
TOKYO J. MATH.
VOL. 24, No. 2, 2001

Criterion of Proper Actions for 2-step Nilpotent Lie Groups

Salma NASRIN

University ofTokyo

(Communicated by S. Kaneyuki and R. Miyaoka)

1. Introduction.

The purpose of this note is to give a partial solution to the conjecture of Lipsman on
proper actions of simply connected nilpotent Lie groups:

CONJECTURE 1.1 ([13, Conjecture 4.1 $(b)]$ ). Let $G$ be a simply connected nilpotent
Lie group, and $H,$ $L$ be connected subgroups ofG. Then $L$ acts properly on $G/H$ ifand only
if the triplet $(G, H, L)$ has the ($CD$ property.

Here, we say the triplet $(G, H, L)$ has the (CI) property if $L\cap gHg^{-1}=\{e\}$ for any
$g\in G$ (see Definition 2.8).

If each of the triple $(G, H, L)$ is reductive then Kobayashi [4] has proved that $L$ acts
properly on $G/H$ if and only if the triplet $(G, H, L)$ has the (CI) property. Conjecture 1.1
may be regarded as an analogy to nilpotent cases.

Conjecture 1.1 is known to be true in the case of lower dimensional nilpotent Lie groups
([5], [13]). There are counter examples of Conjecture 1.1 if we drop some of assumptions:

1. If $H$ is not connected, then the implication $(CI)\Rightarrow proper$
’ may fail even though

$G$ is abelian. For example, $(G, H, L)=(R^{2}, Z^{2}, R\left(\begin{array}{l}1\\\sqrt{2}\end{array}\right))$ is the case.
2. If $G$ is not nilpotent then Conjecture 1.1 may fail. For instance, if $G=KAN$ is an

Iwasawa decomposition of a real reductive group $G$ and if we put $L$ $:=A$ and $H$ $:=N$ , then
$(L, H)$ has the property (CI) in $G$ , while the action of $L$ on $G/H$ is not proper (as we can see
in [5], Example 5 when $G=SL(2, R))$ .

The main result of this paper is briefly:

THEOREM 1.2 (see Theorem 2.11). Conjecture 1.1 is true if $G$ is a 2-step nilpotent
Lie group.

The point of Conjecture 1.1 is to give a criterion of proper actions by means of a simple
condition called “CI property”. The notion of proper actions is important in the study of
discontinuous groups, motivated as follows.
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Suppose $M=G/H$ is a homogeneous space, where $G$ is a connected Lie group and $f$

is a closed subgroup. According to [4] (see also [5], [8]), fundamental problems on discon
tinuous groups for homogeneous spaces $M$ are:

1) to find a discrete subgroup $\Gamma$ of $G$ acting properly discontinuously on $M$ ;

2) to find a uniform latice $\Gamma$ in the sense that $\Gamma\backslash M$ is a compact manifold.
Classical results concem mainly with the case where $H$ is compact. Then, the abov

problems have been studied as a theory of discrete subgroups. However, if $H$ is non-compac
discrete subgroups of $G$ do not always act on $M$ properly discontinuously. Kobayashi ha
initiated a general theory of discontinuous groups acting on $G/H$ where $G$ is a real reductiv
Lie group. We refer the readers to see the surveys [5], [8], [12] for geometric ideas of variou
methods in the last decade and also refer to [9], [14], [15], [19] for some recent developments

2. Preliminary Results.

In this section we shall give a quick review on basic properties of the action of a Li
group $L$ on $G/H$ or, of the action of a discrete subgroup $\Gamma$ on $G/H$ . Basic references $fe$

this section are [5], [7] and [8].

In general the action of a discrete group is difficult to study. Instead, the flow of son]

connected Lie subgroup sometimes helps us to understand the action of a discrete grou]

Here is a continuous analogue of proper discontinuity:

DEFINITION 2.1 (Palais [16]). The action of a closed (connected) subgroup $L\subset 1$

on $M$ is said to be proper if for each compact subset $S\subset M$ the set

$L_{S}=\{\gamma\in L : \gamma S\cap S\neq\emptyset\}$

is compact.

We note that the action of $L$ on $M$ is properly discontinuous if and only if the action $\langle$

$L$ on $M$ is proper and $L$ is discrete, because a discrete and compact set is finite.
The following elementary observation is a bridge between the action of a discrete $gro\iota$

and that of a connected group.

