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0. Introduction.

Following the work of T. Kondo [11] for GL,(g), we defined a Gauss sum for a finite
reductive group defined over F, associated with a modular representation over the same char-
acteristic and a complex ordinary representation in [15]. When the ordinary representation is
irreducible, the determination of the value of a Gauss sum is equivalent to that of the trace,
Tw (see (2.1) for details). Fixing the modular representation, we have shown that the val-
ues of 7w are canonically determined for the generalized characters of Deligne-Lusztig and
gave the values for finite classical groups with their canonical representation using Klooster-
man sums and unitary Kloosterman sums. Moreover as an example we have determined the
values of Gauss sums over Sp(4, ¢), with g odd, associated with every complex irreducible
representation and with the canonical modular representation.

On the other hand, in a series of papers starting with [10], D. S. Kim, I. Lee, and K. Park
have considered a Gauss sum over a finite reductive group, when the complex representation
is one dimensional and factored through the determinant of the modular representation. In
particular Lee and Park, [12], have determined the Gauss sum for the Chevalley group of type
G over Fy, G2(q), associated with the irreducible 7-dimensional modular representation and
the trivial (ordinary) representation.

The purpose of this paper is to give an explicit expression for Gauss sum over G2(q)
associated with every unipotent character and with the 7-dimensional modular representation,
applying the method developed in [15]. In particular we give another proof for the theorem
obtained by Lee and Park cited above. On the way we also have the Gauss sums associated
with £(T) Rt 9, when they are irreducible.

Interestingly enough these sums corresponding to unipotent characters are written by
using one character sum. In general, it seems that there is a character sum associated with
each geometric conjugacy class {(T, )} (cf. [7]), and that if an irreducible character ¢ appears
as a component of R, the corresponding Gauss sum w(¢) (cf. (2.1)) can be expressed using
the character sum.

In our case, we give five relations for the character sums associated with {Rt,1}, and
section 1 is devoted to establish such relations between certain character sums. Applying the
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result in section 1, we explicitly express the Gauss sums associated with unipotent characters
in section 2.

1. Some character sums and their relations.

1.1. Notation. Let g be a positive integral power of a prime p and k be a finite field
with g elements. Let k be an algebraic closure of k and ky, be the finite field with g™ elements
in k. The multiplicative group of k, is denoted by M,, and if m = 1, we simply write k or M
instead of k; or M.

C,, is the cyclic subgroup of order ¢™ + 1 of M2, and C = C;. If n divides m, N, :
km — k, is the norm map defined by Nm,,,(x) = x@"=D/@"=D and Tty » : km — ky is the
trace map defined by Trp, n(x) = Z:"_/ g . Moreover if m/n is odd, we define a map
N, : Cm = Cn by N, ,(x) = x@"+D/@ +1)

For a finite abelian group A, the set of all irreducible characters over C of A will be
denoted by A. Throughout this paper we fix a nontrivial additive character x € k. Fora e M,
x% e k is defined by x%(x) = x(ax), and x™ = y o Try,; is the canonical lift of x to k,,,
Similarly for @ € M, 6™ = 6 o N1, and moreover if n is odd, 9™ =g o N, | forg € C.

For a finite set X of k, let L(X) be the set of all complex valued functions on X and hence
L(X) is a complex vector space furnished with the hermitian inner product (, ) x defined by

(f. 9x = Z f(x)gkx), for f,ge L(X).
|XI xeX

Notice that if X is a subgroup of k*,and 7 € X, then 7(x) = w(x~1) and we define 7 € X,
by 7 (x) = m(x).

1.2. Kloosterman sums and unitary Kloosterman sums. Firstly let us recall the
definitions and properties of a Kloosterman sum, K(x,7; a), wherea € M, € M and a
unitary Kloosterman sum, J(x, ¢’; a), where ¢’ € M>, (cf. [6]):

K(x,ma)=)_ x(x+ax @),
xeM

Jx.¢ia= Y xP@x¢®.

xeM>, N3 1 (x)=a

The following is a lemma of B. Chang [3]. We include a proof after C. W. Curtis [5], since it
gives a prototype for the proofs of other relations.

LEMMA 1.3. Forae M, K(x,1pm;a) = —J(x, 1m,; a).

