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Abstract. We study the Cauchy problem and the initial boundary value problem (IBVP) for nonlinear par-
abolic equations in Cp([0, T); LP) and L?(0, T; LP). We give a unified method to construct local mild solutions
of the Cauchy problem or IBVP for a class of nonlinear parabolic equations in Cp([0, T); L?) or L9(0, T; LP) by
introducing admissible triplet, generalized admissible triplet and establishing time space estimates for the solutions
to the linear parabolic equations. Moreover, using our method, we also obtain the existence of global small solutions
to the nonlinear parabolic equations.

1. Introduction.

In this paper we study the following nonlinear parabolic equation

Ur+ Au=FQu,du,---, 0" u), A= D ay(x)d" (1.1)
‘ ler| <2m
subject to
u(0) =px), xeR*, (1.2)
or
u =9kx), xe€f
J 1.3
a—li =0, j<m-1, 1.3
v |0
where 8% = {87, |¢| = k}, @ = (a1, - , ) is a multi-index, Cy or Cj denote real (or

complex) constants, 2 C R” is a bounded smooth domain with boundary 352, v denotes the
unit outward normal to 952. u(x, t) = u(t) is a real (or complex) valued function defined on
[0, 00) x R" or [0, o0) x £2. ax(x) € CJ°(R™) or Cp°($2) such that

(-D™Re Y aa(x)E* = Coll™™, Co>0, xeR" orxef2. (1.4)

la|=2m
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The nonlinear term has the form of

F(u,du,---, ™ lu)y= Y Cpd® fa(w), (1.5)
|BI<2m—1

satisfying fp € C'PI(R, R) and

| fe(u) — fp)| < A1+ [ul% + |v%)lu—v|, fp(0)=0,
1B

= 1i——1, 2m — 1, 1.6
] bﬂ( Zm) 1Bl <2m (1.6)

where bg € R*. Moreover, when 2 = R", let
(—AYv=F g Fu.

Then we can also deal with the following nonlinear term

2m—1

Fu,u,---,3%) = 3 Ci(—A) fiw), (1.5

j=0
where f; € C/(R, R) satisfy

1fj@) = £ < AQ+ (ul® + P)lu—v], fi©0) =0,
@:b,-(l—#), j<2m—-1, 6;eR". (1.6")
Hence if we replace 6g with 6;, the similar results in Theorem 2.1-2.3 are still valid, see
Section 2.

The main purpose of this paper is to give a unified method to treat the Cauchy problem
and the IBV problem for general parabolic equations. This paper consists of three parts: First,
we shall introduce the admissible triplet and generalized admissible triplet, and estiablish a
series of time space estimates for the solutions to linear parabolic equations based on the L?
L" estimates of analytic semigroups and the harmonic analysis method. One can find these
time space estimates are different from the time-space estimates of the wave or dispersive
wave equation. Of course, some basic estimates are due to Giga and Weissler [6, 8, 10, 11,
17-19], but we give some new time-space estimates which are suitable for the study of (1.1),
(1.2) and (1.1), (1.3). Second, We study the local existence and uniqueness of solutions to
(1.1), (1.2) and (1.1), (1.3) in C-spaces and L-spaces using the time-space estimates and other
analytical techniques. Finally, we obtain the existence of global small solutions of (1.1), (1.2)
and (1.1), (1.3) provided that

| fa(u) — fo(@)| < A(1ul% + |v|%)|u —v|, f5(0) =0,

2m
6p =bp (l—%ﬂ—n:) , bﬁ>—'-l—. a.7n



TIME-SPACE ESTIMATES 247

Whenm =1, A = —A, F(u, 0u) 2 AulPou, the Cauchy problem (1.1), (1.2) and IBVP
(1.1), (1.3) were extensively studied by many authors, see [5], [6], [17-19]. Their main results
can be stated as

(i) For¢(x) € L7(82) or L" (R"), there is a local solution u(¢) € Cp(0, T; LP) to (1.1),
(1.2) and (1.1), (1.3), where p > r > 1 satisfies suitable conditions which are dependent on
the nonlinear term f(u). When p = r is chosen as the critical exponent (p = r = nby/2 >
1), the solution u(z) can be extended to a global solution provided that ||¢||, is sufficiently
small [5, 6, 17, 19].

(i) Forox) e L', p=>r,q >r,1/q = (n/2)(1/r — 1/p) > 0, there exists at
most a solution u(¢) € L9(0, T; L?) to (1.1), (1.2) and (1.1), (1.3). In particular, when r is
equal to the critical exponent, 7 = oo provided that ||¢||, is sufficiently small. Of course,
the uniqueness of solutions in L2(0, T; LP) or Cp([0, T), L?) is also valid under suitable
conditions for p, g, r.

Recently Ginibre and Velo in [7] studied the Cauchy problem in local spaces for the
complex Ginzburg-Landau equation (m = 1) and pointed out that there are two kinds of
spaces suitable for the study of the Cauchy problem and IBVP of parabolic equations. The
first one refers to using the space such as t1/9u(t) € C(I; LP) for suitable p, g, r to study
(1.1), (1.2) or (1.1), (1.3) with data in L", we call it as C space theory; another one refers to
using function space L9(/; L?) to study (1.1), (1.2) or (1.1), (1.3) with L" data, we usually
call it as L space theory. Both kinds of spaces have their advantages. C space theory exploits
the regularizing property of the equation and yields in particular the fact that the solutions are
more regular than the initial data for ¢+ > 0, thereby yielding better result of existences. On
the contrary, L-space theory describes translation invariant regularity in time and allows at
each time ¢ for singularities that are dimensionally equivalent to those allowed by C-spaces at
t = 0, thereby yielding better result of uniqueness results. As for the results of uniqueness,
see Remark 2.2 (iii).

We find that the relations of exponents in the statements and proofs of the main results
in [6, 7, 10, 11] are very complicated and difficult for the reader to understand them. To over-
come this difficulty we introduce the definition of admissible triplet, generalized admissible
triplet and give a unified method to deal with the Cauchy problem and IBVP for general par-
abolic equations. One easily sees that our results will improve and extend the known results
even in simple cases, see [5, 6, 7, 10, 11, 17-19]. Some ideas in this paper were inspired by
the work in [6, 7, 18, 10-11].

This paper is organized as follows. In section 2, we shall give our main results and some

_remarks. Section 3 is devoted to establishing a series of time-space estimates for the solutions
to the linear parabolic equations, which are necessary for the study of (1.1), (1.2) and (1.1),
(1.3). In section 4, we first give some necessary nonlinear estimates by time-space estimates,
then we study the local existence and uniqueness of the problem (1.1), (1.2) and (1.1), (1.3) in
C-spaces and in L-spaces. In section 5, we establish the existence of global small solutions for
the Cauchy problem (1.1), (1.2) and IBVP (1.1), (1.2) by time-space estimates and choosing
sutiable work-spaces.
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We conclude this introduction with several notations. For 1 < p < oo, L? denotes
the standard Lebegue space with norm || - ||,. Cp([0, T'); X) denotes the space of bounded
continuous functions which define on [0, T) and take value in Banach space X with norm
maxo<t<T || + llx. L4([0, T); LP) denotes the time-space Lebesgue space with norm
|- lNpqr = (fOT | - 13dt)!/9. We shall denote by £(X; Y) the space of all bounded lin-
ear operators from the Banach space X to another Banach space Y. -

2. Main results.

It is well known that solving (1.1), (1.2) or (1.1), (1.3) in the spaces C(/; LP) and
LP(I; LP) is equivalent to solving the following abstract Cauchy problem of evolution equa-
tion '

{u,+Au=F(u,au,--- 321y, xeQRorR*, tel0,T) @

u(0) = ¢(x), ¢ € D(A),
where D(A) = W2"P(R") if 2 = R", D(A) = WP )N Wy P (2)if 2 CR"isa
bounded smooth domain. One casily see that A generates and analytic semigroup. Without
loss of generality, we assume that

R, A)| <

) . 2.
1 ReA <0 (2.2)

If not so, we put v = ¢~ ®"u and the respective operator become A = w + A for suitable
@ > 0. It can be easily seen that A satisfies (2.2), see [4, 12, 13]. By this way, we have
0 € p(A) and an equivalent norm of Sobolev space W27 as

lullwem, = l|Aullp .