OBSERVATION 2.2 ([4, Lemma 2.3]). Suppose a Lie group $L$ acts on a locally cor
pact space X. Let $\Gamma$ be a cocompact discrete subgroup ofL. Then

1. The L-action on $X$ is proper ifand only $\iota f$ the $\Gamma$ -action is properly discontinuous
2. $L\backslash X$ is compact $\iota f$ and only $\iota f\Gamma\backslash X$ is compact.

In view of Observation 2.2, Kobayashi [4] posed the following problems in a $continuo\rceil$

setting, which is an analogy of fundamental problems on discotinuous groups.

PROBLEM 2.3. Let $G$ be a Lie group and $H$ and $L$ be closed subgroups.
1. Find a criterion on the triplet $(L, G, H)$ such that the action of $L$ on $G/H$ is propt

2. Find a criterion on the triplet $(L, G, H)$ such that the double coset $L\backslash G/H$ is cor
pact in the quotient topology.
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There is a complete answer to Problem 2.3 in terms of Lie algebras in [8] in the following
cases:

(i) Problem 2.3(1) when $G$ is reductive (see [7], [8, Section 2])
(ii) Problem 2.3(2) when the groups $G,$ $H,$ $L$ are real reductive (see [4], [8, Section 5])
Inspired by [5] Lipsman has discussed Problem 2.3 in the case where $G$ is a simply con-

nected nilpotent Lie group. This case is considered as an opposite extremal to the semisimple
case. We will give an answer to Problem 2.3(1) in the case where $G$ is a simply connected
2-step nilpotent Lie group. Now we introduce some notations that are useful for a further
study of Problem 2.3(1).

$Relations\sim and$ rh. Suppose that $H$ and $L$ are subsets of a locally compact topological
group $G$ .

DEFINITION 2.4 ([7, Definition 2.1.1]). We denote by $H\sim L$ in $G$ if there exists a
compact set $S$ of $G$ such that $L\subset SHS^{-1}$ and $H\subset SLS^{-1}$ . Here, $SHS^{-1}$ $:=\{ahb^{-1}\in$

$G$ : $a,$ $b\in S,$ $h\in H$ }. Then the relation $H\sim L$ in $G$ defines an equivalence relation.
We say the pair $(H, L)$ is proper in $G$ , denoted by $H$ rh $L$ in $G$ if the set $SHS^{-1}\cap L$ is

relatively compact for any compact set $S$ in $G$ .

Definition 2.4 is motivated by the following:

OBSERVATION 2.5 ([7, Observation 2.1.3]). Let $H$ and $L$ be closed subgroups of $G$ ,
and $\Gamma$ a discrete subgroup of $G$ .

1. The action of $L$ is proper on the homogeneous mamfold $G/H$ if and only if $HrhL$
in $G$ .

2. The action of $\Gamma$ on the homogeneous mamfold $G/H$ is properly discontinuous $lf$

and only if $H$ rh $\Gamma$ in $G$ .

Here are some elementary properties of the $relations\sim,$ $\Uparrow$ :

LEMMA 2.6 ([7, Lemma 2.2]). Suppose $G$ is a locally compact topological group and
that $H,$ $H^{\prime}$ and $L$ are subsets of $G$ .

(i) $H$ th $L\iota f$and only $\iota fL$ th $H$ .
(ii) If $H\sim H^{\prime}$ and $\iota fH$ rh $L$ in $G$ , then $H^{\prime}$ th $L$ in $G$ .

The following is a reformulation of Problem 2.3(1) as:

PROBLEM 2.7 (a reformulation of Problem $2.3(1)$). Let $G$ be a Lie group, and $H$ and
$L$ subsets of $G$ . Find the criterion on the pair $(L, H)$ (or on the pair of their equivalence
classes with respect $to\sim$ ) such that $LrhH$ in $G$ .

Property (CI). If a discrete group $\Gamma$ acts on $X$ properly discontinuously, then every
isotropy subgroup is finite and every $\Gamma$ orbit is closed ([8, Lemma 2.3]). The latter condition
corresponds to the fact that each point is closed in the quotient topology of $\Gamma\backslash X$ . In general,
the converse implication does not hold. Kobayashi has singled out an intermediate property in
a continuous setting. In fact, let $H,$ $L$ be closed subgroups of a locally compact topological



538 SALMA NASRIN

group $G$ . If $L$ acts properly on $G/H$ , then any L-orbit $LgH\simeq L/L\cap gHg^{-1}\subset G/H$

is a closed submanifold, and each isotropy subgroup $L\cap gHg^{-1}$ is compact. In general.

this condition is not sufficient for the propemess of the L-action (see [8, Example 2.9] for a
counter example). However, we pick up the second condition because of its simplicity:

