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Introduction.

Let p be a prime number and denote by Q s Z, and C,, the p-adic rational number field,
the ring of integers of Q, and the completion of the algebraic closure of Q,, respectively. Let
O denote the ring of integers of C,.

Let F(X, Y) be a Lubin-Tate formal group over Z, and 4#(X) a meromorphic series in
O((X))*. In [12], Shiratani and Imada constructed a p-adic zeta function ¢, (s, F, k), which
explains many well-known p-adic interpolating functions in a unified manner. For example,
if F(X, Y) is the formal multiplicative group G,,(X, Y) = (X+1)(Y +1)—1and h(X) = X,
then ¢, (s, G, X) is the ordinary p-adic zeta function. If F is the formal group associated
with an elliptic curve over Z having complex multiplication with ordinary reduction, then
¢p(s, F, X) coincides with the p-adic zeta function for the elliptic curve ([10]).

Let x be a primitive Dirichlet character with conductor a power of p. In [7], under the
slightly generalized situation that F (X, Y) is a relative Lubin-Tate formal group defined over
the ring of integers of an unramified extension of Q,, we constructed a meromorphic function
Ly(s, x, F, h), which is an extension of ¢, (s, F, h). Especially, L,(s, x, Gm, X) coincides
with the Kubota-Leopoldt p-adic L-function L (s, x).

As is well known, Iwasawa gave the fascinating result that L, (s, x) is closely related
to the Galois structure of the local units modulo the closure of the cyclotomic units ([4], [9,
Chapter 7], [15, Section 13.8]). This result was extended to abelian fields by Gillard, Tsuji
and so on ([3], [13]). It is also well known that Coates and Wiles discovered the analogue of
this result for the elliptic units ([1]).

The main purpose of this paper is to generalize the above result of Iwasawa for the
function L, (s, x, F, h) under the situation that F is defined over Z, and that h(X) satisfies
certain appropriate conditions (Theorems 4.2 and 4.3). For this purpose, we use the method
of the logarithmic derivatives developed by Coates and Wiles [1]. Let us give a description of
each section.
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In Section 1, we describe the general situation and some important notations in this paper.

In Section 2, we recall the construction of L, (s, x, F, h) in [7].

In Section 3, by the method due to Coates and Wiles [1], we summarize some results on
the Galois structure of the local units of the field obtained by adjoining the division points of
F to Q,. Because some complicated situations arise in certain special cases, the proofs will
be postponed until the final section. '

In Section 4, as a generalization of the cyclotomic or the elliptic units, we define special
units by means of the division points of F and study how the functions L,(s, x, F, h) are
related to those units. In consequence, we obtain the main results of this paper, which can be
regarded as a generalization of the Iwasawa theory of local units.

In Section 5, We give two examples in the case F = G,; one is related to the generalized
Euler numbers ([6],[14]) and the other to the higher-order Dedekind sums ([8]).

Section 6 is the final section, in which we give complete proofs of propositions in
Section 3.

The authors would like to express their sincere gratitude to the Referee who gave them
valuable comments and carefully pointed out the mistakes in this paper.

1. Notations.

In the rest of this paper, we assume that p is an odd prime number. As usual, we denote
by Q, Z and N, the rational number field, the ring of integers of Q and the set of positive
integers, respectively, and put N = NU{0}. Let | | be the p-adic valuation of C, normalized by
|p| = 1/p, and for each x € CJ, let ord, (x) denote the value in Q satisfying |x| = | p|ordr (),
We put ord,(0) = oo and regard 0o > a forany a € Q.

Let 7 be a prime element of Z, and f(T) a Frobenius power series determined by 7,
namely f(T) is a power series in Z,[[T']] satisfying

f(T)=nT (moddegree2) and f(T)=TP? (modrnZ,).