PROOFE. Since both sides are functions on M, it is enough to show
(K(x, Ims )t = —(J (X, Imp ), T

forall r € M. Let G(x, m) be the Gauss sum: G(x, ) = Y, ey X(x)(x). Then it is
easy to see that the left hand side becomes (g — 1)7!G(x, #)?, while the right hand side



CHARACTER SUMS AND GAUSS SUMS 279
is —(g = DT'G(x P, @), where G(x@, @) = ¥, 4y, xP@)7PD(x). Therefore if
7 # 1, the equality holds by the Hasse-Davenport identity, and if 7 = 1, it holds trivially. [J

1.4. Relations for extension fields. Let K(x,7) = K(x,m; 1) and
JOGe) =) x(x+x Do),
xeC

where ¢ € C. We recall the relations with these sums and the sums over extension fields of k.
Let

KE.(x®, 7™y =" xPx +xHn® ),
XEM,

Tn(x®, 0™ = 3" x®(x +x7He™(x), if nisodd,

xeCy

and let
[n/2] . n n— i o
Po(u,v) = ) (=1 — ( . J) "%y
j=0 oI
be the Dickson polynomial in the indeterminates u and v. Then
THEOREM 1.5 ([6], Theorems 1 and 2).
L. Py(K(x,7), gm(=1)) = Ko (x®, z®),
iy [ En (™, 0™ ifnis even,
2. Pr(J(x,9),qp(—1)) = [Jn(X(n)a‘P(n)) if n is odd,

where 9™ (x) = x@"~D/@+D (resp. x@'+D/@+D)Y if n is even (resp. odd) and x € M,
(resp. Cy).

1.6. Character sums K@ and 7. Now we consider the following character sums:

Kﬁi(a): Z X(xl+-~+xn+x1‘1+---+xn—1),
xi€M,xy,--xp=a

Ky (a) = Y x®+xh,
X€EM;, Ny, 1(x)=a

VO Z XG4+ x4,
x; €C,x1+ - Xp=U

JC(‘S)(") = Z x®Px+x7Y, (foroddn),

x€Cy,N; | (x)=u

=1

where a € M and u € C. For convenience, we put K M0 =

First relation among them is the following.

PROPOSITION 1.7. Let cn,j be the coefficient of w2yl in Py(u,v), ie. Cn,j =

(—nr—i-1 _n_ (n T J). Then
n—j J
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2 .
L K@ = X775 enjg) Kooy (-1 a),
2. (0)(u) Z[n/zl cn,jq’J (?,) 2, (1) u), where n is odd.

PROOF. (1) Forallw € M , we have

(@— DKy . M =Y Kjp @7n(@™)
aeM

=Z Z xPx+xHr@™h

a x:N(x)=a

= Z x®Px+xHar®Eh

xXeM,
=K. (x™, 7®)
= P,(K(x, ), g (—1)) (by (1.5.1)
=D cn K, B (gR(-1) .
J

Therefore for a € M, we have
Ky, @
=Y (Ky), m)mn(a)

aeM
1 [n/2]
3 cn i K(x, 72 (gr(=1))n(a)

_07[

n—2j
q—lzzc’” ZX("*'X 1)’1’(4‘5)) g’ m((-1)a)

q—l

"2.1

= ;‘i—f ch,jqj Z X Z (xi + x,-_l) Zﬁ'(xl .. -x,,_zj)zr((—l)ja)
J T

xl,--',x,,_szM i=1

n—2j
= ch,jqj Z X (Z(xi +x,-_1))
Jj i=1

x1-Xp—2j=(—1)Ja

—Zc K2 (=1)a),

which proves (1). The second statement (2) can be proved analogously as functions over C,
so we omit the proof. O

The following relation will be used in section 2.

PROPOSITION 1.8. J(1) = K\ (1) —2gx(-3).
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PROOF. This relation is proved by a series of transformations of equations.
0
JQW
= Z x@+z+'g g ! )

21,22€C

Y ox@+zHD x (A +zdz+ U +27hHah
21 22

| o
= Y x@+ghy (x,l;(%zl)—-)+x(—2)2x(0)
z1#—1 22

1 2
= Y x@+zh (—K (x, I ﬂ)) +@+Dx(=2) by (1.3)

n#—1 21

_ 1+21)? _
= - E x(z1+z7Hx (X+-—-——( 2 x 1)+(q+1)x(—2)
21#-1,xeM 21

-1 (1 +Z)2 -1
= - E xlz+z27 +x+—x + E x(=2+x)+(@+Dx(-2)
xeC,xeM < xeM

==D xG+2HY x(A+x"HE+27)) +9x(=2)
X Z

=— Y xG+2"HIHTL L) - (@ + DX(=3) + gx(=2)

x#—1
= Y xG+22HEGT, L) ~ @+ Dx(=3) +gx(=2) (by (1.3))
x#E—1
= ) xG+2TT+A+xTHO+y TN = D x(=3) =@+ Dx(=3) +gx(=2).
x,yeM yeM