DEFINITION 2.8 ([5], [8], [13]). Suppose that $H$ and $L$ are subsets of a locally $com$.

pact topological group $G$ . We say that the pair $(L, H)$ has the property (CI) in $G$ if $L\cap gHg^{-1}$

is compact for any $g\in G$ .
Here (CI) stands for that action of $L$ has a compact isotropy subgroup $L\cap gHg^{-1}$ a

each point $gH\in G/H$ , or stands for that $L$ and $gHg^{-1}$ has a compact intersection $(g\in G)$ .
If $H$ rh $L$ in $G$ , then the pair $(L, H)$ has the property (CI) in $G$ . For actual calculation

it is much easier to check the property (CI) than propemess. So, we are interested in how an$($

to which extent the property (CI) implies the proper action.

PROBLEM 2.9 ([5, Problem 2], see [8, Open problem 6(ii)]). For which Lie groups
does the following equivalence hold ?

(2.1) $HrhLinG\Leftrightarrow thepair(L, H)$ has the property (CI) $inG$ .

The equivalence (2.1) holds if $G,$ $H,$ $L$ are real reductive algebraic groups (see [8, The

orem 3.18]). Lipsman’s conjecture (Conjecture 1.1) can be restated as:

CONJECTURE 2.10 (Lipsman). The equivalence (2.1) holds for a simply $connecte/$

nilpotent Lie group.

Theorem 2.11 is a partial solution to this conjecture in the case where $G$ is a $2- ste|$

simply connected nilpotent Lie group.
There are some further cases, specially in the context of a continuous analog of th

Auslander conjecture (see [8], the remark following Example 1.9), where the equivalence 2.
is known to hold. See Example 5 and Proposition A.2.1 in [5]; Theorem 3.1 and Theorer

5.4 in [13].
Now, we are ready to state a more precise verson of Theorem 1.2.

THEOREM 2.11. Let $G$ be a simply connected 2-step nilpotent Lie group, $H$ and $Lb$

connected subgroups of G. Then the following six conditions are equivalent:
1) $L$ acts on $G/H$ properly.
1)’ $H$ acts on $G/L$ properly.
1)” $HrhL$ in $G$ .
2) The triplet $(L, G, H)$ has the property (CI). That is, $L\cap gHg^{-\iota}$ is compactfor an

$g\in G$ .
$2)^{\prime}$ $L\cap gHg^{-1}=\{e\}$ for any $g\in G$ .
2)” [ $\cap Ad(g)\mathfrak{h}=\{0\}$ for any $g\in G.$ Here, [and $\mathfrak{h}$ are Lie algebras $ofL$ and $f_{a}$

respectively.

In the above theorem, we refer to [8], Theorem 3.18 for the equivalence (1) $\Leftrightarrow(1)^{\prime}\prec$

(1) and to [10], Lemma 3.2 for (2) $\Leftrightarrow(2)^{\prime}\Leftrightarrow(2)^{\prime\prime}$ . The implication (1) $\Rightarrow(2)$ is trivial. $Tl$
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rest of this paper is devoted to the proof of the implication (2) $\Rightarrow(1)$ in the case where $G$ is
a simply connected 2-step nilpotent Lie group.

3. Proof of the main result Theorem 1.2.

First of all we recall the foIlowing definition:

DEFINITION 3.1. A Lie algebra $g$ is said to be a 2-step nilpotent Lie algebra if
[X, $[Y,$ $Z]$ ] $=0$ for all $X,$ $Y,$ $Z\in g$ . We say that a connected Lie group $G$ is 2-step nilpotent
Lie group if its Lie algebra is a 2-step nilpotent Lie algebra.

EXAMPLE 3.2. Any abelian Lie algebra is a 2-step nilpotent Lie algebra.

EXAMPLE 3.3. Consider the simplest non-abelian three dimensional Heisenberg Lie
algebra

$g=\{\left(\begin{array}{lll}0 & a & b\\0 & 0 & c\\0 & 0 & 0\end{array}\right)$ : $a,$ $b,$ $c\in R\}$ .

Then $g$ is a 2-step nilpotent Lie algebra.

EXAMPLE 3.4 (Lie algebra $R\ltimes R^{n}$ ). We fix a linear map

$\psi$ : $R\rightarrow End(R^{n})=M_{n}(R)$

with $\psi(1)^{2}=0$ . Let $g=R\oplus R^{n}$ . We define a Lie bracket on 9 by

(3.1) $[(a,\vec{x}), (b,\vec{y})]=(0, \psi(a)\vec{y}-\psi(b)\vec{x})$

for $(a, X),$ $(b, y)\in 9$ . Then $g$ is a 2-step nilpotent Lie algebra.