As usual, we study (2.1) via the corresponding integral equation

5 A
u=e px)+ f e AR, du, -+, 37 u)ds
0

4 e o)+ Ju. (2.3)
Usually we define the solution in function space Cp(I; LP) or L9(I; LP) as a mild solution
of (2.1). We shall construct the mild solution only in these spaces because it can be easily
verified that the mild solutions are differentiable in 7 and strong solutions of (2.1) based on the
regularity of analytic semigroup e 4. Moreover, L?-theory, C®-theory and the bootstrapping
method imply the mild solution « of (2.3) is just classical solutions of (2.1) under some smooth
conditions on nonlinear functions F(u, du, - - - , 32"~ 1y).

For the sake of convenience, we introduce the admissible triplet and generalized admis-
sible triplet with respect to a 2m-order parabolic operator before we state our main results.

DEFINITION 2.1. Wecall (p, q, r) an admissible triplet if

l_n 1 1 2.4)
g 2m\r p)’ )
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where
nr
, n>2m,
l<r<p<{n—2m , 2.5
00, n<2m.
DEFINITION 2.2. Wecall (p, q, r) a generalized admissible triplet if
1 1 1
_=l(___), (2.6)
q 2m \r p
where
nr
—_—, n>2mr,
l<r<p<{n-—2mr 2.7
o0, n<2mr.

REMARK 2.1. (i) One can easily find that g is unique determined by p and r. Usu-
ally we write ¢ = q(p, r).

(i) Itiseasy toseethatr < g < ooif (p, g, r) is an admissible triplet.

(iii) Itis easy to see that 1 < g < o0 if (p, q, r) is a generalized admissible triplet.

Our main results can be expressed as follows:

THEOREM 2.1 (Existence and uniqueness). Let F(u, du, - -- , 3™ lu) satisfy (1.5)
and (1.6). Put ro = max|g|<2m—1{nfg/(2m — |B|)}. Assumer > ro whenro > 1orr > 1
whenryg < 1. Let o(x) € L" and (p, q, r) be any admissible triplet. We further assume that

142 max 0p
rs pl=2m-1 2.8)
14+ max 6g
1B1<2m—1

when p < 1 4+ maxg|<om—10p. Then there exist the maximal interval [0, T*) and the unique
solution u(t) satisfying (1.1), (1.2) or (1.1), (1.3) with t1/9u(t) € L*>((0, T*); LP). O

(Properties of solution) Let (p, g, r) be any admissible triplet with

14+ max 0,9<p<r(1+ max Oﬂ). 2.9
|Bl<2m—1 |8l<2m—1

Then the solution which is obtained in the first part is of the following regularity:
@) tY9u(@t) € C([0, T*); LP) forall p > r.
(ii) Forall p > r, u(t) satisfies
t4lu(@)ll, > 0, when t—>0. (2.10)

(iii) u(t) € C((0, T*); L" N L™®).
(iv) If T* < oo, then

lim |lu(@®)|l, =00, r<p=<oo, p>rg.
t—>T*

In’'addition, we have

2m—|Bl _ n
WOl z i (/7T -0 B ), @.11)
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THEOREM 2.2 (Existence and uniqueness). Let F(u, du, --- , 32" u) satisfy (1.5)
and (1.6). Put ro = max|gj<om—1{n6g/(2m — |B|)}. Letr > ro whenrg > 1 orr > 1 when
ro < 1. Let ¢(x) € L" and (p, q,r) be any one admissible triplet. We further assume that
(2.8) is satisfied when p < 1 + maxg|<om—16p. Then there exist the maximal T* > 0 and a
unique function u(t) € L2((0, T*); LP) satisfying (1.1), (1.2) or (1.1), (1.3).

(Properties of the solution) Let ¢(x) € L", u(t) be the solution which is obtained in
Theorem 2.1 in the first part. Then we have

(i) For any admissible triplet (p, g, r) satisfying (2.9), u(t) € L9((0, T*); LP) is the
unique solution of (1.1), (1.2) or (1.1), (1.3).

(i) IfT* < oo, we have

lin% Nu(e); LY(T*/2, T* —&; LP)| =00, r<p<oo, p>rg. (2.12)
e

REMARK 2.2. (i) In view of the theory of abstract evolution equations, we can ob-
tain local well-posedness for (1.1), (1.2) or (1.1), (1.3) in C([0, T); L?) N C1((0, T); LP) N
C((0, T); E,) for general nonlinear functions F(u, du, - - -, 32m=1y), where

A
E, ={u € D(AY) : ||A%ullp <00, || - llg, = A7 ullp}

where 0 < y < 1. In fact, if the nonlinear function F(u, du, -- -, aZm—lu) is defined on

an open subset U of E), (0 < y < 1) taking values in L? and is local Lip continuous with
respect to (u, du, - - - , 3%~ 1y), i.e. for each point (u, du, - - - , 32™~u) € U, there exists a
neighborhood V C U, a constant L = L(V) > 0 such that

| Fu,du, -, 3% tu)y — F(v, 8v, .-+, 82 L),

2m —1
2m

Y(u,du, -+, ), @ov, -, lyyev. (2.13)

Then the problem (1.1), (1.2) and (1.1), (1.3) have a unique local solution u(¢) € C([0, T); LP)
NCL(0, T); LP) N C((O, T); E,). When p > n, it is not difficult to verify (2.13). But, when
p < n, in order to obtain the local existence one has to assume that the nonlinear function
F(u, du, --- , 3%™~1y) satisfies additional conditions for verifying (2.13). Of course it is dif-
ficult to obtain other properties of the solution such as the rate of blow-up for the solution, see
[4, 13] for the details.

(ii) When A = (—=A) or —(u + iv)A, o > Oand F = f(u) (e.g. Alu|?u), the
problems (1.1), (1.2) and (1.1), (1.3) turn out to be the Cauchy problem and IBVP for the heat
equation and the Ginzburg Laudan equation. Our results extend the known results and give a
unified way to discribe and prove the main results, see {5, 6, 10, 11, 17-19].

(iii) As for the result of uniqueness, I obtained the uniqueness of solution to (1.1),
(1.2) or (1.1), (1.3) for any adimissible triplet (p, g, r) with (2.9), the referee recommend
the papers [2] and [9] to me and help me to get the result of uniqueness for any admissible
triplet (p, g, r). In fact, when (n — 2m) max,gj<om—16p > 2m, one easily sees that (2.9) is

SLMIAYw—=v)llp =LWN)lu—vlg,, v=

’
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always valid, because in this case we have (r, 2r/(n — 2m)) C (1 + max|gj<am—16p,r(1 +
max|g|<2m—-16g)). But, when (n — 2m) max|gj<om—10g < 2m, (2.9) is not always valid. In
view of the result of Ginibre and Velo in [7] one easily obtain the uniqueness of solution to
(1.1), (1.2) or (1.1), (1.3) for any admissible triplet (p, g, r) with p < r(1 +max|gj<2m—16p).
For usual admissible triplet (p, g, r), we conclude the existence and uniqueness for (1.1),
(1.2) and (1.1), (1.3) in C-spaces and in L-spaces. Therefore this paper improves the re-
sult of uniqueness in [7]. But, the uniqueness in this paper is not the best result. e.g.
when F(u, du, -+, %"~ lu) = V- f), ) = (@), -+, fa)) and | fjw)| < Clul®,
fi®=0,j+1,---,n. Forro =nb/2m — 1) > 1, p(x) € L', let (p, g, ro) satisfy

1 n ( 1 1)

—_—=—|——-=), g=2.

q 2m \ro p
In view of methods in [9], we easily conclude that there is the unique solution u(¢) to (1.1),
(1.2)or (1.1), (1.3)in C([0, T); L™)NL2((0, T); LP). One easily sees that this result is better
than the result of uniqueness in this paper for this special case, see [9] for the detail proof.
For general nonlinear term F(u, du, - - - , a2m=1y) it may be a interesting problem that how to
prove the uniqueness of solution to (1.1), (1.2) or (1.1), (1.3)in C([0, T'); L")NL2((0, T); L?)
for any generalized admissible triplet (p, g, r) with r > ro = max|g<am—1{ufg/(2m —
181D} > 1 and

nr

rns<p<jiyh—rm
00, n<rm.