Now we define x;,x; € M by x; = y, x = x2(1 4+ y), if y # —1. Notice that (x, y) >
(x1, x2) is bijective if y # —l and x +2x~ '+ 1+ x"H(y+y™ 1) = x1 +x2 +x1x2 + 271 +
xz_1 +x1_1x{1. Thus we have

Jé‘?(l) = Y xGa+x+xx a7 o x i
x1#F—-1,x

+) x(x—2)—2¢x(=3) +qx(-2)
=KD - > x(=2) —29x(-3) + (g — Dx(-2)
X2

= K9 —2gx(-3).
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REMARK 1.8.1. There will exist a relatively simple relation between J (9.)(1) and
Kl(f}?, (1), but we do not know it.

2. Gauss sums over G2(q).

2.1. Gauss sums over a finite reductive group. Let G be a connected reductive
algebraic group defined over k = F,, with Frobenius map F, and let G = GF be the finite
group consisting with elements in G fixed by F. Let R be an ordinary representation of G,
R : G — GL,(C), and ¢ be a modular representation of G, ¢ : G — GL,,(k,). We fix ¢
and define a class function ¥ on G by

¥ (9) = x (Tr,,1(trace §(g))) .

We call the following matrix W (R) a Gauss sum over G associated with R.

W(R) =) _ R(9¥(9).
geG
If R is irreducible, W (R) = w(R)I, for some complex number w(R), where I, is the identity
matrix of degree n = deg R. Since w(R) depends only on the equivalent class of R, we shall
write w(Zg) instead of w(R), where ¢y is the character of R, and we shall also call w({r) a
Gauss sum over G.

Let Tw (¢g) be the trace of W(R). Notice that for ordinary representations R; and R»
of G, we have tw (¢Rr, + {R,) = Tw({Rr,) + T™w({R,). Then by linearity we can extend Tw
to a liner function tw : cfc(G) — C, where cfc(G) is the space of complex valued class
functions on G. Thus for f € cfc(G) we have

) w(f)=)_ f@O¥).

geG

If R is irreducible, we have tw ({r) = w(Zr) deg R. Therefore, when R is irreducible, the
problem of the determination of W (R) is reduced to the determination of w({g) or equiva-
lently to that of Tw ({R). '

A first step to determine the value w(¢g) for all irreducible characters {g of G, is the
following theorem proved in [15].

THEOREM 2.2. Let T be an F-stable maximal torus of G, 0 a character of T = TF
and Ry the generalized character of Deligne-Lusztig corresponding to T and 6. Then we
have

mw(Rr0) =G : T|)_ 0¥ ().
teT

2.3. Maximal tori of G2(q). LetG = GF = G2(q) be the finite Chevalley group of
type G, over k and ¢ be the 7-dimensional irreducible representation over k. Also let p be the
characteristic of k. For the notation relating with the group G, we follow the notation used by
B. Chang in [2], and B. Chang-R. Ree in [4]. For the definition of ¢ we follow the one given
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in [12], by Lee-Park: we also refer to [14]. We use the character tables in [4], if p # 2, 3,
Enomoto [8] if p = 3, and Enomoto-Yamada [9] if p = 2.

Corresponding to the conjugacy classes of the Weyl group of G, there are six conjugacy
classes of F-stable maximal tori and the groups of their rational points over k are isomorphic
to the following groups:

Ti = {h(z1, 22, 23) | zi € M, 212023 = 1},
T, = {h(z1, 22, 23) | zi € C, 212223 = 1},
T, ={h(z4, 279", 27 |z € M3},

Ty = {h(z,2%,2797") |z € M2},

Ty = {h(z,2%,29) |z € Zpg1}s

- 2
Ts = {h(z, 274, 2%) [z € Zpp_g 1),

where Z,2,,, and Z,2_,, are the subgroups of k* of order g> + ¢ + 1 and q> —q+1
respectively. Notice that the elements A, (), hg(v) in [12] can be expressed by k(z1, z2, 23)
as follows:

ho(u) = k™ u?,u™), hg(w) =h@, v, 1).