There exsists a unique formal group Fr(X,Y) € Zp[[X, Y]], called the Lubin-Tate formal
group associated with f, such that f(T) is the endomorphism [z ], (T) of Fr ([11]). In what
follows, we fix = and f(T'), and instead of F¢(X, Y), we also write F(X,Y), For X +f Y.
Let Ar(T) and er(T) denote respectively the logarithmic series and the exponential series
of F(X,Y) such that A’F(O) = 1and Ar o er)(T) = (er o Ar)(T) = T. We denote the
completion of the maximal unramified extension of Q, by Q_’;,', the ring of integers of 6";7
by Z and the Frobenius automorphism of Q? over Q, by ¢. Then, p/mr = 2V /2 holds for
some 2 € T*. Further, there exists a unique isomorphism ¢r : G, — F over Z such that
P 0) = £2~1. Throughout this paper, we take 2 = 1 in the case 7 = p, so that we have
¢G,,(T) = T. Note that we have

[alF @5 (T)) =pr(lalg, (T)) = ¢r((1+T)* —1) forany a€Z,, (L)
pr(e” — 1) =er(27'2), (1.2)
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(AFo¢r)T) =2 ogl +T). (1.3)
For each n € N, we put
T ={t € Cp | [x15 (1) =0}, Kn = Qp(Tn), Gn = Gal(Kn/Qp) .
We put further

o0
Ko =|JKn, Goo=Gal(Keo/Qp), I =Gal(Koo/Ko).
n=0

Then, there exist canonical isomorphisms
k:Goo—> 2% and «|p:I —> 1+ pZyp
such that

o0
oa = [k(0)]r(x) foranyo € G and @ € U Tn. (1.4)
n=0
~Let A denote the torsion subgroup of Geo, which is a cyclic group of order p — 1 and
isomorphic to Gg. If A is a Z,[A]-module, we put

A® = {q € A|da =«'(8)a forany § € A}

for each integer i modulo p — 1. Here and in the rest of this paper, we always use the letter i
to mean an integer modulo p — 1. We have a canonical decomposition

p—2
A=PA®.
i=0
For any a € A, putting
a® = ;—1 > k7i(8)8a, | (1.5)
sea
wehave a® € A® anda = Y7 2a®.

Put A = Z,[[T]]. Fix a topological generator y of I" and put ¢, = k(y). Then, any
compact Z,-module B on which I' acts continuously admits a structure of A-module such
that (T + 1)b = yb forany b € B.

For each n € N, let U, denote the group of units of K, which are congruent to 1 modulo
the maximal ideal and put

Uso = projlimU,,
where the projective limit is taken relative to the norm maps on the K,. The ring V4 plG ool
operates naturally on U, and so, Us is a compact I"-module and also a A-module.
Finally, we denote by w the Teichmiiller character for p and regard it also as a homo-

morphism from O to the group of roots of unity such that, for each x € O, we decompose
x = w(x){x) with |(x) — 1] < 1 and @ (x)* = 1 for some integer k prime to p.
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2. The function L, (s, x, F, H).

Let x be a primitive Dirichlet character with conductor a power of p and let H(T) €
O{T))*. In this section, we summarize the construction of the function L p(s, x, F, H) in

[7].
In general, each g(T') in O[[T]] defines a O-valued measure g4 on Z, such that

g(T)=/ A+ T) dug(x).
ZP

Let £ : Z; — Z, be the homomorphism defined by (x) = ¢, **) for each x € Zy. For each
9(T) € O[[T1], we put

9T = fz L+ Do (x) dug(x) € O[IT]).

14

Then, we have

A GO VE fz (e () dugx) . @.1)
P
More precisely, for any primitive Dirichlet character ¢ of the second kind for p, we have
9P @(ey)e,® = 1) = fz (0 e’ (x) dpg(x). 2.2)
14
Let D denote the operator (1 + T)(d/dT). We put
gu(T) = D{log(H o ¢r)(T)} (2.3)
( _(d+T)(Ho ¢r) (T) _ (H' o ¢pr)(T) )
(H o ¢r)(T) QMg o¢r)(T)(H 0 ¢r)(T) )’
which is in (1/T)OI[T]]. For each ¢ € Z}, we put
95 (T) = cgu((L + T)° — 1) — gu(T) (€ OITI)). (2.4
If c is selected such that w’ (c)(1 4+ T)¢© — 1 £ 0, we set
G5 (1) = (D, ' 1+ T) ~ /(@' ()1 + 1) 1), 2.5)

which is independent of ¢ ([7, Proposition 3.1]). Now, we decompose x in the form
X = oy’

where ¢, is a primitive Dirichlet character of the second kind for p and i, is an integer
modulo p — 1. Then, the function L, (s, x, F, H) is defined by