(iv) 'When the nonlinear function F(u, du, - - - , 3%~ 1u) satisfies (1.7) and

neﬁ A nbﬂ

m— 1l 2m = constant, forall |B]| <2m —1,

l<r=

that is, F(u, du, - - - , 3%™~1u) is of critical growth with respect to all variables, we obtain the
existence of global small solutions to (1.1), (1.2) and (1.1), (1.3). This is an immedate result
from the proof of Theorem 2.1 and Theorem 2.2, see Section 4 of [6, 10, 11].

For the case of usual super-critical growth, it is not an obvious result that the global small
solutions to (1.1), (1.2) and (1.1), (1.3) exist. We shall prove the existence of global small
solution to (1.1), (1.2) and (1.1), (1.3) by time-space estimates and the contraction mapping
principle.

Before the statement of Theorem 2.3, we first introduce some notations. Let b =
minig|<om—1 bg, b = max|gj<om—1bg, ¥ = nb/2m, ¥ = nb/2m. In view of Holder’s in-
equality, (1.7) implies

175601 < cuiPC=5) 4+ wf(-8)y, 181 <2m -1, @.14)

and2m/n<555<oo.
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THEOREM 2.3. (i) Let(p,q,r) and (p, q, ) be admissible triplets such that
(b+1)<p<il+b),
b+1) <p<Fl+b), (2.15)

(2.16)

ﬁ|| ~
"Q(l ~

Then, there exists a 6 > 0 such that zf ||go(x)||L;n_L; < §, (1.1), (1.2) or (1.1), (1.3) has a
unique global small solution u(t) € L1([0, oo); LP) N L4([0, oo); LP).
(ii) Let (p, g, 7) be any admissible triplet with¥ <F < F and

_——— = —, 2.17)

then the solution u(t) belongs to Li ([0, 00); LP ).

(iii) Let (p,q.7) = (p.q(p,7),7) or (p,q,r) = (p,q(p,r),r) be any admissible
triplet, then the solution u(t) belongs to L1 ([0, co); LP).

(iv) Let (p, q,r) be any generalized admissible triplet such that ¥ < r < F, then the

solution u(t) belongs to Li ([0, o0); LP ).

REMARK 2.3. (i) one can easily see that there exist admissible triplets (p, g, ) and
(p, q, r) satisfying (2.15) and (2.16). In fact, noticing that

( 1+E)
max {1, — <
r

<(1+b)

<(1+b),

[2m(1_+b)’ 1 +l;) c [2m(1:i—b), q +5) ,
nb nb

so we can easily choose admissible triplets (p, g, r) and (p, g, ) satisfying (2.15) and (2.16).

Moreover, for any admissible triplet (p, g, r) with r = nb/2m > 1, we can find an admissible

triplet (po, qo, ) such that

8
5
N
b
[a—y
*u'-{-
S
N
IA
TSI TR TR Y

r r r
—_—= = — (2.18)
P P Po
(ii)) Under the condition (2.16), (2.15) can be replaced by
G+ <p<F(l+b). (2.15)

In fact, it is easy to see that

Hence we have
b+1)<p<Fl+b).
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Moreover, (2.17) in (ii) implies

2 2
(1+—m-f~) <p <f(1+—mf) . (2.19)
n n

On the other hand, one may find that (n — 2m)b > 2m by the Remark 2.2 (iii), so we can
remove the condition (2.15). Hence the conditions (2.15) is only needed for the case (n —
2m)b < 2m.

(iii)) As a consequence of Theorem 2.3, the existence of global small solutions in L-
spaces for nonlinear heat equation and nonlinear Ginzburg Laudan equations is obtained.

3. Time-space estimates for solution to linear parabolic equations.

‘We now consider the abstract Cauchy problem of the following linear parabolic equation

U+ Au= f(x,t), te€l0,T), 0<T <00 3.1)
u(0) = p(x), ¢ € D(A), '
where D(A) = W2™P(2) N WP (£2) or W2™P(R™). It is well known that
t
u®) = e Ao + f e~ =94 f(x, t)ds & e 4 + Gf (x, 1) (3.2)
0
solves (3.1). In view of (2.2), one easily sees that
1984l < CllA%e40)l,, 1<p<oo, ¢e D), (3.3)
1A%, <cr~FE (), 1>o0,
0<X <1, p>r, ¢eD(A), (3.4)
2m

by the Hormander-Mikhlin mutiplier theory, estimates of analytic semigroups and Young’s
inequality, see [4, 6, 8, 10-12, 14, 16] for the details. Due to Marcinkiewicz’s interpolation
theorem(!4] and (3.4), we have the following lemma, the proof of which can be found in [6,
11].

LEMMA 3.1. Let (p,q,r) be any admissible triplet, ¢(x) € L', then e My €
L4([0, 00); LP) N Cp([0, 00); L") with

le~*@llLeq;ry < Cllgll,, I =1[0,00) or IC[0,00). 3.5)
where C is constant independent of ¢(x).

To prove our main results we need a series of nonlinear estimates. For this propose we
first establish time space estimates for solutions to the linear parabolic equation.

PROPOSITION 3.2. (i) Letr >na/(2m—y) > 1,orr > 1 whenna/(2m—y) < 1.
(p, q, r) be any generalized admissible triplet with

'(a+1)<p<r(a+1). (3.6)
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Assume f € L1 ([0, T); La1. Then A% Gf (x, t) € L1([0, T); L) and
1A% G (5, Dllsqo sy < CT "B TSl g
0<y<2m, 3.7

where C is a constant independent of f(x,t) and T.

(ii) Letr > 2a+1)/(a+1)andr > na/(2m — y), (p1, q1,r) be any generalized
admissible triplet with p1 < a+1. Then, there exists a generalized admissible triplet (p, q,r)
with (3.6), such that AY/*"Gf(x,t) € L91([0, T); LP') and

1A% GF(x, Ol Lo qo.1y; L1y <CT '~ 2~ %mr || £1177]
@OIE L@ (0,T);L34T)

X "'flzh "qu ([0,T);LP1) ° O0<y<2m. 3.8)

(iii) Letr > na/2m—y) > lorr > 1 whenna/(2m —y) < 1. Let (p2, q2, r) be any
generalized admissible triplet with py > r(a+1). Then, there exists a generalized admissible
triplet (p, q, r) with (3.6), such that A% Gf(x,t) € L%2([0, T); LP?) and

1A% Gf (x, )l Loz 0,T);LP2 <CT'" %% || £
f lLe2o.1i22) f"La‘%r([o,T);La‘iT)

X “If'a—h ||Lq2([0,T);LP2) ’ 0 <y < 2m. (39)

PROOF. We first prove (i). One can easily see that (3.6) implies ¢ > (1 + a), so we
have

t n (atl 1
||A"”Y7GF(X,t)Iqu([o,T);LP) < C"/(; |2 —Sl—ﬁ_m(%_;)llf(x,s)ﬂa_g[ds

q9

< CT'" 3 3 | f (0l g, (3.10)

(©.THLFHT)’
by Young’s inequality or Hardy-Littlewood-Sobolev’s inequality (when p = na/(2m — y)).
This implies (i).

We now prove (ii). One easily sees that

14a<

2 cr@+1. (3.11)
p1—1

In fact, noticing that

pia>apr—a+p1—1=(p1—1HA+a),
l - l + 1 - 1 + 1
a ra r@+1) " pja r(l+4+a)
by the condition r > (2a + 1)/(1 + a), we get (3.11). Now we take p =r(1 +a) —¢. In
view of (3.11), we directly verify that

max(r,a+ 1) <p<r@+1), (3.12)

pi1a

ra+1)—e¢e> ,
p1—1

(3.13)
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provided that € > 0 is a suitable small constant. Hence (3.13) implies

1 :
2 +—<1. (3.149)
P D
In this way we can choose a generalized admissble triplet (p, q, r) satisfying (3.6) as

1 n [1 1
g 2m\r p)’
Using Holder’s inequality, we easily get

1A% Gf (x, Ol a1 qo,7y;.1)

t _Y _n g+L_L S 1
<C fo 0 — 5735 G m)nf(x:s)ng-|||f|a‘+7||,,lds

q1

na 4 1
< CTl“ﬁ‘mllfIIE([oyT);LE%) M1+l oy o, 7y; LP1y 5
by Young’s inequality or Hardy-Littlewood-Sobolev’s inequality, and (3.14).
To prove (iii), let p = max(r, 1 + a) + €. It is easy to see that for suitably small ¢ > 0,
we choose a generalized admissible triplet (p, g, r) by 1/q = (n/2m)(1/r — 1/p), which

satisfies (3.6) and

1

p P2
so we have

1A% Gf(x, £) 292 o, 7y L.P2)

t X _nfa, 1 1 a 1
/0 It —s|" % % (4+% pz)“f(x,s)ug”maﬂ ”mds

<C

a2
na 4 1
< CT'= 537 £ 15 or qo.79:202)
f La_?l-T([O,T);La_-%f)” f "L‘IZ([O,T),LP2)
by Young’s inequality or Hardy-Littlewood-Sobolev’s inequality, and (3.15). The proof of
Proposition 3.2 is complete.