Therefore, noticing ¥ (g) = x (trace ¢ (g)) in our case, from [12, p. 310] we have

2 YLz, 3) =x(A+a+n+a+zi +25 +230).

The character groups f‘; of Ty, =1,2,a,b, 3, and 6, are given as follows:

Ti = {61 = (1, 72, m3) | 7; € M, 61(h(z1, 22, 23)) = 71 (21)72(22)73(23)} ,
T =16 = (01,02, 93) | @i € C, 02(h(z1, 22, 23)) = 1(21)92(22)93(23)} ,
To=1{6a= () |n € Mz,0,(h (2%, 277", 271) = n (@)},

To = 10p = ) | n € M2, 6p(h(z, 29, 2797 ") = n(2)},

T =165 = (©)|§ € Zopgi1.03(h(z, 27,27)) = €@},

To =166 = (0) | p € Zr_g41. 06(h(z, 279, 27)) = p(D)}.

With these notation of tori and their characters, we shall simply write the corresponding gen-
eralized character of Deligne-Lusztig by Rr ¢ instead of Ry, where T = TF.
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2.4. Character sums S,. Corresponding to each maximal torus 7,, we consider the
following character sums.

S1(my, w2, 3) = Z DM@ @)X (a1 + 22+ 23+ + 25 + 23",

21,22,23€EM
212223=1

Senene) = Y. e@e@eEx(a+ntntg v +250),

21,22,23€C
2122z23=1

Sam =Y n@x(z+z79+27 + 771 427 4 271,

ZEM>,

Sp(n) = Z n@x(z+29 +29 + 27+ 279 +27971),

ZEM;

$E = Y E@x(z+7+ 2 4T,

zezq2+q+l

Se(p) = Z p@x(z+z277+ 2 0+ z—qz).
ZEZqz_‘H_1 )

Also we define the character sums S, for & = 1, by §1 = §1(1, 1, 1), $2 = $2(1,1, 1),

Sa = Sa(1), Sp = Sp(1), S3 = S3(1), S¢ = Se(1). Notice that with the notation defined in

section 1, we have
Si=KpM), S=J30), S=Kgh, Ss=J50.

The following result is a direct consequence of these definitions and (2.2) with the equa-
tion (2) in (2.3).

PROPOSITION 2.5. 1. tw(Rr.6,) = q%(q + 1)2(g* + g% + Dx(1)S1 (1, 72, 3),
tw(Rry.0,) = q%(g — D2(g* + g% + Dx (1) S2(01, 92, 93),

w(RT,.0,) = q%(q® — Dx(1)Sa(n),

tw(R1y.8,) = q%(g® — Dx (DSp(n),

tw(Rry.6,) = q%(g% — 1)%(q% — g + Dx (1) S3(6),

6. Tw(Rrg0) = q%(g% — 1D%(g*> +q + D x(1)Se(p).

COROLLARY 2.6. If9 € T is in general position, then e(T)Rt 9, where ¢(T) =
(—1)™ D and rk(T) is the k-rank of T, is irreducible and we have
1. w(Rr,g) = q%x()Si(m1, 72, m3),
w(Rp,,0,) = ¢%x (1)S2(01, 92, 93),
w(—R7,.6,) = —q%x (1) Sa(n),
w(—R7,,6,) = —¢°x (V) Sp(m),
w(R7y,6,) = q%x (1)S3(8),
6. w(Rr66) = q°x(1)Se(p).

2.7. Unipotent characters. Every unipotent character of G can be given in terms of
six generalized characters Rr,,; (@ = 1,2, a, b, 3, and 6) of Deligne-Lusztig and four class

“wh o

woR W N
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functions Y; (i = 1, 2, 3, and 4) as follows (see [4], [13] and also (2.7.1) below):

1 1
X11=—=Rn1+ —= B

1 1 1 1
D Rp,1 + Rp,1+ =Rp1 +

Rty 6 6
1 1 1 1 1 1
X123 = —R “Rr,1—-R ~R = = Stg,
12 = >R + B 7 R1— 7 R7,0 + g Rrs.1 + 6RT5,1 St
1 1 1 1 1 1 1
X13 = =Ry, 12RT2 1+ 4RT,, —=Rp1+ Y1 —=Y3— =14,