Lp(s, X, Fy H) = =Gy (0x (cy)es™ = 1). (2.6)
In the case where H(T) is in O[[T]]*, we also have gy (T) € O[[T]] and '

g7 (M) = (gr) V(' 1 +T) - 1). @.7)
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Hence, the function L, (s, x, F, H) is also expressed as

Ly(s,x,F,H)=— ./;X (x)_sxw"l(x) digy (x) .
p

Let us describe the interpolation property of L, (s, x, F, H). Let p™x be the conduc-

tor of x. We choose a primitive p™x-th root of unity ¢, arbitrarily, put (x~L, ty) =

5:); x'l(a)g)‘(‘ and define the numbers B, , (F, H) by

d

P x N a)Z-—{H($r(ty — 1) +F er(Z)} n
= dz . = Buy(F. ).
T ) = H@rGE — D +7 er(2) 2 !

This definition is independent of the choice of ¢,. For each n € Z, we put x, = xo™". Let
NF denote Coleman’s norm operator, so that we have

NFH(T) € O(TY»)*, NrpH(nlr(T)) = l—[ H(T +r 7).
€Ty
Then, for each n € N, we have

B",Xn(F’ H) _ Xn(p)ﬂn . Bn’xn(F,NFH)
n )4 n

L,(1-n,x,F, H)=—.Q'"[ ] 2.8)
Let us give examples used later. We have By, 5 (Gm, T) = Bp, x (Gm, Ng, T)
= By, (the n-th generalized Bernoulli number) and L (8, Xs Gm, T) = Lp(s, x)- On the
other hand, for a linear polynomial aT + b witha € O anda € O, putu = 1 — (b/a) and
define the generalized Euler numbers H )’(’ (u) by

P (1 —uP™ ) x@etur el & "
Z ep’”Xt _ upmx = Z H;(“)m (29)
=0 =0
([14]). Then, we have
u Bn+1,x(Gm,aT +b) —
WH;(u) = s foranyn € N, (2.10)

except for the case where n = 0 and x = 1. The function —L(s, x, Gm,aT + b) is
equal to the function /,(u, s, xw'l) in [14], namely the p-adic interpolating function for the
generalized Euler numbers.

3. The local units and Coleman power series.

Let (2,)n>0 be a basis of the Tate module 77 = proj lim 7, where the projective limit is
taken relative to the projection maps given by multiplication by powers of . Then, for each
u = (un)n>0 € Uco, there exists a unique power series R, (T) € A such that

u, = Ry(ty) forall neN 3.1
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([2], [5D). The power series R,(T') is called the Coleman power series attached to «. It also
satisfies R,(0) =1 (mod pZ,) and the functional equation

R, ([Jt]F(T)) = n R, (T +F t), namely NrR(T) = R,(T). (3.2)
teTy

The map u +— R, (T) gives a bicontinuous isomorphism from Uy, to the multiplicative group
{R(T) e A*|R(0) =1 (mod pZ,), NpR(T) = R(T)}.
Let u € U. In connection with (3.3) and (3.7), we put

9u(T) = gr,(1)(T) = Dflog(Ry 0 ¢r)(T)} (€ IIIT]D), (3.3)

GIT) = GUT) = g{V(e;' 1+ T) - 1). (3.4)

As described in the Introduction, the method of using the logarithmic derivative g, (7')
of the Coleman power series is due to [1]. It is useful in studying the structure of Ué?. In this
section, we summarize some main results on the structure of Ug)), mainly in terms of the map
u > g,S")(T). The proofs can be given in almost the same way as in the cyclotomic case or
in the elliptic case ([1], [9], [15]). However, some complicated situations arise in the case of
i =0,1 (mod p — 1), and they are mostly omitted in the above references. So, in this paper,
we give complete proofs including the case of i = 0,1 (mod p — 1) in the final section.

