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A Weighted Inequality for the Kakeya Maximal Operator
with a Special Base
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(Communicated by K. Akao)

Abstract. In this paper we shall give a weighted version of Igari’s estimate on the Kakeya maximal operator
with a special base. '

1. Introduction and theorems.

Let M, n be the Kakeya maximal operator in d-dimensional Euclidean space with the
base B, n, which is the set of all cylinders with the side length Na and the bottom of diameter
a. Recently, S. Igari proved in [Ig] that if we restrict the base B, n to cylinders of which axes
intersect a fixed line, then Cérdoba’s conjecture is true for general functions. In this note we
shall prove a weighted version of this restricted maximal operator by using Igari’s approach
and ideas coming from [MS]. As in the unweighted case (see [Ig]) our result implies, as a
corollary, the weighted estimate for M, y on functions of radial type (the unweighted version
was proved in [CHS]). We shall recall the definitions.

Fix N > 1. For a real number a > 0 let B, 5 be the family of all cylinders in the
d-dimensional Euclidean space R¢, d > 2, which are congruent to

Na

{x:(xl,---,xd)GRdllxll <5

a
OF e < 5}

but with arbitrary direction and center. The so-called small Kakeya maximal operator M, n
is defined on locally integrable functions f on R? by

1
(Ma,n f)(x) = sup —/If(y)ldy,
IR| Jr

xeReB, N
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where | A| represents the Lebesgue measure of a set A. We define the Kakeya maximal oper-
ator Ky by putting

(KN f)(x) =sup(Mg,n f)(x) .

a>0

A weight w is a positive locally integrable function on R and we will represent the norm
of the function space L? (R4, w) as

1/p
1F 1l Lo ey = ( fR N f(x)l”w(x)dx) .

For w = 1 this norm is written simply as || f|| p.
If d = 2, then for f € LP(R?, K yw) the weighted inequality
NWENfllLrRe,wy < CNpUFllLoRe, kyw) (D
holds with
O(N4/P-l(logN)*»), 1<p<d,
Y77 | ocaog Ny, d<p<oo,
for some constant o, > 0 (Miiller and Soria [MS]). For d > 3 this inequality is known to be
true only for the range 1 < p < (d + 1)/2. (Vargas [Va].)
Hereafter notations partly follow those in [Ig].

For R € B, n let [(R) be the axis of R. Let L be a line in R4, We denote by Bé‘,N’x the
family of R € By, y which has center at x and whose axis /(R) intersects L. Put

1
MEnf)) = sup o fR LFO)Idy

ReBL

(K§ f)(x) = sup(M[ y f)(x).

a>0

Then for d > 3 (1) holds good for K ,f, Namely, we have the following

THEOREM 1. Letd > 3. Let L be any line in R?. Then for every weight w on R¢ we
have the inequality

1K flLo@®d,wy < CNplILFllLo e, Kyw) @
such that for every fin LP(R¢, K yw), where C. p is a constant independent of L with

B O(Nd/p~l(logN)(d+2)/d)’ 1 < p < d,
N2 = ] 0((log NY@+/d), d<p<oo.
Igari showed in [Ig] that
IME y flla < Clog NYHDA| £, 3)

We remark that the unweighted version (w = 1) of (2) can be derived from (3) and the
arguments we will use in Section 3, but without arguments in Section 2.
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REMARK 2. Let L be the xg-axis. If f is a radial function, then it can be seen that
(K 1%, x) = (Knf)(x) (See [Ig, Remark 2.1]). Therefore, (2) contains as a special case a
weighted inequality for K on functions of radial type.

Theorem 1 follows from Theorem 3 by the sieve arguments and by the three-point lemma
(see Section 3).

THEOREM 3. Letd > 3. Let L be a line in R?. Then for every weight w on R? there
exists a constant C such that .
(log N)(d+1)/d
(w(lx € R | Mgy HG0) > AV < C———— 1 flLame knw)
holds for every fin L(R?, K yw) and for every . > 0. Here w(A) will denote the measure
of the set A with respect to w(x)dx.

In the following C’s will denote constants independent of f, N and L. It will be different
in each occasion.

