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Abstract. We consider the equation

0
™ (t, x)= —A%u(t, x)
ot

for the biharmonic operator — A2. We define the pseudo process corresponding to this equation as Nishioka’s
sense. We obtain the Laplace-Fourier transform of the joint distribution of the first hitting time
t(w)=inf{t>0: w(t)<at—a} (@>0, xeR) and the first hitting place «(z), where each path «(?) starts from 0
‘at 1=0.

1. Introducﬁon.

We consider the partial differential equation

u

a.n E(t’ x)= —A%u(t, x) t>s, xeR

(1.2) u(s, x)’= o, .

The fundamental solution of this equation can be expressed as

(1.3) pli—s, x)=51— J dE exp{ —ixé — E4(t—s)} .
n - o0

This p(t, x) has the following property. For >0,

(1.4) p(t, x) is in the Schwartz class & on R and even function in x,
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(1.5 r pt, x)dx=1,
(1.6) J b(t, x=y)p(s, y)dy=p(t+s, x),
1.7 oplt, x)=t"14p(1, x/t1/%) .

As shown by Hochberg [7], p(t, x) is not positive valued. In fact, for sufficiently large
| x|, he obtained

p(1, | x|)=a|x|" "> exp{—b|x|*?} cosc| x |*/* +lower order ,

where a, b and c are positive constants. Thus p(t, x) takes both signs and by (1.7) we obtain

(1.8) f |p(t,x)|dx=f |p(1, x)|dx=V>1.
However, because of (1.4)—-(1.7) some authors have discussed how to apply probabilistic
method to it ([4], [5], [7], [8] and [10]).

Using the composition of two independent Brownian motions some solutions of
(1.1) and (1.2) are represented by Funaki [4].

Krylov [8], later Hochberg [7] and Nishioka [10] considered a 31gned finitely
additive measure on C[0, 1] (Nishioka considered on D[0, c0)) which may be viewed
as the distribution of a process corresponding to (1.1). In particular, Nishioka [10]
obtained the Laplace-Fourier transform of joint distribution of the first hitting time
and the first hitting place to D’'={(¢, x) € [0, 00) X (— 00, 0)} in his sense.

It should be mentioned that there exists completely different probabilistic approach
to the —A? problem (see [5]).

In this paper, we extend Nishioka’s argument to D={(t, x): x<at—a}
(xeR, t>0, a>0) and compute the Laplace-Fourier transform of its joint distribution.
The main result of this paper is Theorem 3.4. In section 2, we shall define the expectation
in Nishioka’s sense [10]. In section 3, we obtain the Laplace-Fourier transform of the
joint distribution of the first hitting time and the first hitting place to D in Nishioka’s
sense [10].

2. Notations and preliminary results.

In this section we will define the expectation to associate with (1.3) in Nishioka’s
sense [10].

We work on the path space 2= D[0, o), which is the space of all right contmuous
functions on [0, co) which have left hand limits. We define a finitely additive measure
on it.
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DEFINITION 2.1. A subset ' is said to be of finite observations if it has the
representation

2.1 I'={weQ: w(t,)eB,, -, ot,)€B,}

for afiniteset0<t, < - - - <t,andacylinderset B, x - - - x B,, where B;is a BorelsetinR.
%(R) is a finitely additive algebra consisting of all finite unions of sets of finite
observations and #(Q) is a g-algebra generated by €(£).
B(Q) is a g-algebra generated by {w(t,), -, o(t,): 01, < - - - <1, <t} for t>0
fixed. Clearly %#,(Q)< %(Q).

First we define a signed measure adjoining (1.1) on %. For a set I' of the form
(2.1), we set

2.2) Px(r)EJ dy,-- J dy,,p(tl, yi—X)plty—ty, y2—y1) -
. B, Bn )

Xp(t"—t,,_l, yn'—'yn—l) s

where we use the convention:

PO, y; —x)dy; =0,(dy,) .

However we cannot apply Kolmogorov’s extention theorem to this P,, because
its total variation is greater than one. Thus we can not extend (2.2) to a countably
additive singned measure. But we have defined the expectation by P, for sets of finite
observations. Hence, we shall extend this expectation to functions of discrete
observations and finally to functions of continuous observations.

Now, we set

Ti={jA=j/2" :j=0,1, -, k}, Ta={jA=j2":j=0,1, -}
for any fixed n, keN.