PROPOSITION 3.3. (i) LetO < y < 2m — 1, (p1,q1,r) and (p2, q2,r) be any two
generalized admissible triplets satisfying p1 > pa

2m 2
y 42 >

q1 > (3.16)

2m —y 2m —y

Then we have

IIAI%Gf(x, Ol pawrr ey < ClfllLar gy, 1 =10,00) or I =[0,T), (3.17)
where ‘

1 _n 1 1
q(p1,p2) 2m (E - E)
1 % 1

_1______

(3.18)

; 2m gy
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In particular, when y = 0, we have

NGf G, Ol paerro ;o) < CUFN o o pryr I = [0,00) or I =[0,T), (3.19)

)

where q; = q2/(q2 — 1).
(ii) Let0 <y <2m-—1, (p, q1,r1) and (p, g2, r2) be any two generalized admissible
triplets satisfying ri > ry and (3.16). Then we have ‘

1A% GF (x, DOl gaerrdr;zey < CUFlLarizry, 1 =10,00) or I =[0,T), (3.20)
where
1 _n 1 1
q(ri,r)  2m (E - Z) ’
1 y 1

3.21)

=1-2X - —

;; 2m  qp
In particular, when y = 0, we have

IGF . D)l pacrrar g Loy < CISI

where g1 = q1/(q1 — 1).
(iii) Let0 <y <2m-—1, (p1,q1,r) and (r, q2, p2) be any two generalized admissible
triplets satisfying

Ly [ =10,00) or I=[0,T), (3.22)

2m 2m (1 1 2m
‘11>2 ) 612=—(———)>——, (3.23)
m-—y n \p2 r Y
npz
—_——, n>2mp;,
p1<{n—2mp2 (3.24)
00, n<2mp>.

Then we have
||A’bLnt(x, t)"Lq(pl,pz)(];LP]) <Clfligera;ry, 1I=10, o0) or I =[0,T), (3.25)

where

1 _n (l 1)
q(p1,p2) 2m\p2 p1/)’

3.26
1 1 ( y 1 ) (3.26)
qy 2m q2
PROOF. (i) One easily finds that
_& , n > 2mp2 ,
P2=p1 < n —2mpz
00, n <2mp,,
so (p1, 9(p1, P2), p2) is a generalized admissible triplet. In view of (3.16) we have
1

0<X +2 <1, j=1,2. (3.27)

2m qj



TIME-SPACE ESTIMATES 257

Similar to the proof of proposition 3.2, we have

t n
fo It — s|‘2%_m(%—ﬁ) | f(x,s)|l-ds

IIAﬁGf(x, t)”Lq(pl-pz)(I;Lpl) <C

q(p1,p2)
<\ flirera;ry

by Hardy-Littlewood-Sobolev’s inequality and (3.4), where we have used (3.27) and

1 1 y 1
Y (3.28)
q(p1,p2) qy 2m q
(i) Itis easy to see that

nry
, n>2mry,

ra<r < n—2mry
00, n <2mry,

by r1 < pi1 and the fact that (p, g3, r2) is a generalized admissible triplet, so g(r1,r2) > 1.
Noting that (3.16) implies (3.27), so we have

||A2';T,Gf(x, Dllgaerr g0y = €

d —t_n(l_1
[ It — 5|77 AG ”)Ilf(x, $)lrpds
0 q(r1,r2)
< Wfllzar (z;L72)
by Hardy-Littlewood-Sobolev’s inequality and (3.4), where we have used
1 1 1
-+ X - . (3.29)
q(ri,r2) gy 2m  q

(iii) We directly verify

d —r_n(l_L
”AZ’L”Gf(x,t)”Lq(Pl,pz)(I;Lp) = CH/O‘ |t —s| & m(r pl)”f(x,s)”rds

q9(p1.p2)
<Wfllrera;Lry>

by Hardy-Littlewood-Sobolev’s inequality and (3.4), where we have used (3.23)—(3.25) and
2 1 1 1
T R -l LI IS (330)
q(p1,p2) 2m n \r pi

Hence we complete the proof of Proposition 3.3.

PROPOSITION 3.4. Letry =nai/2m > 1, (p1, q1, r1) be any generalized admissible
triplet satisfying

max(r;,a; +1) < p1 <ri(l1 +ajp). (3.31)

For any p withry < p < ri(a1 + 1), let (p, q,r1) be a generalized admissible triplet which

is determined by
L (l - l) . (3.32)
q 2m \r1 p
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Then we have

1A% Gf (x, Ol a5 S"WW

1
+ ”lflalil—ﬁ ;+l

Moreover, for any ro = naz/2m > 1, (p2,q2,r2) be any generalized admissible triplet
satisfying '

a1 (1-%) (A
[“lflal 1- 4= )41

LI1(I;LP1)

Li(I;LP)

(3.33)

L91(I;LP1 )]

max(ry,az + 1) < p2 <rn(1+ay), (3.349)
n_n (3.35)
D2 D2

Then, we have

— 2 (1-%) !
1A% GF (x, Dll ar, 59 _<_”,f|a131—£,’;5+1 [“malil_gﬁ)ﬂ

L92(I;LP2) Li(I;LP)
1
+ le jor (-2 ] : (3.36)
L91(I;LP1)
ap(1-4=)+1
where g = | f11\=2a)+1
PROOF. Take
1 1 a(l-£
_=7+———————1( Zml  when p > py, (3.37)
o p D1
1 y 1 vy 1 Y\ a1 .
—=—:+(1——)——+(1———)——, when p < p;. (3.38)
o 2mp 2m/ p; 2m/ p1
It is easy to see that
1 l4a—ai .
— < <1, when p=>pp,
p ) p=p
1 y 1 Y\ 14+a; y 1 y -
- = —= 1—— < —= 1— — 1, h ,
o 2mﬁ+( 2m) P1 _2mp"+( 2m)< wien p=pi
so we have o > 1. We now construct the following generalized admissible triplets
(p,q(p,0),0),
(0,9(0,r1),r1), (0 >r1) or (r,q(r,0),0),(r1=0) (3.39)
(P.q,r1).-
We claim g > 1 and
- 2m
q(p,o) > 5 , (3.40)
m—y
2
qr1.0) > ———, rnz=o, (3.41)
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2
q(o,r1) > o , r<ao. (3.42)
Y

Obviously, g > 1 by the definition of the generalized admissible triplet, so we need only to
verify (3.40)—(3.42). One easily sees that

1 _n 1 l _ hay (1_‘1_)
q(ﬁ,a)_Zm o p _2mp1 2m

2 — .
=r_1(1—_.y_)< m y’ when p > p1,

P1 2m 2m
1 n [14+a 1 y Y ~
= — - (1 == 1— —, when .
q(p,o) 2m ( p1 ﬁ) ( 2m) = 2m P=n

So we obtain (3.40). When r; > o, noticing that g(r1, 0) = q(p, o) since p > r1, we get
(3.41). At last, to prove (3.42), we obtain after a straightforward calculation that for r; < o

1 _n 1 1\ _n 1 1 rn (1 y )
q(o,ry) “2m\ry o) 2m\n p P1 2m
1 1 rL y %

= —— < —, when p=py,
q a +1 p12m<2m P=nm

14 4 1 4 1 r
= -2 (1-2 1- =) (=-=2
2m 2m( c})+( 2m)(q1 pl)

Y Y 1 Y 1 ri
<Y _ Y (i) +(1-XL _
= 2m 2m( q)f( 2m)<a1+1 (a1+1)r1)

by (3.31), (3.37), (3.38) and § > 1 + a;, thus we obtain (3.42). To obtain (3.33) and (3.36),
we divide the proof into two cases.
Case I. When p > p), in view of Proposition 3.3, we have