2. Proof of Theorem 3.

Fix A > 0. We may assume that f > 0 and N is a positive integer. By translation
and rotation we may assume that L is the xy-axis (See [Ig, Proposition 2.1]). By dilation
invariance it suffices to consider only the case a = 1. We write M, as Mf,. We will
linearize the problem first. We divide R? into open unit cubes Q, (and their boundaries)
which have center at lattice points p € Z¢ and whose sides are parallel to the axes. By the
local integrability of f we can find for every cube Q, a point p’ € Q, and R, € Bf N.p'

such that c
MEH@ = ] FO)dy, VxeQ,.
RP

Put |
SHw =)+ FO)y - xo,().
peZd p
Then it suffices for proving Theorem 3 to estimate the measure w({x € R¢ [ (S(x) > A}).
First of all we note that

w({x € R [ (SA)x) > A} = > w(Qp) .

PE{pEZA|(1/N) [, f>1}

2.1. Notations. In the proof we will use the following notations. A denotes the set of

all lattice points p such that
1
5 | oy =i
N Jg,
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Let N1 = []—052—}\]] + 1and Ny = [M] + 1. Then put

log2 log2
(xeRY G2+ +x2_ D2 <1}, =0,
C|xreRY2TN <R 423 _DI2 <2, 121Ny,
and
A N Dy, 0<k <N,
k=
A— UM AD, k=00
forl=0,1,--- ,Npoandk=0,1,---, Nq, o0.

Let P(p) be the plain spanned by /(R) and x4-axis, and
P(p) = {q € Z% dist(g, P(p)) < 3Vd}

be the 34/d-neighborfood of P(p).

2.2. Preliminary propositions. The following Proposition 4 was proved in p. 472 of
[MS]. Here we shall present another proof by using Remark 10 of [Ta2].
For a > 0 let B,, <y denote the class of all rectangles in R? which satisfy

a < (the length of shortest sides) < (the length of longest sides) < Na .

the corresponding maximal operator associated to this base is defined by M, <.
PROPOSITION 4. Letd = 2. Let I, be the set of lattice points ([0, 3N —1]x[—1, NDN
Z2. Suppose that z € [—1/2,3n — 1/2] x [—1, 1], then for every weight w on R* we have

w
Z (Qq) <CNlogN sup (Mg, nw)(2),
& lg2] +1 a€[3/N,3+/2]

where q = (q1, q2).-

PROOF. We shall use the same methods as in the proof of Proposition 4 of [Ta2]. Let
the sequence {a(j)} be

(1, j=-1,0,1,
1
. R j=293s"'aNs
a(j)=11J
1, j=N+1,
0, j>N+1
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We note that a(j) = Zizj a(i)a(i +1) for 1 < j < N. Then it follows from this equality
that

w(Qq) - N ., 3N—-1
< (@) > w(Qy)
qezlz la21 + 1 qz-—-z;l qf\:::() !
N 3N-—-1
=Y. > apap+D ) w@y
g2=—1 p=max(qz,1) q1=0
N 3N 14 3N—1

+2
=Za(p+l)pp N D > D wy

p=1 g2=—1 q;=0

N
<CN (Z a(p + 1)) (M3, <nw)(2) < CN log N (M3, <nw)(2) .

p=I1 ' o
Therefore, by Remark 10 of [Ta2] we obtain

Z w(Qq) < CN IOgN sup (Ma,Nw)(Z) .
vk lg2| + 1 a€[3/N,3v/2]

In the proof of Propositions 7 and 9 we will use the following

PROPOSITION 5. Letd > 3. Let Iz be the set of lattice points ([0,3N — 1] x

[0,37/d]9"2 x [-1,N]) N Z%. Suppose that z = (z1,--,za) € [=1/2,3N — 1/2] x
[—1, l]d_l. Then for every weight w on R? we have

3 29) _ cN1og N(Knyw)(@).