DEFINITION 2.2. A function f: @ —R is called tame, if it is a Borel function of
finite observations included in T,. That is, . ’ '

(2.3) f(@)=g(@(0), (B), - -, w(kA)),

where g is a Borel function defined on R**'.
Let 7 (T¥) denote the class of all tame functions as in (2.3). Naturally we can define
the expectation of fe 7 (T¥) by the formula similar to (2.2) and we write

2.4 E[f]< ff ()P (dw)

=j dle~ dykg(x’yl"“’yk)

- o0 - o0

Xp(A, y; —x)p(A, y,—y1)  PA, y—Yi-1) s
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if this multiple integration exists.

ProrposiTION 2.3 ([10] K. Nishioka). If feJ(T)), then we have |E.[f(w)]|<
V¥sup,| f |, where V is given by (1.8). :

DerFINITION 2.4. Let{f,: k=1, 2, - - -} be a sequence of complex-valued functions
on £ such that '
(i) for each k, f,€ 7 (T)),
(i) for every w, Y ;> , filw) exists,
(iii) for each x, > ;> | | E.[fi]|<oo.
Then we say -

(2.5) F(w)= ki Julw)

is a function of discrete observations, and 7 (T,) denotes the family of all such functions.
Moreover for a function Fe 7 (T,), we define the expectation by

26) EIF1= ¥ ELA].

ProposiTION 2.5 ([10] K. Nishioka). The expectation E, is uniquely determined
on 7 (T,) and is a linear functional.

For each we 2, we set
2.7 w,(t)=w(kA) if kA<t<(k+1)A, k=0,1, ---.
This w, is a right continuous step function and w, € Q.

DEFINITION 2.6. Let F be a complex-valued function on Q such that
(1) for each w, F(w,) converges to F(w) as n tends to oo,
(ii) for each A, F(w,) € 7 (T,),
(iii) for every x, {E,[F(w,)]: A} converges.
Then we say that the function F is admissible, and " denotes the set of all admissible
functions. Moreover we define its expectation by

(2.8) E[F]= 1111(1) E.[F(w,)] .

ReMARK 2.7. (i) E,[F] is unique for Fe X since the sequence {E,[Rw,)]: A}
is specified by (2.7). ‘

(i) If Fis a bounded Borel function of finite observations, then we have fe ¢
and (2.8) coincides with (2.4).

ProposITION 2.8 ([10] K. Nishioka). X is a subspace of B(Q2)-measurable function.
The expectation E, is determined uniquely on A" and is a linear functional.
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DEFINITION 2.9. Suppose that a function W(t, w): [0, o0) x Q — C satisfies the
following conditions:
(i) For w, of (2.7),

W(t, w) = WkA, w,) if kA<t<(k+ DA

and W(t, w,) belongs to 7 (T,).
(i) For w and >0, lim,_, W(t, w,) = W(t, w).
Then we call W(t, w) a separable function. The set of all separable functions will be
denoted by Z.

We consider the following U, Ve 2.

U:[0, 0)xQ2—->R
V: [0, 0)xQ2—{0,1}.

For ueC* ={u: Re(u)>0} and 1eR, we set
F(u, 4; w)zf dte ¥e' V-2, ) .
(o]

We shall find the expectation E,[F] by means of (2.8).

3. The Laplace-Fourier transform of the joint distribution of the first hitting time
and the first hitting place in D.

Let xeR and ue C*. For we 2 with ©(0)=0 and any a>0, we set

. (w)_{inf{t>0 : o(t)<at—a}
¢ oo if the above set is empty ,

Fou, A)=Fo(ut, A - )= { exp{ilw(t,) — ut,(w)} ?f T, <00
0 : if 1,=o00.

THEOREM 3.1. If Re(u)>0, then Fy(u, A) is admissible and
Eo[Fo(u, H]=1
ProoF. Let o, =w(kA)—akA+a and Re(u)>n>0. We set

kA if g, -, 0,_; =0 and 0, <0
0 ~ otherwise .

TaA = 1"a(a)A) = {
We set
F:u, A)=F,(u, A : ,).