IA% Gf (x, Oraa.ey < ChflliLer g;rey» (3.43)
where
y 1
—_—=1-=— - (when r; > o)
qy 2m  q(r1,0)
R AL L_g)_r_@i
2m  2m\ry P Pl

Y ai

1
=(1-XL)-2 42, 3.44
( 2m Q(P1,0)+é S
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1 . (Y _ 1
-q— =1 (Zm o "1)) (when o > ry)
_a 1
= 3.44/
("-3%) 709 * 3 (3.44)

where we have used r; = naj;/2m. Noting that (3.37), (3.44) and

ay 1—2% 1
11 = e (=28) | e (-22) | (3.45)

ar(1-%)

L9 (I;LP1)

we obtain
- 1
|f|alil—ﬁ ;+l

by Hoélder’s inequality. It is a special case of (3.33). Moreover, under the conditon (3.35), one
easily sees

1
1A Gf (e, DliLagri) < "Iﬂm

L3(I;LP)

1 1 a(1-4
Loz.elod) (3.46)
o P P2
1
= (1 - “y‘) Tt = (3.47)
q9(p2,0) ¢
Noting that (3.43) (f is replaced by g), we have
7—T ay 1 {;) 7__1T
1A% Gg(x, iy < ||f|“l 1-45 )+ “Iﬂal 1- % )+1
Lo LP2) Li(I;LP)

by Hoélder’s inequality, which is a special case of (3.36).
Case II. When p < pj, in view of Proposition 3.3, we also have (3.43) and

1 y 1
— =1- - (when r; > o
qy 2m  q(r1,0) ' )
Y n (y 1 Y\ 1 yya 1
2m  2m (Zmp +( 2m) p1 +( 2m) P1 rl)
Y
= 1—— 1-— 3.48
( )q(pl,a) 2mq+( ) (3.48)
1 y 1 )
—=1-{—- (when o > r
qy (2m q(o,r1) 1)

— (1 _ l’_ q(pa1,a) 7 L ( ) (3.48")
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where we have used r; = na; /2m. Noticing that

aj l—ﬁ 1-
£ = 171701 (-%) |f|‘+“lf"2’%5 f1ea (%)

and applying Holder’s inequality to the right side of (3.43), we easily obtain (3.33) by (3.38)
and (3.48). Moreover, under the conditon (3.35), one easily infers

1 v 1

y 1 Y\ ay .
el 1--—)— 1——)—=, 3.49
o 2m p 2m) )21 +( 2m/ p2 49
1 Y a y 1 Y\ 1
- = 1—— —_— —:+ 1——)—. (3.50)
9y ( ) q(p2,0) 2mg ( 2m> q1
Noticing that

ay l—ﬁ 1-
gl = 171+ (- 21'%5|f|‘+‘"(' %) | pite (-2

and (3.43), we easily obrtain (3.36) by Holder’s inequality.
PROPOSITION 3.5.

Letry = nay/2m > 1, (p, q,r1) be any generalized admissible

triplet satisfying p > ri1(1 + ay). Then there exists at least a generalized admissible triplet
(p1, q1, 1) satisfying (3.31) such that

1 al(l—{;) 1
1A% GF(x, Dll a1, Snmalil_ﬁjﬂ ('llfla_lil_ﬁjﬂ
LA LA L9 (L)
1
+ ”m“l (-2)+ ) . (3.51)
Lé(l;;i)

Moreover, for any ro = nay/2m > 1, let (p2, q2, r2) be any generalized admissible triplet
satisfying (3.34), (3.35), then we have

azl ﬁ
14% Gotx, Dllagr,eoy < H|f|“1(“z%5+l (“ma,(l_ %)+
L92(I;LP2) L1 (1;;?1)
+ ”If | (‘“ﬁ)“ ) , (3.52)
Li(I;LP)

a2(1— )+1
where g = | f|“ (1-%)+ .

PROOF.

Let p1 = ri(a; + 1) — ¢. It is obvious that p; satisfies (3.31) when we choose
¢ suitable small. Let o be defined by (3.38), then one easily sees that o > 1 by

=_y_%+(1_._)1:1a1 <—2%%+(1 2}:n)<1.
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We now verify the following triplets

(p,q(p,0),0),
(0,9(0,r1), 1), (0 >r1) or (r1,q(@r1,0),0), (1 =0)
(P.q,r1) .
satisfying g > 1 and (3.40)—(3.42). In fact, noticing that
2m 1 14+ a4 1

_2—> - 7 nszmrls

n ri 1 4! p

- nri

p<—m——, n>2mry,
n —2mry

where ¢ > 0 is suitably small. Hence we have

1 1
= e 5) (7 30) < e

when ¢ > O is a suitably small constant. Therefore we obtain (3.40) and (3.41) by r; < p.
When r; < o, we have

Y Y 1 Y 1 n
=———{1-= l——){——-—

2m 2m( é)+( 2m)(q1 pl) |
s 2 (1Y) - L) (A - 2
—2m 2m q 2Zm/ \a1+1 (@ +1r—¢

Y

2m’

so we have (3.42). Hence we obtain

1A% GF (x, Dl i3y < CN Loy airoy » (3.43)

by Proposition 3.3, where 1/g, is defined by (3.48). Applying Holder’s inequality to the right
side of (3.43’), we easily obtain (3.51) by (3.38) and (3.48). In the same way as the proof of
Proposition 3.4, we easily get (3.49). Thus we complete the proof of Proposition 3.5.

PROPOSITION 3.6. Letr; = nay/2m > 1, (p, q,r1) be any generalized admissi-
ble triplet satisfying ry < p < max(ri, (1 + a1)). Then there exists at least a generalized
admissible triplet (p1, q1, r1) satisfying (3.31) such that

ar(1-%)
“(

L9 (I;LP1)

1
"A’-'y? Gf(x, Dl au;Lp) S“|f|al il—ﬁjﬂ

+ "lflalil—ﬁ ;+l

1
||f|alil—ﬁ$+l

L91(I;LP1)

), I =[0,00) or [0,T). (3.53)
La(I;LP)
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Moreover, for any ry = nay/2m > 1, let (p2, q2,r2) be any generalized admissible triplet

satisfying (3.34), (3.35), then we have
1 az(l—ﬁ
1A% GgCx, Dl La . L5y s|||f|“1(“2%)“ (H ik 5)
L92(1;LP2)

+ ”lflalil—zlﬁiﬂ

L1 (I;LP1)

), I=[0,00) or [0,T), (3.54)
Li(I;LP)

where
a(1- £ ) +1

g=|flal-F)+ ' (3.55)

PROOF. Let p; = max(ry, a;+1)+¢. Itis obvious that p satisfies (3.31) if we choose
¢ > 0 suitably small. Now we defined o by (3.50) and obtain that

o 2mp pi/(1+a1)
so o0 > 1. We now consider the generalized admissible triplets in (3.39). It is evident that
q > 1. We can easily verify that

1 n 1+a1_l (I—L)
q(ﬁaa) 2m p~ 2m

1 1 1— L
S AT TR I (3.56)

n 1+ aq 1 y -
- -_ ] — — N =
< 2m (max(r1,1+a1)+8 r1>( 2m) p=n
4
- n 14+a; 1 y -
P 1——), <p<l ,
2m (max(r1,1+a1)+s 1+a1)( 2m) n=p=l+a
a ~
2mr1( 2m) p=r,
< { nay y
—_— (1=, <p<l1 ,
L2m(1+a1)( m n=p=l+t+a
Y
<(1-357) ED
so we obtain (3.40) and (3.41) by r; < p. When o > ry, it is easy to see that
1 y 1 Y\ 1 Y
q(o,r1) 2mgq +( 2m/ q1  p1 ( 2m)

4 Y 1 4 1 r
=Y Y (1- -2 (-2
2m Zm( )+( 2m)(q1 pl)

i
Y _ Y 1 Y 1 r
L L (1== -
“om  2m ( c]) +( 2m) (a1 +1 max(rl,a1+1)+£)
Y
= 3.58
<om (3.58)

for suitably small ¢ > 0. Hence we obtain (3.42). In the same way as leading to Proposition
3.4 and Proposition 3.5, we obtain Proposition 3.6 by Proposition 3.3.
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REMARK 3.1. (i) One may find that the time space estimate of e~4’¢p, see (3.5)
in Lemma 3.1, is not vaild for a generalized admissible triplet (p, g, r), see [6, 11] for the
details. But the time-space estimates of the nonhomogeneous part of solutions for linear para-
bolic equations are vaild for a generalized admissible triplet (p, q, r), see Proposition 3.2-3.6.
This fact implies that there are better regularities for the nonhomogeneous part than those for
free part, which are similar to the time-space estimates for solutions to dispersive wave equa-
tions [1,3]. For parabolic equations, regularity means that L? regularity, for dispersive wave
equation it means the C*-regularity.

