lift of f,,. Write

G(w, x)=Fi(x)—(x+1)

for w, xeR. v '
It is checked that 33 G(w, x)>0. Indeed, if we write F(w, x)=F,(x) and Fi(x)
= F(w, Fi1(x)) for j>1, then

Fix) =%(F(w, Fi~'(x)
- (i F)(w, Fim () + (3— F)(w, Fi ) -2 Fim1(x)
ow ox ow

=1+(1+kecosRknFi~ 1(x))) F T (x) .

Thus if &Fi"1(x)>0 for Jj=2, then we have -5 Fi(x)>0 by O<ek<1. F,(x)
=4 Fo, x)-—l and so & G(w, x)>0.

Take and fix xoe 2~ '(Per(f,,,)). Then, G(wo, xo)=0 and & G(w,, x,)>0. By the
implicit function theorem there is an open interval J., containing x, and an analytic
function w : J,,— R such that w(x,)=w, and G(w(x), x)=0 for xeJ,,. Thus,

(i G)(a)(x), x) a w(x)+ (_6_ G)(w(x), x)=0
ow dx 0x
for xeJ,,, which implies that £ w(x)=0 if and only if (& G)(w(x), x)=0.

There is an open subinterval JxochO containing x, such that G(w(x), x)=0 and
< o(x)#0 for xeJ, \{x,}. Indeed, a complex function F,, (z)=z+ w, +&sin(2knz)
(zeC) is a transcendental entire function and so F'wo is not univalent. If there is an
interval J=R and F¢ (x)=x+1 for xeJ, then it holds that Fg,o(z)=z+l (zeC) and so
Fa , 18 univalent which is a contradiction. Thus FZ (x) # x + / for some x € J. Since G(w, x)
and 4= o 1s analytic on «o» there is an open subinterval JxOCJxo containing x, such
that G(w(x), x)=0 and £-w(x)#0 for xeJ, \{xo}.

Since G(w, x) is analytlc with respect to x, the set R,={x€[0, 1): G(w, x)=0} is
a finite set for each fixed w, and so write R, ={xq, X;, * * *, X,,}. Then we can find an
open interval J and an analytic function w; defined on J such that G(w;(x), x)=0
and Lo, (x);EO for xeld, AN} (=0, 1, - - -, m). Taking each J small enough we may
suppose Je, 0 J, ;= if i#j. Denote as Q,,={w,(x): xeJ, } an 1nterva1 containing w,
fori=0, ---, m. Notlce that Q. is not always an open interval. Since R, is a finite set,
there is a maximal subset R of R,,, such that (), . Q. 2{wo}. Thus I,,=(_ Q.. is
an interval containing w, and satisfies that if wel, , and x;eR, then G(co x)=0 for
some er Thus f,, has a periodic point of the perlod q if wel,,, from which p(f,)
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is a rational number. Since p(f,,) is continuous with respect to @ (under the distance
between p(f,,) and p(f,,) defined by |p(f,)—p(f,)| (mod 1)) and p(f,)=r, we have
p(f,)=r for every wel,,. Thus f, (wel,) is a member of AT(r).

It remains to check that f,, (wel, ) is Morse-Smale. Since every periodic points of
f., has the same period g, it suffices to show that & F4(x) # 1 for each xe 2~ '(Per(f,)).
For a fixed wel,, we have that xe 2~ '(Per(f,)) if and only if G(w, x)=0. Thus f, is
Morse-Smale if -2 G(w, x) #0 for each x € {z: G(w, z)=0}. Suppose that % G(w, x)=0
for some x€{z: G(w, z)=0} and wel, . If w is sufficiently close to w,, then G(w, x)=0
implies that xejxi for some 0<i<m. Since 2% G(w, x)>0, we have that o =w;(x) and
that xe J, \{x;} when w# w,. By the assumption %% G(w;(x), x)=0 and so £ w;(x)=0,
which contradicts the fact that G(w;(x), x)=0 and & w;(x)#0 for xe J \{x,;}. If @ is
sufficiently close to @, and G(w, x)=0, then & G(w, x)#0. Thus f,, is Morse-Smale.

Take w,el, \{w,} and suppose that w, = wy(n— ). Then f, ,,€AT(r)"MS
and £, .= fuo.cx (n— 00) with respect to the C'-topology. Thus MS,(r) is C'-dense in
AT,(r). The C'-openness of MS,(r) in AT,{r) (with respect to the relative topology) is
easily checked from the fact that MS is open in the set of C' diffeomorphisms of the
circle.
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