Since w is right continuous with left hand limits and 7, is the first hitting time to the
open set D={(t, x) : x <at—a}, we get
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lim 7 (w,)=1,(w).
A—0

Since w,(t(wx)) = w(t (), We get

lim e, (7,(x) = 0(t,) lim F(u, )= Fu, 4) .
A-0 -

We set
his(u, A : @)=exp{—ukA +ila(kA)} . ... o._ 1> 0/ @a) (0, <0 (@) 5
where 1 ,(w) denotes the defining function of the set 4 € #(£2). Then we obtain
hi e T(TY) and |hf,|<e” Retks

If u satisfies exp{ — Re(u)A}V' <1, then we have

a0 o0
— ukA iAw(kA ' — Re(u)kA
kzle “AEo[e P g, ..., 0112 0ior <] skZIe crapr

by Proposition 2.3. Thus, the series Y ,~, Eo[#{4] is absolutely convergent and
[« o]
CFXu, )= Y hisw, 2).
k=1 ‘

Therefore, if u satisfies exp{ — Re(u)A} V<1, then F2(u, )€ T (T,).
In the following, we set a=0. We shall show Fy(u, A) is admissible for u satisfying
Re(u)>0. We set

x5, A)=E [F5u+ila, A)]
= Eo[exp{ —ut§ + iMa(t§)—azf)}] .
We state the combinatorial theorem by W. Feller [3] in our notations:
LEMMA 3.2. If u satisfies exp{ — Re(u) A}V <1, then

) 1 1 00 - e—ukA 0 "
3. og—————mm = E et kA,x+ocAkdx.

- @

Then, we have

k=1

o) e—ukA akA .
—log(1 —x8, )= Y. - J dxe' >~ p(kA, x)

—
—ukA

¢ - (fo dxp(kA, x){cos(x —akA)

— 00

k

Ingk

1

akA
+isin(x —akA)A} + J

dxp(kA, x)ei>=~ “"“)
0 , _
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and we set
= A 1 + lAz + A3 .
Noting
° 1
J. p(t, x)cos Axdx == e
and
~log(1~x)= 3. "7 for |x|<l,
we have
o o= (At +uka
Z cos AakA
0 -ukA 0
Z sin AakA j dxp(kA, x) sin Ax
—-i—log(l —-8—(;'4—ia;'+u)A)—%10g(l _e—(l‘+ia}.+u)A)
0 —ukA (o]
+ Z sin AakA J dxp(kA, x)sin Ax .
k=1 —®
Similarly, we have
© —(}.‘+u)kA ‘
idy=—i Z ————sindakA
s —ukA 0
+i), cos AakA J dxp(kA, x)sin Ax
k=1 —w
=%10g(1 _e—(}.4—ial+u)A)_%log(1 “e—(l4+ia2+u)A)
00 —ukA 0 .
+i Y, cos AakA f dxp(kA, x)sinAx .
k=1 —w
Then we get
(3.2) —x&(u, ,1)._.(1_e—(14+iaz+u)A)1/z

X exp{

0

—Z%e

dxp(kA, x)sinAx

0 0
Z - ukA —iAakA

= - o0

akA '
wukAJ dxp(kA, x)eil(x—akA)}

0

405
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and set
=(1 _e—().4+iai.+u)A)1/2 exp{i11 +Iz} .

Now, we will estimate i/, and I,. We write u=u, +iu;. Take any n>0 and suppose that
u,>1n.
First, we estimate /,:
0. (" akA

Li< 3 %e"’“ dx| plkA, %)|

k=1 JO

L | (*akA

=y —e ™| dx(kA)"V4|p(1, x(kA)~ 14|

k=1 k Jo

© 1 (*a(kA)3/4

Xoe™ dx| p(1, )|
k=1 Jo

We set M =sup,|p(1, x)|, then we get

|12|<|a|A3/"'MZ — e kA

k1/4
Now we notice
o 1 e~ ka < 1 —kAA AP—1
; E_ kzl GAr e *AAAP O<p<l),
e—kA
Irl—p)= A
k 1 (kA)?

Therefore we get
|1, 1<|alyp™*MI(3/4).
Next, we estimate Re(il,):

o0

0
Re(il))=— Y. % e “*8 cosukA sin AakA f dxp(kA, x)sinAx

k=1

0 o)

-y % e~ “*4 sinukA cos AakA f dxp(kA, x)sin Ax

k=1 —®

and we set
=I{+I} .
First we estimate ;. Noting
1

‘A, x)ldx=—— V",
|p’(1, x) |dx 1A

0
j p(kA, x)sin Axdx | <

2 o
| A1(kA)Y4 f—w
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where V’=2j'(1°o|6xp(1, x)|dx=_[°_°w|p’(1, x)|dx and |sinx|<| x|, we get
1

I sV e TR QKA | —————— < V'|a|n~¥4r(3/4

|11 | ICXIZ l IlM(kA)‘/“ leln (3/4) .