=Rp,1 = 1¢,

—Rp, 1 — -

12 4 3 3

3
1 1 1 1 1 1 1
X114 = - - e 2 Va — =
14 = 12RT1 4RTa,1+4RTb,1+3Y1 3Y3 3Y4,
1

1 lR IY y
1= g1 -3 =5,
1 1R +1Y+1Y+1Y+1Y
1~ g6 61 512 33 34,
1 1 1 1
Xi17=—-R —R — -Y; -Y5,
17 6 T2,1+6 Tl = 5 1+2 2
1 1 1 1 1 1
X138 = —=R —R Y — Yo+ Y3+ =Yy,
18 6T2,1+6 T3,1+61 22+33+34

1 1 1 2 1
X9 = —ERTg,l + R+ N+ Y3 — -1,

6 3 3 3

- 1 1 1 1 2
X19=—=R —R Y — —Y3+ =Yy,
19 6T3,1+6 T6,1+31 33.+34

REMARK 2.7.1. (1) For p = 2 or 3, we regard that the generalized characters Y;
(i =1, 2, 3, 4) are determined by the equations above under suitable identification of unipo-
tent characters. See Tables 1 and 2 in Appendix for the identification with the notation in [8]
and [9].

(2) Here we briefly recall how these relations are explained by Lusztig in [13].

Let W be the Weyl group of G and thus it is the dihedral group of order 12 having
the following presentation: W = (a,b|a? = b* = (ab)® = 1). Let p be an irreducible
representation of WV and hence p is equivalent to one of 1y, €, €1, €2, V, V’, where 1yy is the
trivial representation, ¢ is the sign character, &; (resp. &) is the linear character determined by
€1(a) =1, e1(b) = —1, (resp. 82(a) —1, e2(b) = 1), V is the reflection representation and

V' =VQ®e.LetR, = Iw|~1 > wew trace p(w)Rr, 1. Notice that with the notation in [4],
I = Tapy3, T3 = Tiypy2 and Tg = Tpp. Now we have Ry, = 1, Re = St = the Steinberg
representation. Let G3 be the symmetric group of degree 3 and M (G3) be the set consisting
of all pairs (x, o) where x is an element of &3 and o is an irreducible representation of the
centralizer of x modulo the equivalence relation determined by the canonical action of Ss3.
Let X = {X13, X14,---, X19, X19} and Y = {R¢,, Re,, Rv, Ry, Y1, Ya, Y3, Y4}. Then the
elements of X and ) are parametrized by M (&3) respectively and they are transformed to
each other by a pairing over M(S3) x M(G3). For more details see [13]. We only give the
parameterization of the elements of ), using the notation in [13]. For the parameterization of
the elements of X', see Table 2 in Appendix.
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LD [(@D]|an]wD|ae|(@e] (o] (6%
Ry Ry Re, R, Y Y, Y; Yy

LEMMA 2.8. tw(Y;) =0fori=1,2,3and4.

PROOF. For p # 2, 3, we can easily obtain the result using the equations (1) in (2.1),
(2) in (2.3) and the values of ¥; given in [4]. For p = 2 or 3 we use Table 4 or 3 in Appendix

respectively. : a
PROPOSITION 2.9. The sums Sy, -- - , S¢ are expressed by S as follows:
1. S =581 —29x(-3),
2. Sp=-—S81+29x(-3)+29x(-2),
3. Sp=-81+29x(-2),
4. 8§53 =381 —3qx(-2),
5. S¢ =81 —2qx(—3) —3qx(-2).

PROOF. The identity (1) is proved in (1.8) and (4) (resp. (5)) is obtained from (1.7.1)
(resp. (1.7.2)) by putting n = 3. By (1), the identity (2) is equivalent to

2.

Sa = =82 +2gx(-2).

Since (2’) and (3) can be proved similarly, we prove only (3). For the proof we extend Sp to a
function Sp, over M as follows: for x € M, let

S5 = >, xO0+y"mxPe+z7h.
yeM,zeM,
x=yN2,1(2)

Notice that S(1) = Sp. As before S, = Y, (S, 7)7 and

@— 1S, m) =) Spreh

xeM
=Y x0+y Hro™ Y xPe+Hr®PE™h
yeEM ZEM,

=K, 1)K2(x?, 7#®)
= —K(x,7) +2qn(—1)K(x,7) (by (1.5.1)).