We introduce a A-action on Z[[T]] by defining (8f)(T) = «‘(8) f(T) for any § € A
and f(T) € Z[[T1]], and denote by Z[[T ]](;) the A[A]-module Z[[T]] equipped with such a
A-action.

For each n € N, we denote by u, the group of n-th roots of unity. Note that if ¥ = p,
we have K, = Qp(u,n+1) foralln € N and U&l,) D proj limu.+1, where the projective limit
is taken with respect to the p-th power map.

PROPOSITION 3.1. The map u — Q,Si) (T') gives a continuous A[Al-homomorphism
Jrom U to Z[[T 1)y It is the O-map on Uc(xj;) forany j #i (mod p — 1), and except for the
case wherew = pandi =1 (mod p — 1), it is an injection on Uéi,). In the case m = p, the
kernel of the map u — gy foru e Ué},) coincides with proj im #,n+1.

For each n € N, let V,, denote the image of the projection map from Uy to U,. Denote
by N, the norm map from K, to Q,. Then, by local class field theory, we have V,, = {u €
Un | Np(u) = 1}. We put w,(T) = (1 + T)?" — 1 and v, = ord,((r/p) — 1).

PROPOSITION 3.2. (1) Ifi #0 (mod p — 1), we have

v =D = Ul jw,(THYUY)  foranyn e N.

wn(T)
T

(2) Wehave VO = yQ® / UQ foranyn e N.

PROPOSITION 3.3. Weset K = {G(T)|u e UD}. Ifi £ 1 (mod p — 1), or if
vy = 0 or v; = 00, we have

K® = gf}’;?)(T)A Jor some v € Uy, independent of i .
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Further, if i # 1 (mod p — 1) or vy = 0, then G\, (T) € IITN*. If vz = oo, then

G (TM)/(T +1 —cy) € TITNX. In the remaining case of i = 1 (mod p — 1) and 0 <

Vr < 00, we have '

KO =((T+1- cy)A + p** A}P(T) (3.5)

for some P(T) € I[[T]}*. '
In what follows, we fix an element v € Uy which is independent of i and satisfies the

conditions in Proposition 3.3. If 0 < v, < oo, we also fix a power series P(T) € I[[T]]*

satisfying (3.5). Then, we can define a A-homomorphism

wh . Uud - A
by
WD) =gP @ /GO(T) if i#1 (mod p—1)orvy =00rvy =00,
and by
wOw) =¢T)/P(T) ifi=1 (mod p—1) and 0 < vy < 00.
As will be seen in the proofs of above propositions in Section 6, we have U D'~ Ain

most cases. However, by combining Propositions 3.1 and 3.3, we also see that the map W
gives a concrete description of the structure of Uc(,é,) as in the following

THEOREM 3.4. The map W® gives a A-isomorphism
wd.ud S5 A
except for the case where i = 1 (mod p — 1) and 0 < v; < o0o. If v; = 00, wd s

surjective with Ket W) = projlimu,.1. If0 < vr < 0o, W is injective with Im wh =
(T +1—c,)A+ p A

4. A-modules related to the function L, (s, x, F, H).

~ In this section, we suppose that H (T) is in Z,((T))> and satisfies

NFH(T) = coH(T) forsome co € Zp . 4.1)
For each ¢ € ZX and n € N, we put vy a(c) = (H(clF(ta))/H(zn)) and v (c) =
(v (C))n>0. By virtue of (4.1), we have vy(c) € Us. If H(T) = anno a,T" with
an, # 0, the Coleman power series attached to vy (c) is

Ryy)(T) = 0 " (c)H ([c]r(T))/H(T).
Hence, by (1.1), (2.3), (2.4) and (3.3), we deduce