Next we estimate I2. We notice the following evaluation:

0
f p(kA, x)sin Axdx

= 00

<| A|(kA) f | xp(1, ) |dx =| 2 |(KA) 4V, ,

-

where V, =% _|xp(1, x)|dx. Let N=sup{neN: A~![1|"*>n}. Then,

N1 X 1 | 4
I?|< —e A A IkAYYAV, + ek _________
75 kgl k |A1(kA) ! k=§+1 k | A|(kA)*
: Na | 4 V' [= 1
<V, J —_dx+ + e _dx
P o BT T (N DIAN DAY AL S a X
<4V, +5V".
Hence we get
(3.3) |1—x8(u, )| < Cl(1 —e~ 3 Hindruayl/z|

where C is a positive constant which only depends on # and a.

And in a way similar to the above argument we can prove the 1mag1nary part of
the right hand side of (3.1) is bounded for Re(u)>n>0.

Let z=e~“A. Then the above estimate implies that log(1 — x5(u, 1)), given by (3.1),
is an analytic function of z and converges absolutely for |z| <1. Therefore, using the
next lemma, we see that y5(u, 4) is also analytic for |z|<1. Since |e ® D4 |=| 44|
we get x5(u—ila, ) is absolutely convergent for Re(u) > 0. Therefore, substituting u — ida
for u, we conclude F§(x, A) is admissible for Re(u)>0. By (3.3) we get

llm x Su, A)=1
and also
lim E [Fi(u, )]=1. O
A—0

Lemma 3.3 [1, p. 22 Proposition 5.1]. Let S(z) and T(z) be analytic functions with
their expansions:

S(z)= ZO a,z" and T(2)= 21 b,z".

If their radii of convergence p(S) and p(T) #0, then U= S T has the radius of convergéncé
p(U)#0, too.
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Moreover there exists r>0 such that }._  |b,|r" <p(S), and then p(U)=r and for

all z satisfying |z | <r, we have
|T@) | <p(S) and S(Mz))=Uz).

Next, we will show the main theorem in this paper. Let a>0.

THEOREM 3.4. If Re(u)>0, then F,(u, 2) is admissible and
EolFyu, =324 gmati-t y $=4 ez

-4 &—0
Here {, and {, are solutions of &*+ iné +u—ila=0 whose imaginary parts are positive.

PrROOF. By the proof of Theorem 3.1 we know F2(u, A) € 7 (T ,) if u=u, + iu, satisfies

e "V <1.
Then we will show F,(u, ) is admissible for u satisfying Re(u)>n>0. We set
Xa(u, A)=Eo[Fo(u+ila, )] .
We state the combinatorial theorem by T. Nakajima [9] in our situation:

LeEMMA 3.5. If u satisfies exp{ — Re(u)A} V' <1, then
N __p—iav 1— A
f 1—e X0 A) a0 32— vydv.

1m

—* a0

1
3.4)  xAu A)=xiu H)—— 1
(B4  xa(u, A)=7x0(u, 2) Y. T =R Aey)

Let K be a positive constant and we write u=A—v. We take A satisfying
|A|<KY4A~Y* and KA"'>u,>n>0.

By (3.2) we get _ ,
l—xg(u, A.) l_e—().‘+ia/1+u)A 1/2
1—x8(u, ) _( 1—e-‘"‘+‘“"+"’A)

-] —ukA (V]
X exp{i Y ¢ p J dxp(kA, x)e™** sin ux — e***4 sin Ax)}
k=1

—

o0 —ukA akA
x exp{ Z ¢ P J dxp(kA, x)(ex~aka) _eil(x—akA))}
k=1 0

and set

1 — e~ +iaa+wa\1/2
( ) exp{iJ, +J,} .