PROOF. To prove that $g$ is a Lie algebra with the bracket operation (3.1) it is sufficient
to check the Jacobi identity.

For any $(a,\vec{x}),$ $(b,\vec{y}),$ $(c,z)\rightarrow\in g$ , we have

$[[(a,\vec{x}), (b,\vec{y})], (c, z\rightarrow)]=[(0, \psi(a)\vec{y}-\psi(b)\vec{x}), (c, z)]\rightarrow$

(3.2)
$=(0, -\psi(c)(\psi(a)\vec{y}-\psi(b)\vec{x}))$

$[[(b,\vec{y}), (c, z\rightarrow)], (a,\vec{x})]=[(0, \psi(b)_{Z}^{\rightarrow}-\psi(c)\vec{y}), (a,\vec{x})]$

(3.3)
$=(0, -\psi(a)(\psi(b)_{Z}^{\rightarrow}-\psi(c)\vec{y}))$

$[[(c, z\rightarrow), (a,\vec{x})], (b,\vec{y})]=[(0, \psi(c)\vec{x}-\psi(a)_{Z}^{\rightarrow}), (b,\vec{y})]$

(3.4)
$=(0, -\psi(b)(\psi(c)\vec{x}-\psi(a)_{Z}^{\rightarrow}))$ .

Now if we add (3.2), (3.3) and (3.4) together then it equals to zero. Hence the bracket
relation (3.1) in $g$ satisfies the Jacobi identity. Therefore $g$ is a Lie algebra.
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Also, $g$ is 2-step nilpotent because for any $(a,\vec{x}),$ $(b,\vec{y}),$ $(c, z)\rightarrow$ in $g$ , we see that

$[[(a,\vec{x}), (b,\vec{y})], (c, z)]\rightarrow=[(0, \psi(a)\vec{y}-\psi(b)\vec{x}), (c, z)]\rightarrow$

$=(0, -\psi(c)(\psi(a)\vec{y}-\psi(b)\vec{x}))$

$=(0,0)$ .
Here, the last equality follows from $\psi(c)\psi(a)=ca\psi(1)^{2}=0because\psi(1)^{2}=0$ . $\square $

Next, we collect some elementary lemmas those are needed later.

LEMMA 3.5. If $G$ is a 2-step nilpotent Lie group with Lie algebra $g$ then
1. The map $exp:g\rightarrow G$ is diffeomorphic.
2. exp $A$ exp $X=\exp(A+X+\frac{1}{2}[A, X])$ for any $A,$ $X\in g$ .
3. exp Aexp Xexp $B=\exp(X+\frac{1}{2}[A-B, X]+A+B+\frac{1}{2}[A, B])$ for $A,$ $X,$ $B\in g$ .
4. Ifwe put $B=-A$ then we have

exp $A$ exp $X\exp(-A)=\exp(X+[A, X])=\exp((Id+adA)X)$ .
In particular, we have

$(Id+ad(A))X=Ad(\exp A)X$ .
PROOF. The lemma is a direct consequence of the Campbell-Hausdorff formula and

the fact that $g$ is a 2-step nilpotent Lie algebra. $\square $

Here is a key formulation on the part of general topology.

LEMMA 3.6. Suppose $R^{n}$ is an n-dimensional vector space and $V,$ $W$ are its sub-
spaces. Let $K\subset GL(n, R)$ be a compact subset and $T\subset R^{n}$ be a compact subset. If the
set

(3.5) $V\cap(K\cdot W+T)$

is not compact, then there exists $k\in K$ such that

$V\cap k\cdot W\neq\{0\}$ .

PROOF. We note that $V\cap(K\cdot W+T)$ is a closed subset of $R^{n}$ because $K$ is compact.
Now if the set (3.5) is not compact, then there are sequences $v_{j}\in V,$ $w_{j}\in W,$ $s_{j}\in T,$ $ k_{j}\in$

$K(\subset GL(n, R))(j\in N)$ , such that

(3.6) $v_{j}=k_{j}w_{j}+s_{j}$

where $v_{j}$ and $w_{j}$ are unbounded. Then we can find its subsequences (with the same notation)

such that

$\lim_{j\rightarrow\infty}|v_{j}|=\lim_{j\rightarrow\infty}|w_{j}|=\infty$
, $\lim_{j\rightarrow\infty}\frac{v_{j}}{|v_{j}|}=v$ , $\lim_{j\rightarrow\infty}\frac{w_{j}}{|w_{j}|}=w$

$\lim_{j\rightarrow\infty}k_{j}=k$
,

$\lim_{j\rightarrow\infty}s_{j}=s$
,
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for some $v,$
$w\in S^{n-1}$ , and $k\in K,$ $s\in T$ .