Therefore

3
Sp(x) = qu > X (Z(x,- +x,-“)> 7 ((x1%2%3) ™' x)

X1,X2,X3€M i=1
neM

2 — -
+ q—f—l > xGr+ A HEGr(=x)
x1EM, teM

= —Kp () +29x(—x —x7").

Thus putting x = 1, we have the required identity. O
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REMARK 2.9.1. (1) We can prove similarly
Sp(n @) = =S1(, 7, 1) + 2gm (— 1) x(-2),

Sa(@®) = —=$2(p, 0, 1) + 299(—1)x(=2) .

(2) For the identities (2)—(5), we can give an alternate proof using a subset of poly-
nomials of degree 3 over k, as B. Chang used a subset of polynomials of degree 2 to prove
(1.3).

THEOREM 2.10. For the 10 unipotent characters X1 of G2(q), the values of Gauss
sums w(X1;) are given as follows:

w(X11) = g%x ()81 +q7(¢> = Dx(=2) + 4" (¢> - D(? + 2x(=1),

w(X12) = ¢°x(DS1 — ¢*(@® — Dx(=2) — *°(¢* — D> + Dx(-1),

w(X13) = ¢°x (1)1 + ¢°%(q — 1)(2g + Dx(-2),

w(X14) = ¢°x(1)S1 — ¢%(q — (g +2)x(-2),

w(X15) = g%x (1)S1 + ¢%(g — > x(-1),

w(X16) = ¢°x ()81 +245(q — 1*x(=2) +3¢%(q — D% (g® + 2)x (=),

w(X17) = ¢°x (1)S1 —2¢°x(—2) — ¢%(q + 1)*x (1),

w(X18) = ¢°x (1)S1 +24°%(¢> + g + Dx(—2) — 3¢5(g + D*x (- 1),

w(X19) = w(X19)

=g°x()S1 —q%(@* + g + Dx(=2) = 3¢"x(~1).
PROOF. Since tw is additive, it is elementary to calculate tw(X1;) using (2.7),

(2.8) and (2.9). Thus to obtain w(Xy;), it is enough to use the relation, w(Xy;) =
(deg X1;) " lew (X1)).

REMARK 2.10.1. For X;; = the trivial representation of G2(g), w(X11) is already
obtained by Lee and Park [12].

Appendix.

In this appendix we summarize tables which are necessary to prove (2.8) in the case
p = 2 or 3. For the notation of Lusztig and correspondence of unipotent characters with the
elements of M (G3) in Table 2, see [13, p. 372]. For the irreducible characters and conjugacy
classes we use the notation in [4], [8] or [9] according to p # 2,3, p =3 or p = 2.

TABLE 1. Correspondence of R in different characteristics

R7 1 Ry, 1 Rt 1 Rr,1 Rp1 Rra
p#23 X1 X5 —Xg —Xp X3 X6
p=3 x9(0,0)  x12(0,0) —x1000 —x11(0) x13(®  x14(0)
p=2 | x500,00) x50,00) —x6(® —x¢c(0) x7(0)  x7(0)
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TABLE 2. Correspondence of unipotent characters

M@GS3) | (LD (g2, 1) (A,r) (g3, 1) (1,8) (g2,8) (93.0) (93,62
p#23| X6 Xi5 X3 X4 Xz X7 X9 X9
p=3 6 62 63 6s 6o o 612(1)  612(—=D)
p=2 6 62 03 64 6 65 69(1) = 69(2)

X11=6(p=3)=60(p=2)=1,X12=05(p=3)=6s5(p=2) = S1)

TABLE 3. Valuesof ¥;, (p =3)

order of

centralizer ) 6 Y Y3 Yy
Aqy 2¢* 4°
Ag 24* -¢?
Asy 342 q q
Asy 3¢% wq | w’q
Asy | 34% w¥q | g
By 292 q
Bs 24° —q

TABLE 4. Valuesof ¥;, (p =2,9 =¢emod3)

order of

centralizer ¢ Y, Y3 Y4
A3 6q* &q®
A3 2q% —£q?
Ay 3¢ eq?
As) 24? q
Asy 292 -q
B,(0) |  34? 9| 4q
By() | 34? wq | w’q
B(2) 3¢2 ?q | oq
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