(ii) In the proof of Proposition 3.2-3.6, if generalized admissible triplets are replaced
by admissible triplets, the results still remain valid. In fact, the main difference is that p
belongs to different intervals, see Definition 2.1 and 2.2. The process of the contruction of
the generalized admissible triplets satisfying (3.6) from usual generalized admissible triplet is
still valid for the case of admissible triplet.

(iii) From (i) it can be easily seen that we can not study the well-posedness in the
C-spaces and LP-spaces for generalized admissible triplet (p, ¢, r). But for small global
solutions in super-critial growth case, we can use generalized admissible triplets if we use

lols + lloll; <8, V7F<r<f#<p, (3.59)
to replace {|v||, < é. In fact, noting that
_n(l_1 _ _n(1_1
le¥ol, < crFF Do, 1o, < e E D) o5, (3.60)
so we have
. . (i1_1 (1 _1
le=Aoll, < CminG~ % (=3), = E= =310l + loll51. (3.61)

In view of Young’s inequality we have

leA* @llLacr:Lry < Clliolliz + leliz]- (3.62)

It should be pointed out that the method of proof of small solution in this paper differs from
that in other papers in twofolds: First, we do not use Picard’s iteration method. Second, we
establish Propositions 3.2-3.6 for the generalized admissible triplets, see Section 5.

4. The proof of Theorem 2.1 and Theorem 2.2.

Before giving the proof of Theorem 2.1 and Theorem 2.2, we first introduce some nota-
tions and derive some necessary nonlinear estimates. For0 < T < oo, let I = [0, T). For
any admissible triplet (p, q, r), we define

1
Xp() = {u € Co(L; LP) | lullx, ) = Sup lullp, < 00] , 4.1)
te

Xpq(I)=LI(I;LP). 4.2)
In particular we denote X, = X ([0, 00)), Xp g4 = Xp 4([0, 00)) when T = oo.
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We now prove some necessary nonlinear estimates of Ju defined by (2.3) in X, (/) and
Xp.q(D).

LEMMA 4.1. Letro = max|g<am-1{nfg/(2m — |B))}, r = ro whenrg > 1 orr >
1 when ro < 1, (p, q,r) be any admissible triplet satisfying (2.9), F(u, du, --- , 32m—1y)
satisfy (1.5) and (1.6). For any u,v € X,(I) or Xp 4(I), we have Ju, Jv € X,(I) or
Xp q(I), where J defined by (2.3). Moreover

_J8l _L_m 6p+1
1Tulx,y <€ Y [T Ewix,m + TR WG] @)

Bl<2m—1

_ - _nO 6 8
ITu — Tolx,ay <C [Tl B i " Il ry + IIvII,fp(I))]

|Bl<2m—1
X lu—vlx,wm, 4.4)
’ _) _18l_ 6p+1
”Ju”Xp,q(I) <C Z [Tl 2%.ll|u||xp’q(1) + 7! %,l E,A”u“ B (1)] , “.5)
1Bl<2m—1

- —1el_"8 ) 6
"ju —_— Jvllxp’q(]) _SC Z [Tl gll + T'1 5!. r ("u";p,q(l) + ”v”Xﬂp’q(l))]

IBl<2m—1
x llu—vlix,,u)- (4.6)

PROOF. Since (4.5) and (4.6) are immediate consequences of Proposition 3.2, it is suf-
ficient to prove (4.3), (4.4). In view of LP — L estimates (3.4), (3.3) and definition of X ,(T),
we have

ITullx,n < Y. CallABGFs@lx,a
|Bl<2m—1

<C Z [ sup mqf [r = 175 ull pds

né,
) 1
+ sup maf It — 5|~ 5~ ) Ot ]

0<t<T

|
<c Y [mqf it — sI= 5 s~ 7 dslullx,a)

|181<2m—1

1 _eL_r% %! 6+1
+|t|qf 0 — s s

<c ¥ [m‘ 5‘9[ 11— s s~ dsllullx, )

181=2m—1

2 ! _p_ 0p+1
+ e~ ""fo 11— sl 5T 5™ dS"“"xf(l)]» @7
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Noting that 1/g < 1 and

05 + 1
o< Bl <1, o<1 4, (4.8)
2m 2mp q

(4.7) implies (4.3). In the same way as in the derivation of (4.3), we easily obtain the estimate
4.4).

LEMMA 4.2. Let ro = max|gj<2m—1{nég/(2m — IBD}, r = rowhenro > lorr > 1
when ro < 1, (p1, q1,r) be any admissible triplet, F(u, du, - - - , 32m=1y) satisfy (1.5) and
(1.6), we have the following results:

(1) If p1 = rmax|gj<am—1(1 + 6p), then there exists an admissible triplet (p,q,r)
satisfying (2.9) such that

- _a_ )
1Tullx,yy <C Y [Tl J"‘f"}llullxp,(l)+T1 i f"%llull,fp(,)llul|x,,la)], 4.9)

181<2m—1

- _p_n 6
174 = Tvlx,y <€ Y [T8 + 15w (il o + 013,

1Bl<2m—1
X lu—vllx, a)> (4.10)

1Tulxpqr <C 3 [T B lulx, 00

1BI<2m—1

_g_" )
+ TR m ulE oyl o] @.11)

_ _ _n9 ) (7]
NTu— jvllel-Ql(I) =C Z [Tl b +7 be Eg("“"’&-ﬂ” + "vuxﬂp.q(l))]

1BI<2m—1
X |lu — vllxmlq1 o - 4.12)

(i) If p1 < max|gj<am—1(1 +6p) and r > max gj<2m—1(1 + 20p)/(1 4 6p), then there
exists an admissible triplet (p, q, r) satisfying (2.9) such that (4.9) (4.12) holds.

PROOF. We shall prove (4.9) (4.12) using arguments similar to those used for Propo-
sition 3.2, the key step is how to choose a admissible triplet appropriately. One easiy sees
that (4.11) and (4.12) are immediate consequences of Proposition 3.2 and Young’s inequality.
Similar to the proof of Proposition 3.2, we take

1 6 , h >r|1 0p) . 4.13
p= max(r +|ﬂIT§1r31( . ﬂ)+8 when p; _r( +|ﬂlrél2an)1(-l ﬂ) (4.13)
Noting that g > q, it is easy to see that (p, q, r) is an admissible triplet satisfying (2.9) and
0< Iﬂl <1,
2m 2mp

4.14)

) 1

0<—£+—<1.
q q1
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In view of L? — L” estimates (3.4), (3.3) and definition of X ,(T'), we have

1Tulx, < 3. CalARGIWlx, )

|Bl<2m—1

1 t
<C z sup [Ithlf lt—sl—%llu”mds
0

|Bl<2m—10=t<T

1 fr _Bl_n (%1 _1 9
+ sup mﬂf it — s~ s m)uunp"nuumds]
0

O0<t<T

1 ! — _L
<Cc ) [ltl‘“fo |t —s|” s dsllullx,, o)

|Bl<2m—1

1 t _ _n9 _?.E._-l_ 0
+|t|41L |t — 5| & Er%s q 91ds||u||;p(1)||ulixp1(1):|

1
_ 18! .
<c Y [ml %fo 11— si%n s~ a0 dslullx, )

|Bl<2m—1

1B "8 1 _jgL_"n8 _%_1 6
+ - fm-‘%fo 11— s s ‘11dSIIuII;fp(I)llullx,,l(l)]

_ _ _n9 P
<c Y [T Bl m+ T B g lullx,, ]

I1Bl<2m—1

As for the case (ii), we only take

=rl1 05 ) —¢, h <p;<|1 6g |, 4.15
P r( +|ﬁ|1;12arfz(—l p) £ when r < p; __( +“3|Iél2a”>l(_1 p) ( )

It can be easily seen that (p, g, r) is an admissible triplet satisfying (2.9). In the same way
as in the above proof and in the proof of Proposition 3.2 we obtain (4.9). In the same way as
leading to (4.9), we easily obtain (4.10) in the cases (i), (ii).