Gou(e)(T) = D{log(H o ¢p)((1 + T)¢ — 1) —log(H o ¢r)(T)} = g5 (T). 4.2)

Let Cy , denote the subgroup of U, generated by {vy »(c) | c € Z;,‘ }, and C H.n the closure of

CH.n in Uy,. Then, (_,’H,,, is also the A-submodule of V,, generated by {vy »(c)|c € Z;,‘}. We
define C H.,0co = proj lim C 1.n. Note that it coincides with the A-submodule of U generated
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by {vu(c)| ¢ € Z3}. If c3 is a primitive root modulo p?, then Cy,, (resp. Ch,o0) also coin-
cides with the A-module generated by v ,(c2) (resp. vy (c2)), namely C“H,,, = Avy n(c2)
(tesp. CH.0o = Avg(c2)). In addition, we define Yy , = V,,/Cp. or Vy /éH,nupn+1 accord-
ingasw # pormw = p,and Yy oo = projlim Yy ,, where the projective limit is taken relative
to the norm maps. Then, we have

Yo ZUL/C
except for the case wherei =1 (mod p — 1) and w = p, and in this case we have
Ylgl)oo = U&l;)/(c(l) - proj limit #n+1) .

Similarly, for each u = (up)n>0 € U and n € N, let Du,,, be the A- submodule of
U, generated by u, and define D, oo = projlim D, ,, Z,, = V,/Dyn or V,,/l-)u,,,upnﬂ
accordingas w # porw = p and Z, o = projlim Z, ,.

By the definition (2.6), we have

GR@(cy)cl™ — 1) = —Lp(s, po', F, H) (4.3)
for any primitive Dirichlet character ¢ of the second kind for p. Further, since ¢7(T) is in
Z[[T]1] and H(T) is assumed to be in Z, ((T))*, we see from (2.5) that gg?H(T) isin Z[[T1]
orin (1/T)Z[[T]] accordingasi ¥ 0 (mod p —1)ori =0 (mod p — 1).

To study the A-structures of Yy o0, YH,n» Zu,00 and Z, , is the main purpose of this
paper. For this, we use the map W) defined in the previous section. In order to describe the
image of C (’) ' by W we put

P MT/G0 M) if i=0 (mod p—1)
R =16P@T/PT)  ifi=1 (mod p—1)and0 < v, < oo
G(T)/GSH(T)  otherwise.
Then, in particular we have
O) g s _
WO ) = [g ’(T) if i 20 (mod p—1)

o (4.4)
(T)/T ifi=0 (mod p—1)
for any u € U(')
PROPOSITION 4.1.  We have G (T) € Aand WO(C Y ) = G (T)A.

PROOF. Letc, € Z, be a primitive root modulo p2, so that we have C H.oo = Avg(c2)
and C ) = Avpg(c2)®. It follows that WO (C ) = AW® (v (c)®).
Now, we have

Gy oy () = 65,0 (c; " (1 + T) — 1)( by (3.4) and Proposition 3.1)
= (D), A+ T)—1) (by 4.2))
= (@' () + TY¥ — HGE(T)(by (2.5)).
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Note that we have
(@ ()1 4+ T)D —1)/T € A* or o' (c))(1+T)H? —1 € A*

according as i = 0 (mod p — 1) ori # 0 (mod p — 1). Hence, by Proposition 3. 3
and the definitions of W® and G9(T), we see that G (T) € A and that WO (Cg),) =
WD (v (c))A = gg)(T)A. This completes the proof.

We note that by the definition of GI(L'I) (T) and Proposition 3.3, we have
¢OrIIT  ifi=0 (modp—1)

0 _] o .
Gy (HINTNN = —H——7[[T]] ifi=1 (mod p—1)and7w =p 4.5)

g}? (THYZIITI] otherwise .

In the case of 0 < v; < oo, weputHy = (T +1—cy)A+ p’* A.

By Theorem 3.4 and Proposition 4.1, we obtain the following main theorem, which is
a generalization of Theorem 5.2 of Chapter 7 of [9] (or equivalently [15, Theorem 13.56.1])
and also of Theorem 1 of [1] (namely, the Iwasawa theory of local units in the cyclotomic or
elliptic extensions of Q).