1 __e—(u‘+iau+u)A
Noting | e*—e?| <2 (x, yeR), we can estimate J, in a similar way as for I, of Theorem

3.1 and get
|1J:1<Cy,
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where C, is a positive constant which depends on a and #.
On the othr hand, we consider

0 0

Re(iJ)= ), % e ““”‘A(cos ukA sin AakA f dxp(kA, x)sin Ax
1 .

k= —w

0

—sin pakA f

— o0

dxp(kA, x) sin yx)

0 0 .
+ Y —’lc— e "“"‘A<sin ukA cos poakA J dxp(kA, x)sin ux
k=1

— ®©

0

—cos AakA J dxp(kA, x)sin ,lx) .

By an argument similar to the proof of Theorem 3.1, we get
| Re(iJ,) |<C;,

where C, is a positive constant which depends on « and 7.
Step 1: We consider the case of |v|>2K!'4A~1/* Then we have

KA <y =A< p
Noting that for x>0

[1—e ™ **¥|<|x—iy| and |l—e **?|>|1—e |,

we get
1— A 4 A DA 1/2
3.5 ‘ 18| _ oo |G Hlul+lad)
1—x6(u, ) 1 —e i+
(IAI*+]ul+adDA |2
<CC| " —&m

Next we estimate x5(u, ). By (3.1) and integration by parts we get

1 © o —ukA a(kA)3/4 ei#((kA)”"y—akA) _ 1
g~ R J_w PN — i Y
and we set
=—J;.
Then we estimate J;. Noting |e™*—1|<2 (xeR),
- C,

IJ31<

2

A1/4 k=1 k5/4 = A1/4 ’
7 I
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where C, is a positive constant.
On the other hand, by 1 —xa(u, uw)=e~ 72, we get

|20, w)<|1—e™"]

C C
<|J3lel<—2__ex { 3 }
e S AT P i

By |ul=|v—A4|=|v|2=KY4A~1* we get

2C;  cox-
[viAT*

| 2o, W<

Hence by |1 —e™*| <2 (xeR) we get
1—e @  1—x8u,A)
iv 1—x&u, A—v)

_2C,CCAY | AL + |+ ad|
- |V|2 l_e—(K+qA)

Step 2: We consider the case of |v|<2K'*A~ 14 We know that
1 _xs(u’ A’) —(Ad+iad+u)A
1— Xg(“a ”)

Since for x>0 and yeR

(3.6) xo(, A—v)

1/2
-1/4
ngK .

l—e 1/2

1 _e—(u“+iap+u)A

<C,C,

l1—e **¥|>|1—e *|=2xe™™ and |l1—e **?|<|x—iy]|,
'y

we get
l 1—xo(u, 4) <cC,C, | A1+ o |+ |+ i) 1/281/2(a‘+ur)A
1"‘2(3(“, ”) M4+ur
S Clcz |A l4+laj'l+|url+' ui| 1/2el/2(“4+“r)A .
nt+n

From the assumption we have | u|<3K'*A~1/4 and so
| p* +u, |A<82K .

Thus we get

A%+ ad |+ u, |+ u) |12

p+n

1—xo(u, 4)
1—xo(u, 1)
Now by (3.3) and |1 —e™**?| <2 (x>0), we get

| x8u, )| <2C3+1.

<C,C,e*'k

Note that
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1— —iav
l—-i— <la].

iv

Therefore we obtain

Xg(u, A—V)

3.7 ' l—e ™ 1—yxbw, 2

iv 1 —x&(u, A—v)

A4+ oA |+ u, |+ u;] V2

[A—=v|*+7

<|a|C,C,2C; + 1)e*1X

Summing up these estimations, we get the following. Let
l—e ™ 1—yx&u, A)

A
,A—V).
iv 1—x&u, A—v) xo( i

oA, v)=
Then we have

C
A, Y S_—S____ .
| (A, v)| Cit v
where C, and C; are constants which do not depend on A.
Next we will calculate y,(u, A). By Lebesgue’s theorem we get
© __p—iav Y. Y A
2o, =1 —LJ lim ¢ 1= %o, 4)
21 ) _ A0 iv 1 —x&(u, A—v)
By (3.1) and (1.3)

LA
hm lOg 1 Xo(u, A')
A0 1— &, A—v)

© 0 —us
= f ds J dx s — (e*3 7V — e p(s, x + as)
0 — 00 §

1 (* o0 0 e e v | ) o
- ds dx dé (ezx(/l—v—§)_exx().—é))e—(r§ +iak)s
(!] — — s

1 (" o V] © 0 + iu; . . -
— dsj dxj déf dpe—ps(elx(l—v—c)_elx(/l—é))e—-({ +iad)s
0 ) - u

1 "0 © J‘oo+iu,~ eix(l—v—-{)__eix(/l-{)
=— dx d d
2n ), f-m ¢ " T B iat+p

1 [0 ) o0 +iu; e~ ix¢
= d
2 )y, xf_wdfﬁ d"((é+(z—v»‘*+ia(c+u—v»+p

J -

e—nx{

X&(u, A—v)dv .