THE PROOF OF THEOREM 2.1. We divide the proof into four steps.
Step 1. Let (p, q, r) be any admissible triplet satisfying (2.9). It is easy to see that the
right hand of the following integral equation

t
u=e ") +f e CDAEW du, .-, 0°" lu)ds
0

=e Mo+ Ju 27Tu, (4.16)
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defines a mapping 7 from X, (/) to itself by Lemma 4.1. Now we define the metric space as
follows

_ 1
lulx,a) <2Clelr, Y €T <2,

X;(I) =lu € Xp(I)
I1Bl<2m—1

nb,
3 2crEmclel)? < %] 4.17)
181<2m—1
du,v) = llu —vllx,u- (4.18)
Then the mapping 7 defined by (4.16) is a contraction mapping from X, (I) to itself. In fact,
in view of Lemma 4.1 we have

ITulx,a <Cllel- + 3. CT'=5cClel)

181<2m—1 ‘
né
+ Y crkomeciel)®aciel,
1B1<2m~—1 ‘
<2Clel, (4.19)
ITu—-Tolx,n < Y. CT™H@Cloiu - viix,u
1Bi<2m—1
né
+ Y 2crEmaciel)® ik — viix,a
|Bl<2m—1
< 8(D)lu — vlix, ) » (4.20)
where u, v € X;(I) and
né
sy= Y crq 4+ 3 2cr-E-mreciel?®) < 1. 4.21)
1Bi1<2m—1 1Bl<2m—1

So there exists a unique solution u(¢) of (4.16) on [0, T') such that u(t) € X, (/) by the Banach
contraction mapping principle. Moreover, we also find that T depends only on ||¢||,, which
implies that we have the same existence inverval [0, T) for any admissible triplet (p;, g;, r).
On the other hand, this fact implies that the iterative sequence

uo=e*9, ujri=e" o+ Ju;, (4.22)

such that E?io lluj+1—ujllx,c1y is a convergence series and ||u || x, (1) < C(T). By Picard’s
methods we can extend the interval of existence up to the maximal interval I = [0, T*) such
that
T*=o00, or T*<o0o and lim Nlu@lx, ) = oo. 4.23)
t—>T*

Step 2. For any admissible triplet (p, g, r), whether p > r(1 + max,gj<2m—16p) or
p < (1 + maxg|<2m—1 6p), there is at least an admissible triplet (p, g, r) satisfying (2.9) by
Lemma 4.2. According to the above proof and the statement in Step 1, one can easily see
that u € X}(I ) with I = [0, T'), and the iterative sequence {u;} given by (4.22) such that



TIME-SPACE ESTIMATES 269

Zjio llwj+1 — ujllx;q) is convergent and |lujllx;) < C(T). In view of Lemma 4.2 we
have

lujas —ujlx,y <¢ 3 [r8 4 r-B-Fqu?,
Bl<2m—1

0
o+l =158, ) [t 5 = w1t (4.24)

so we conclude that Z‘}';O lluj+1—ujllx, ) is convergent and ||u; || x, 1) < C(T). Therefore,
there exists a solution u(t) € L*°((0, T); LP) satisfying the integral equation (4.16). Let u(z),
v(t) € L*°((0, T); LP) satisfy (4.16), then we have

@ = vOlxy <€ 3 [T8 7B i g + 1012 0 [l - vl
[Bl<2m—1
Notice that u(t), v(¢) € X%(I) and 8(T) < 1, one easily sees that u(z) = v(t).
Step 3. Let (p, g, r) be any admissible triplet satisfying (2.9). If p > r, then we have

L 4
tieel, > 0, t—0, (4.25)

(see Giga’s [3]). In this case we can use the space
- 1 1
Xp(I) = {u:uer(I;LP), lullg ;) =supt?|lullp, <oo, and limtq||u||r=0.}
p tel t—0

to replace X, (I) in the Step 1, in this way we conclude that the solution to (4.16) satisfies
(2.10). We now consider the regularity in the form integrability by Ginibre-Velo’s mothed. In
other words, we want to prove the following claim:

Let u be solution to (4.16) with u(r) € C([(t9, T)]; LP!) for any admissible tnplet
(p1, q1, r) satisfying (2.9). Then, for any p; < p < oo, we have

u(t) € ([to, T); L?). (4.26)

For this purpose, we prove inductively that for any ¢ > 0, u(t) € C([to + je, T), LPi) for
a increasing sequence of exponent {p;}, 1 < j < k reaching infinity in a finite number of
steps. At the j-th step, we estlmate u from the integral equation with initial data u(ty + je)
as follows

_a(i__1_
llu; L®([to + (j + De, T); LPith)|| = Ce m(”f ”f“)llu(to +28)llp,
’ “B-5G -7
+C sup f [ Z It —s| P Pirt M u(s) | p,
I

to+(j+De<t<T Joo+(j+1)e |ﬂ|<2m_1

b Y -GS "f+1)||u(s>n”"ﬂ]ds, 4.27)

Bl<2m-1
where ((1 + maxgj<om-16p)/pj — 1/pj+1) < 2m)/n(1 — |B|/2m). Now we choose

1 1 2
——=max(——(1+ max oﬂ)——m(l—@)w,o), (4.28)
Pj+1 Pj |Bl<2m—1 n 2m
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1 1 2 1
—————z—m(l—@)——( max 0,3)—8
pj Pj+1 n 2m pj \IBls2m—1

Z?L”_(l_ﬂ)_L( max eﬂ)_a>o 4.29)

so that

n 2m p1 \IBls2m—1

by p1 = r > (nmax|gj<2m-1 6p) /(2m — | B|), where § > 0 is a sufficiently small constant.
Hence, L™ can be reached in a finite number of steps. As an immediate result, we have

u(t) € C((0, T*); L" N L*™). (4.30)
Step 4. If we take T > O sufficiently small, there always exists an &o > 0 such that

né, 1
g0 < max CT'- 5% QClpll)%) <

—-. 4.31
1Bl<2m—1 4 ( )
Thus we conclude that
: 05/ (1- &1 - 52)
T > C . 4.
> |p|glzlfnl—1 ( el 4.32)
Let [0, T*) be the maximal interval such that u solves (4.16), then we have
lim |u(@®)|p =00, r<p=<oo, p>ro. 4.33)
t—>T*
Otherwise, one easily sees that
lu(T*)|lp < oo. 4.34)

We take > O sufficiently small such that (p + 7, q(p + n, p), p) is an admissible triplet.
Similar to the proof in the first steps, using regularity we solve the integral equation

u=e T T* + /:* e AR, du, -+, 0% u)ds 4.35)
in the following metric space
X5 (T*, T)) =[u |u € Xpin(T*; T), lu@x, 4=, < 2CH(TH)lp
Y ca-m-h <],
1B1=2m—1
Y 20 - B o)) < %} (4.36)

I1B1<2m—1

where

Xpn([T*, T)) = {u |u € Co(LT*, T); LP*™), ull X pin(T*.T)

1
= sup (¢ =TT lullpay < oo} , (4.37)
T*<t<T
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This contradicts with the fact that [0, 7*) is the maximal interval. Meanwhile, for s < T* we
have ||u(s)|l, < oo, so if we take s sufficiently close to T* and u(¢) solves

t
u=e D4 (s) + f e~ COAF(u, du, - - -, 8% lu)dr (4.38)
)
in space X ([s, T)) N X5([s, T)) by Step 3, where p > p > r. We easily see, analogously to
(4.32), that
C

lu@s)llp = min ) (4.39)

1

with the constant C being independent of T* and s. This completes the proof of Theorem 2.1.

PROOF OF THEOREM 2.2. In the exactly same way as in the proof of Theorem 2.1 we
can obtain Theorem 2.2 except (2.12) by space-time estimates and Lemma 4.1 and Lemma
4.2. It remains to prove (2.12). In fact, noticing that

(i__'l_)z(Zm_lﬂl_ n )zi(u_l)>l’ (4.40)
bg 2p 2m0g 2mp 2m nbg )2 q

and (4.39), we obtain (2.12).