THEOREM 4.2. Except for the case wherei =1 (mod p — 1) and 0 < vy < 00, we
have

Y, =A/69(MA.
If 0 < vy, < 00, we have
Yo = Ha /G (DA
On account of (4.4), we also obtain the following
COROLLARY 4.2.1. Letu € UY. Ifi #0 (mod p — 1), we have
ZDo = Yoo
Ifi =0 (mod p — 1), we have

g“’)(T)

GO(T)eTA and 20 = A/ -
Applying Proposition 3.2, we also see the structures of Y,y)n and Zu(',), as follows:

THEOREM 4.3. Letn € N.
(1) Ifi 20 (mod p— 1), and ifi #1 (mod p — 1) or vy = 0or vy, = 00, we have

Y0, = A/GTA + wa(T)A) -
2) If0 < v, < 00, we have

YD = Hy /GP(T)A + wa(T) M)
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(3) We have
v =a / (g“}j”(T)A + ————w";,T)A) .

COROLLARY 4.3.1. Letu e UL andn e N. Ifi £ 0 (mod p — 1), then
zZH =Yg,
Ifi =0 (mod p — 1), then we have

ZO=A / —;—(Gﬁ’u’(T)A + wa(T)A).

For each n € N, let @, denote the group of primitive Dirichlet characters of the sec-
ond kind for p of which ghe conductors divide p"t1. Concerning the orders of the torsion
subgroups of Y I’(,’L and Z,,(f,),, we have the following

THEOREM 4.4. (1) Ifi #0 (mod p—1),andifi #1 (mod p — 1) orv; =0,
then we have

; ’ .
ordp{ﬁ(YI-(Ilj,)tors} = Ordp{ l—[ Ly(1, 9o, F, H)] .
peD,

/
Here and throughout this theorem, we use the symbol [| to mean the product with respect to

the non-vanishing values.
(2) We have

ord, {#(¥ 5 W )eors} = ordp{ [T @) - DL, . F, H)] :
v,

(3) Ifm = p, then we have

ordp (H(Y ) )rors} = ord,,{ [T £, e, F. B) [ (p(cy) — cy)} :

pePy
@ IfO < v, < o0, put
()= [] @T+1-0@),
PED,

L,(1,90,F,H)#0

8n = ordp(dn(cy — 1)) and n, = ordp(GY (¢y — 1)) — 8,. Then,

) !
Ordp{ﬁ(YH,,,)tors} = Ofdp{ l—[ Ly(1, 9w, F, H)} + pPn,
9EPD,
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where

Ordp(gg)(cy — D) —vy if vy =84, M

Sn if 0p < vz <M
Pn = .

’7’1 lf nn S_ vn' < 3'1

Vr if vy <én, Mn .

(5) Foranyu € U&), we have

. . . /
8(Z D rors = 8K Drors  oF n(z;f;),ors=ordp[ [T r,0.e.F Ru)}
ped, —{1}

accordingasi #0 (mod p—1)ori =0 (mod p — 1).

PROOF. In general, for any g(T') € A, we have

ord, {#(A/(g(T)A + wn(T) A))tors} = Ol'dp( I_[, 9 — 1)) s

Seupn

ord, 24 /(9(T)A + (un (D) Ty AD) = ordy ([T

{eun—{1}
For each ¢ € &,, we have ¢(cy) € upn. The map ¢ — ¢(c,) gives an isomorphism
from &, to up». By (4.3), we have
ord, (G5 (¢(cy) — 1)) = ord,p(L (1, 9o’ F, H)).