& lgal +1

PROOF. Let 8 = [3+/d]. By the local integrability of w and by Fubini’s theorem we
can define a locally integrable function w(xy, x4) by

w(xy, xg) = f wx)dxy---dxg—1, ae.(x1,x4) € RZ.
[—1/2,841/2]4-2

I ={(q1,94) €2*|10<q; <3N —1,—1 < g4 < N}
and

Wy,,qq =,/ ‘ w(xy, xg)dxidxg .
(q1—1/2,q1+1/2)x(ga—1/2,q94+1/2)

Then we have

w(Qq) Wy,
2 1= 2 gt @
gely 194 (q1.94)€l d
Applying Proposition 4 to the right hand side of (4) with (z1, z4), we obtain
w ' ~
> W) _cNlogN  sup  (Mani)(z1,za). (5)

gely lgal +1 7~ a€[3/N,3/2]



260 HITOSHI TANAKA
We see easily that the rectangles, which are congruent to
3
©0,a) x 0,84+ 1)“"2x (0, Na), ae€ [-ﬁ,wi] :

are contained in B<cy. Hence the right hand side of (5) is bounded by
CNlog N(K<cnw)(2) .

Thus, it follows that

>3 w(Qy) < CNlog N(Kcyw)(z) < CNlog N(Kyw)(z)
q€ly 941 + 1

(cf. [Ta2]). O

2.3. Main estimate for the shell x = 0 or £k = co. First we assume that

Z w(Qp) < 00.

PEAL

We apply the following argument to finite subsets of Ax and use a limiting argument. The
finiteness of the above sum can also be proved directly.

LEMMA 6. Ifk =0 ork = oo, then we have

(d-1)/d
1
D w(Qp) < C(logN)'/"—A-||f||La(Rd;KN,,,) (Z w(Qp)) : (6)

PEAL PEAL
PROOF. For p € A we have

1
—-f f>1.
NX Jg,

It follows from this inequality and from Holder’s inequality that

1 1
vy Zw(Q,,)f =% /R f (Z w(Qp)xR,,)
d-1/d

1 l/d d/(d—-1) 1\ l/@-b
5m—{ fR df"KNw f ( w(Qp)XR,,) (m) G

d/@d=0 1 1/d-n
f (Zw(gp)xk,,) % )

1 1/(d-1)
o) () 1)
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1/(d-1)
1
= ZP:UJ(Q[)) ‘/Rpl : ((;w(Qq)XRq) (m))

261

©))

1/(d-1)
1
(d-2)/(d=1) _
<cN ICR {/R (§q :w(Qq>xR,,> (KNw)] O

Therefore, estimates (6) is a consequence of the following

PROPOSITION 7. Letk = 0 ork = oo. Then it holds that

> w(Qy)

geAy; RpNRq

< CNzlogN

NW

for every p € Ay.

(10)

PROOF. The case k = 00. If ¢ € (Aoo — P(p)), then we see that R, N R, = @ by the
facts that /(R ) and [(R,) intersect the x4-axis and that the distance between p (or q) and the
x4-axis is bigger than 2/N. Without loss of generality it suffices to consider only the case that

I(Rp) agrees with the x;-axis. Let s = infyeRp (Knyw)(y). We note that

IR, "Ry <C
P lgal + 1
forg =(q1,- - ,q4) € f’(p). Hence we have
1 N w(Qyq)
q€Ac0 RpORy qgelgeP(p)| RyNR 1)

Now for every z € R, we see that

)3 WD) _ N log N(Kyw)(2)
7 194l +1

by symmetry of the problem and by Proposition 5. Thus, (10) is proved for k = oo.

PROOF. The case k = 0. If /(R),) agrees with the x4-axis, then we have

D w(Qy) L

7€ Ao R,NR, KNW

N2
< c% 2 |Rp N Rylw(Qy) < C—s— (E w(Qq)) /(CN) < CN2.
q q

If I(Rp) does not agree with the x4-axis, then we have

D w(Qy) L - > w(Qq) 1

Kyw - Knw '
q€4o RpMRy BN gelqeP(p) | RyNRy#0) RpORq

By the similar argument as in the above case we obtain (10) fork = 0. O

an
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2.4. Main estimate for other shells.