Then from equation (3.6), we have

(3.7) $\frac{v_{j}}{|v_{j}|}=\frac{|w_{j}|}{|v_{j}|}\frac{k_{j}w_{j}}{|w_{j}|}+\frac{s_{j}}{|v_{j}|}$ .

Taking the limit as $j$ tends to $\infty$ in both sides of (3.7), we obtain,

(3.8) $v=(\lim_{j\rightarrow\infty}\frac{|w_{j}|}{|v_{j}|})k\cdot w+O$ .

Now, since $k\in GL(n, R)$ and $w\neq 0$ , we have $|k\cdot w|\neq 0$ . Then (3.8) implies that the
limit $\lim_{j\rightarrow\infty}\frac{|w_{j}|}{|v|}$ exists, for which we write $\lambda\in R_{+}^{\times}$ .

Hence, we $b_{ave}$ proved that there exists $k\in K$ such that

$v=k(\lambda w)$ ,

that is ,
$V\cap k\cdot W\neq\{0\}$ .

$\square $

REMARK 3.7. The point of the assumption ofLemma 3.6 is that not only $K\subset M(n, R)$

but also $K\subset GL(n, R)$ . Here is an illustrative example for the reason why we need $ K\subset$

$GL(n, R)$ . Suppose $K$ $:=\{(x^{2}, x) : 0\leq x\leq 1\}$ . We note that $K$ is compact. Then

$\overline{RK}\supsetneqq RK$

because

$RK=\bigcup_{k\in K}\{rk:r\in R\}$

$=$ { $(x,$ $y)\in R^{2}$ : $y\geq x\geq 0$ or $y\leq x\leq 0$ } $\backslash \{(0, y) : y\neq 0\}$ .

This is because $K\subset R^{2}$ but $K\not\subset R^{2}\backslash \{(0,0)\}$ .

Now we are ready to prove the implication (2) $\Rightarrow(1)$ in Theorem 2.11.

PROOF OF (2) $\Rightarrow(1)$ . Suppose we are in the setting of Theorem 2.11. We shall
prove that if (1) fails then so does (2). Assume that there is a compact subset $S$ of $G$ such
that $L\cap SHS^{-1}$ is not relatively compact. Then we can find unbounded sequences

$Y_{j}\in 1$ , $X_{j}\in \mathfrak{h}$ $(j=1,2, \cdots)$

and bounded sequences $A_{j},$ $B_{j}\in g$ such that

exp $Y_{j}=\exp A_{j}$ exp $X_{j}$ exp $B_{j}$ .

Using Lemma 3.5 and the injectivity of the exponential map, we have
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(3.9) $Y_{j}=(Id+ad(\frac{A_{j}-B_{j}}{2}))\cdot X_{j}+D_{j}=X_{j}+[\frac{1}{2}(A_{j}-B_{j}),x_{j}]+D_{j}$

where $D_{j}=A_{j}+B_{j}+(1/2)[A_{j}, B_{j}]$ .
Now, we define the following subset of $End_{R}(g)$

$K$ $:=\{Id+ad(\frac{A-B}{2})$ : $A,$ $B\in\log S\}$ .

Note that each element of $K$ is invertible, because $ad((A-B)/2)$ is a nilpotent linear
transformation. Hence $K\subset GL(g)$ . Since $S$ is compact $K$ is a compact subset of GL(g).

Since $A_{j},$ $B_{j}$ are bounded sequences, we can take a compact subset $T$ of $g$ such that

$\{D_{j} : j=1,2, \cdots\}\subset T$ .

Then the following subset
$\downarrow\cap(K\cdot \mathfrak{h}+T)$

is non-compact by (3.9).

Applying Lemma 3.6, we find $k\in K$ such that

$1\cap k\cdot \mathfrak{h}\neq\{0\}$ .

If we write $k=Id+ad(C)$ for $C\in g$ , then $k=Ad(\exp C)$ by Lemma 3.5(4). There-
fore, we have proved $[\cap Ad(\exp C)\mathfrak{h}\neq\{0\}$ .

Thus, if the set $L\cap SHS^{-1}$ is not compact then we have [ $\cap Ad(g)\mathfrak{h}\neq\{0\}$ , with
$g=\exp C$ . Thus, we have proved (2)” $\Rightarrow(1)$ . This completes the proof of Theorem 1.2.
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