T EF A +idE+ ) +p

411
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We apply the residue theorem to the above integral with respect to dé. Let {, and {,
be solutions of £*—ix&+u=0 whose imaginary parts are positive. We can prove the
existence of such solutions by Sturm’s theorem [6]. And we calculate the integral with
respect to dp and afterward with respect to dx, then we get

1-%o,4d) _ G—A—4)
I=xo, A—v) ({1 —A+W2—A+Y)

Thus we have

Lt A)=1_ir I—e ™ (( —AN(—A)
" Mo o G—A Ve —A4Y)

-4 e iaA—Cy) Gi—4 e iaA-02)

{z_Cl CI_CZ

Recall that y,(u, A)=E [F(u+ila, )]. We can easily see that the solutions of
¢4 +in+p+ig=0 (p>0 and geR) depend on the parameter ¢ continuously and do
not cross the real axis. Hence, the equation &+ + iaé + u — il =0 has two solutions whose
imaginary parts are positive and whose multiplicity are at most one. Replacing u by
u—ilo, we obtain

’

e T S
E [Fa(u, l)]:__e ia(A C1)+_____e ia(A—C2)
° . CZ_Cl CI—CZ

where {, and {, are solutions of &*+iaé+u—ila=0 whose imaginary parts are
positive. []

Finally, we note the relation between our result and the partial differential equation.
Let D={(t, x) : at <x}. We set

w(t, x)=E ,[exp{ —ut(w)+ ila)(;t)}]

= (_Cz_—_l_ e HA—l)(x—an +ﬂ e HA- Cz)(x—at))e—utﬁlx .

CZ - Cl Cl - C2
It is a solution of the following partial differential equation.
ow

— (t, x)=Aw(t, x) , (t,x)eD
ot . :

w(s, X)=f(s, x)
ow af } (S, x) €oD ,

g(s’ X) =§(S, x)
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where f is the function defined on D*:

f(S, x)=e~us+i}.x .

Note that the differential condition on the boundary appears here. This means that the
distribution of the first hitting place includes the differential of §-measure on the
boundary. This fact was first found in Nishioka [10].

ACKNOWLEDGMENT. The authors wish to take this opportunity to thank Professor

M. Motoo and Professor K. Nishioka for their most valuable suggestions and comments
throughout the course of this research.

[1]
(2]
[31]
[4]
(51
[6]
L71]
£81l
£91

[10]

References

H. CarTAN, Théorie élémentarie des fonctions analytiques d’une ou plusieurs variables complexes, 6°
éd., Herman (1978).

W. FELLER, An Introduction to Probability Theory and Its Applications I, 3rd, ed., Wiley (1968).

W. FELLER, An Introduction to Probability Theory and Its Applications II, 2nd ed., Wiley (1971).

T. Funaki, Probabilistic construction of the solution of some higher order parabolic differential
equation, Proc. Japan Acad., Ser. A. 55 (1979), 176-179.

L. L. HeLms, Biharmonic functions and brownian motion, J. Appl. Probab. 4 (1967), 130-136.

P. HenrICI, Applied and Computational Complex Analysis, Vol. I., Wiley (1974).

K. J. HOCHBERG, A signed measure on path space related to Wiener measure, Ann. Probab. 6 (1978),
433-458.

V. Yu, KrYLOV, Some properties of distribution corresponding to the equation du/dt=(—1)** 0%/
0x?1, Soviet Math. Dokl. 1 (1960), 760-763.

T. NAKAJIMA, Joint distribution of the first hitting time and first hitting place of a random walk, Kodai

* Math. J. 21 (1998), 192-200.

K. NisHIOKA, The first hitting time and place of a half-line by a biharmonic pseudo process, Japan.

J. Math. 23 (1997), 235-280.

Present Address:
DEPARTMENT OF INFORMATION SCIENCES, TOKYO DENKI UNIVERSITY,
HATOYAMA-MACHI, SAITAMA, 350-0394 JAPAN.