LEMMA 8. If1 <k < Ni, then we have

d-1)/d
1
Z w(Qp) < Clog N')‘:"f”Ld(Rd,KNw) (Z w(Qp)) . (12)

PEAk PEAg
PROOF. We ﬁrst note that

p;k w(Qp) < N Zw(Qp)f f
1 1 M

PROPOSITION 9. If1 <k < Njyand0 <1 < N, then it follows that

1/d (d-1)/d
| fD f (Z w(Qp)XR,,) < CN(log N)'/* ( fD f“KNw) (Z w(Qp)) :
! (0

PEAL PEAL
(14)
If we assume temporarily Proposition 9, then we have
(d-1)/d 1/d
3 wop =cunmiy (Suep) {5 ([, i) |
PEAk
1 (d-1)/d
< Clog N+l fllLamd, kyw) (Z w(Qp))
D
by (13) and by Holder’s inequality. Thus Lemma 8 is obtained.
PROOF OF PROPOSITION 9. Similarly to the proof of Lemma 6 we have
f f ( > w(Qp)xR,,)
Dy PEA
1/d d/d—1) 1/(d—1) @d-1/d
<( f"KNw) / D w(@p)xr (#) (15)
- DI D[ PEAk.. P P KNw

1/@d-1)
) is equal to

df@-1
and [, (Zpen, w(Qp)XRp) (E‘vl_uT

| 1/d—1)
> we )f (( w(Q )xR,,) (—)) ,
PEAK g q €Ak ! Kyw

which does not exceed, by Holder’s inequality

1/d—1)
CID A R..|@=D/@d=1) f (;) o
|D; N Rp| ;w(Qp)[ ook, (quw(Qq)xR,,) o (16)
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FIRST STEP. The case k < .

Ifg e (A — Is(p)) for p € Ay, then we have R, N R, N D; = @ by the facts that [(R))
and I(R,) intersect the x4-axis, and k < I. Therefore, by an argument similar to the proof of
the first case of Proposition 7 we have

1
> w(Qy) —— <CN’logN.
qeAy DiNRpNRy; BNW :

By (15), (16) and |D; N R,| < CN we obtain (14) for this case.
SECOND STEP. Thecasel <k.
Let

Ci={(x1,+,x4-1,0) € Z% 2" — 1 < (xf + -+ x5_D'/? < 24},
For a € Cy let IT(@) be the plain spanned by « and the x;-axis, and
(@) = {p € Z%|dist(p, T(@)) < 1}
be 1-neighborfood of I7T (). Let
Box = () N Ay
Then we see that the number of «, o € Ci, such that
DinR,N| | Ry | #0
q€Ba i

is at most Cc (k! )"1;2 (see [Ig]). By Proposition 5 we see that

1
> w(Qy) —— <CN?logN, VaecCy.
oy R,NR, Knw

Thus, we obtain

1 1/@d-1)
(d-2)/(d-1) -
D1 N Ryl [fDme (2 w(Qq)qu) (KNw)}

q
1/(d-1)

- — 1
< C|Dy meI(d 2)/d-1) / Z Z w(Qq)XRq (m)

DiNRp a€Cy q€By i
< C(lDl N Rplzk—l)(d—-2)/(d—l) . N2/(d—1) . (log N)l/(d—l) .

By a simple geometric consideration we have
|IDINR,125 < CN. a7

Thus, we obtain (14) from (17) for this case.
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2.5. Proof of Theorem 3. By Lemmas 6 and 8 we have

D w(Qp) = Z D w(@p)

DEA -,Nj,00 peAy

d-1)/d
< Clog N—llfllLd(Rd Kyw) Z ( Z w(Qp))

k PEAL

d-1/d

pEA

3. Proof of Theorem 1.
Theorem 1 follows from Theorem 3 by standard arguments (see [MS], [CHS]).

3.1. Sieve arguments.

PROPOSITION 10. For every weight w on R? the weak-type d inequality
1
(w(ix € RYIKY ) > A < Cllog Y2/ | £l agga, k)

holds for f € L*(R?, Kyw) and A > 0.

(18)

PROOF. The following arguments are essentially the same as those in [MS] (pp. 474—

476), but we shall repeat them for the completeness.

Define dimensions of the cylinder as a x b when the cylinder has the bottom of diameter
a and the side length b. Define the class Ry x, k € Z, as the collection of all cylinders in
R? which have dimensions a x aN for N* < a < N**!, Ifk > k" +2, R € Ry has
dimensions @ x aN, R’ € Ry and RN R’ # @, then we have R’ C R* where R* is the

cylinder concentric with R and with dimensions 3a x a(N + 2).