5. The proof of Theorem 2.3.

We denote L9(I; LP) by X, 4(I), in particular, denote X, , by X, ,(0,00). As an
immediate result of Proposition 3.4 3.6, we have

LEMMA 5.1. Leth = mingj<2m-1 bg, b = max|g|<am—1bg, 2m/n < h < b < o0,
F=nb/2m, 7 = nb/2m.
51— 1! (1_ 8!
5@l < C (|u|”(1“2%) + |u|"(1'2%)) Bl <2m—1. 5.1)
Let (p,q,1), (P,q.7) be any generalized admissible triplets satisfying (2.15) and (2.16),
then

A% G(f5(u) — F5D)lIxs 500

b(1-4£ 5(1- £ b(1-} 5(1- 2
<C (llunx(ﬁ‘q&%) + ”ullx(ﬁ,q(;%) + ||U”X(ﬁ’q(;%'l) + IleIX(ﬁ,qJ%)) [lu — vllxﬁ’a(]) s
I =[0,00) or I=[0T). 5.2)

14% G (fpw) - T8 x; 5
=¢ ("“”b(l—%) PO E) BB |y B0

X5,5) X55(D X550 X545 ) lle = vlix; 50
I =[0,00) or I=[0,T). (5.3)
Moreover, for any generalized admissible triplet (p, q, ¥) or (P, q, T) satisfying
F<p<iF(l+b), or Fr<p<r(1+b), (5.4
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then
1A% G(fs0) — f5DIx, ;a0
(uuux( B ) i) uvui(;_;%'))
X [|lu — v||xﬁ'é +llu —vlix;;1, I = [0,00) or I=][0,T). 5.5)
or

"AEG(fﬂ(“) — feW)x; ;)
C("“”b(l_%)ﬂl 508 4 il 5%)+nun"(1%))

X550 X54(D Xp.q(I) X545
x [llu —vlx; ;) + lu —vlx;;], 1=[0,00) or I=[0,T). (5.6)
LEMMA 5.2. Letbh = min|gj<2m—1 bg, b = maxg|<2m—1 bg, 2m/n < b < b <
00, fg satisfies (5.1). Let (p, 4,F) or (p, 4, ) be any generalized admissible triplet with
p=Fb+1), or p=Fb+1). (5.7
Then there exist two generalized admissible triplets (p, q,r) and (p, q,r) with (2.15) and
(2.16) such that
1A% G(fsw) — Fo@Nlix; ;a0
b(1- b(1-
= C("ull (1-4) + llul (1-4) + vl o(1-4) + |lv]| o1 %))

Xp.q(D) X551 X5,4(D X545
X ("u - v"x,;,q(l) + ”u - v"X’;'é(l)) s I = [O, OO) or [0’ T) . (5.8)

1A% G(f50) = fs@Dlix;s 50
(uuu( 5) | u( £) ¢l £%l)+nvu"("%))

(D g Xp.q(D) Xp.5(D)
x (lle = vlix; 500 + lu —vlx; ;). 1 =1[0,00) or [0,T). (5.8")

LEMMA 5.3. Leth = ming|<2m-1 bg, b= max|g|<2m—1bg, 2m/n < b<b < oo,
fp satisfy (5.1). Let (p, 4, F) or (p, 4, T) be any generalized admissible triplet with

pP<@®+1, or p<(G+1), (5.9)
Then there exist two admissible triplet (p, q, r) or (p, q,r) with (2.15) and (2.16) such that

1A% G(fp @) — fONIIx; 50
<C(||uu”(“£%)+n BO-8) Lo B0-B) 20 %))

X545 Ullx; a0 Vilx; z(D) X550
x (lu = vllx; 50 + lu —vlx;5), 1=1[0,00) or I =1[0,T). (5.10)
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1A G(f5 ) — foD)lIx; 50
(uuux( &) le( -(,))+|| ||( (3%)+|| nxl-f))

X (lu —vlix; 50 + lle —vlix;.a0), 1=1[0,00) or I =1[0,T). (5.10')

REMARK 5.1. Since Remark 3.1 (iii), Lemma 5.1 are still vaild if generalized admis-
sible triplets are replaced by admissible triplets.

THE PROOF OF THEOREM 2.3. We divide the proof into four steps.

Step 1. Letr = n5/2m, r= n5/2m, (p,q,r) and (p, q, r) be any admissible triplet
with (2.15) and (2.16). We construct the work-spaces as follows

={u:u@t) € Xp5N Xz g, lullx,,; <3 lulx,, <8 (5.11)

pqg —

) |
p(u, v) £ lu = vlix; , + llu = vllx,g - (5.12)

Obviously, (Y, p) is a complete metric space. We claim that the mapping 7 defined by the
right hand of integral equation (4.16)

T:u@t) > e Yo+ TJu, (5.13)
is a contraction mapping from (Y, p) to itself for sufficiently small § > 0. In fact, we have
ITully < le~40lix,, + le % olx,; + 3. CLIAMGSslix,; + 1A% Gfslix,,]
|Bl<2m+1
1—-&)+1 b(1—£ )+1
< Cllelis + Cllells + ) [nuu (=f)+1 nuux(m £) ]
|BI<2m+1
<Cligls + Cligls +¢ Y [20-8)+1 4 p0-5+1)], (5.14)
1Bl<2m+1
1Tu-Toly<c Y [#0-8) 108wy, 19
Bl<2m+1
that is
p(Tu,Tv)y<C Y. [ab(l"z%) sb(1- )] , v). (5.16)
|Bl<2m+1
We take § > O satisfy ‘
B(1-4) | 55(1- 5%)] _1_ 17
c ¥ [a +8 = (5.17)
[Bl<2m+1
and let s
lellz + llellr <81 = 3 (5.18)

then 7 is a contraction mapping from (Y, p) to itself by (5.15)—(5.18). In particular, § only
depends on |l¢||;7 and ||¢]l7, so 8 is dependent of 7 and 7, but independent of p and p. Thus,
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if (p,q,7) and (p, g, r) are replaced by any admissible triplets (pj, g;,7) and (pj, q;, )
satisfying (2.15) and (2.16), we have the same result as (i) for the same §.
Step 2. Let (p, g, r) be any admissible triplet such that

L2l frern, (5.19)
p P p
then Remark 2.3 implies
A . A A ~  2mr
A+b)<p<f(l+b), b=% (5.20)
Hence we have
lullx,, < Ilullx- -|Iullx- <00
by the interpolation theorem.
Step 3. Let(p,q,7) and (p, q, ) be any admissible triplet. If
F<p<F(l+b), or F<p<F(l+b), (5.21)
then we have
lulx,, < Cllelz + Cliellz
+ Y [uuu £) 4 s ( %)] (llulx,, +8)
IBl=2m+1 '
< Clliell7 + Clleli7
+C Y [a”(“ 35(‘—%)] (lullx,, +8), (5.22)
|Bl<2m+1

by Proposition 3.4. Hence we obtain u € X, 4 by (5.17). When p =7 or p > F(1 + b),
we easily find by Proposition 3.5 and 3.6 that the admissible triplet (p1, 41, 7) and (py, g1, F)
satisy (2.15), (2.16) and

F<pr<F(l+b), or F<p<F(1+b).
Moreover, we have

lulx, < Clols + 3 [llullx(. B) 1 g0 %‘)]

Pl 9]
|BI<2m-+1
x (el + leellxs, 5)

<lgls+C 3 [8”(1%) + 55(1-%)] (lullx,, +8).

|Bl<2m+1
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or

b(1
lulx,, <Clols+ Y crnuux(
1Bl<2m+1 -

x (el x,g + lull x5, 4,)

<Cleli +C [ s5(1-£) + 8’3(1“5’7')] (lullx,, +98),

(Bl<2m+1 -

1
p1.d1 X541

2) )]

by Step 1, which implies u € X, 4.
Step 4. Let (p, g, r) be any generalized admissible triplet with 7 < 7 < 7. Similar to
the proof of Step 3 and taking into account Remark 3.1, we have

lle=%plix;, < Cligllz + Cligllr .

Thus we have

5(1— 18! 5(1— 8l
lulix;; < Cllellz + Cligllz +C ) [6”(1 B) 4 520 2%)] (lwlix;z +9),
IBl<2m+1
this implies 4 € X5 ;. Therefore we complete the proof of Theorem 2.3.
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