Now, if
).} = U R, ,
aeD

(kyf>x= [Ra

we just need to show that, for every finite subset D C D,

d+2
w <U Ra) < cgﬁi\?—/m"mw.

aeD

Let us write D = Uf__y D;, where every a € D; corresponds to a cylinder R, € Ry ;.

Without loss of generality we may assume that D, = @ for every |t| odd.
We define Dy = D, and, by induction, having defined Dy, .- D,.H, we put

Dt= aED,

Ry N U Rs|=0
BeD; 4 U--UD,



KAKEYA MAXIMAL OPERATOR 265

Ifa’ € D, — D,, then from the above observation and our assumptions we have
Ry C U R} .
BeD,11U--UD,
Now set E; = (J,ep, Re and Ef = |J,¢p, R;- The families E; are mutually disjoint
by construction. Put f; = fxk,. Then, if « € D, we have

PPN PR / ]
< = )
IRl Jr, " = IRZ SR

where R}* is the cylinder concentric with R, and has dimensions 3 times bigger than those
of R,.
Therefore, if N is sufficiently large, we obtain

1 / A
sup — | |feil> 571 -
XERERN URN 141 IR Jr 3d}

El C [x e RY
Observe that for a fixed x

1
sup —/ lfil<C sup (Mpiom n ft)(x) .
x€ReRy URN.41 1Rl JR m=0,1,---,2[log N]+1

Using Theorem 3 we obtain
(lo N)d+2
w(E) < C—t— [ 1fiI*Knw.

Therefore, we conclude
1 N d+2
w(U Re) = Y wEn < BB [ifikyw. O
aeD t A

3.2. Three-point interpolation lemma. Let M be the Hardy-Littlewood maximal
operator. Then we have
CMf < Knf < NI (Mf),

that i
w(ix € RY | (kE @) > ) < ¢ [ 1f1Kww. (19)
On the other hand, we have the obvious inequality
1K N F W oo e, wy < IF Nl Looe, Kyw) - (20)

The Proposition 11 is a consequence of so-called the three-point interpolation lemma.
PROPOSITION 11. For every weight w on R? the strong-type d inequality
IKE Fll Lage ) < CAog MY/ £l Lara kyu) 1)
holds for f € LY(R?, Kyw).
PROOF. The argument follows basically Proposition 5 in [CHS; p. 48].
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Put T = K% and u = Kyw. Let f be a function on R?. For a given A > O split f as
follows.

f = Fxusnisasy = Fxos<ifier) + fXUf1>en) = 1+ 2+ f3
with @ > O to be chosen later. Then we have
(THX) < TN+ T 1))+ (Tf3)(x)
and hence
w{x | (Tf)x) > A}
< w({x | (Tf)x) > A/3D) +w({x | (TH))x) > A/3) +w({x | (Tf)(x) >A1/3D) .
By (20) we have

w({x [(Tfx) > AD = w({x | (T2ax) > A1/3}) +w({x | (Tf)x) > A/3}). (22)
Set c; = CN%~! and ¢y = C(log N)4+2. Now, it follows from (22), (18) and (19) that

/ (TF) wdx

—d f (x| (THE) > ApAd-ldn
0

o0

< d/o w({x | (TF2)(x) > A/3DA4"1dA +df0 w({x [ (Tf3)(x) > 1/3D)

5Ccdf f |f|dudx—+Cc1f f | fludxA%=2d . (23)
0 Jas3<|fl<ar A 0 Jifl>ar :
We see that

o0 da 1
f f |f|dudxd—— =/|f|duf —didx =log3af|f|du (24)
0o Jas3<|fi<er A Ifl/asa<3|f] A

and :

°° 11
f f |fludxn?=2da = f | f 1 / A 2dhdxy = —— — f |f1%u.
0 Jifl>ar O<A<|fl/a d—1 ot~
' (25)

Choosing @ = N, we obtain (21) by (25), (24) and (23). O

Interpolation argument between (19) and (18), and between (21) and (20) give Theorem
1. '
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