Hence the statements (1), (2) and (3) follow immediately from (4.5) and Theorem 4.3.
Suppose that 0 < v,; < 0. Note that w, (T) = H<ped>,,(T + 1 — ¢(cy)) and that for any

@ € Dy, gg)((o(c,,) — 1) = O holds if and only if ¢ ¢ di,(,l)(H). Hence, d, (T) is the greatest
common divisor of QS)'(T) and w, (7). It follows from (4.5) and Theorem 4.3 that the torsion
subgroup of Y 5) is isomorphic to the group (Hyx N dn(T)A)/(GP(T) A + wa(TYHy). Put
A1 = do(T)A/GP(T)A + wa(T) A)
Az = G (D) A+ w(T)A)/(GP(T) A + wa(THHy) ,

A3 =dp(T)A/Hy Ndy(T)A.

Then, we have the following canonical diagram in which the horizontal and vertical
sequences are exact.

9(¢ — 1))-
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0
2
(Hx Ndn(T)A) / G (T)A + wa(T)Hx)
{
0> Ay > dp(T)A / (G (T A + wa(T)Hz) — Ay — 0

)
A3
{
0

It follows that ,

ordp{8(Y ) Jrors) = ) ordp(A;) . (4.6)

j=1

Since A is the torsion subgroup of A/ (ég)(T)A + wy,(T) A), in the same way that we
have shown the statement (1), we obtain

ord,(A;) = ord,,l [T ¢ ey - 1)} = ord,,[ [T Lrt.po, F, H)} :
pedV pead
As for A;, we have

Az Z wa(T) A/ {wa(TYA N GP(T)A + wn(T)Hx)}
N G ()
= wn(T)A/wn(T)( 4, (T) A +H7r) .
The map A(T) — A(c, — 1) of A onto Z, induces a Z ,-isomorphism

G (@) ) /(g“;}’(cy -1 )
A A =7 = 7 VnZ, .
/( o) At ) =2 [\ G, —y P TR
Thus, we obtain ord,(A2) = min {7, v;}. Similarly, we have

A3 = (dn(T)A + Hz)/Ha = (dn(cy — DZp + p™Zp)/p™Zp,

and obtain ord, (A3) = max {v; — 8,, 0}. Therefore, the statement (4) follows from (4.6).
The statement (5) follows immediately from Corollary 4.3.1.

5. Examples.

In this section, as stated in the Introduction, we give two examples in the case F = Gp,.
(I) LetA € up,—1 — {1}. Then, as described at the end of Section 3, we have

Lp(h, s, xo™ ) = —Lp(s, X, Gm, T+ 1= A).
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‘We also have
Ng,T+1—-2)=T+1-Xx. 5.1

A basis (7,)n>0 of the Tate module 7, is written as (Tx)n>0 = (;‘pn+1 — 1)4>0, Where for
eachn € N, {,n+1 s a primitive p"T1-th root of unity and satisfies (Epn+2)P = pnr1. We put

uA) = (Epnt1 — Mnz0 = (@1 (1 = M) prt1 = Mnz0,
which is in U by virtue of (5.1). Then,
Ruy(T) =711 = )T +1-1),

‘ lei())‘)(c)l,—s — 1) =1,(4,s, o' .
We also have G\, (T) € A, and by (4.5) and Corollary 4.2.1, we obtain
A/ (MA  ifi#1 (modp—1)
Zune =1 | Gt D
T+1-¢y
@)

. u(x)
the p-adic L-function L, (s, ') as in the following

A ifi=1 (modp-1).

By slightly modifying the power series G, ,(T) for A € u,—1 — {1}, we can relate them to

PROPOSITION 5.1. Let ¢ € N — {1} with ¢| p — 1 and suppose that »'(c) # 1 or
(¢} # 1 (mod p2) accordingasi 20 (mod p—1) ori =0 (mod p —1). Then, there exists
aset {AD(T, 1) € A|A € uo — {1}} such that

AT, A = glf"()“(T)A

foreach A € u, — {1} and

> AO - 1,2 if i #0 (mod p—1)
L s, a)i — Aeu.—{1} _ .
p(s: @) Y A9 — 1,0/, —1) if i=0 (modp-—1).
A€uc—{1}

PROOF. The statement is essentially contained in what is described at the end of Sec-
tion 2 of [14]. Indeed, we have

A= (' @O Lps, 0y = D ks, o).
reu.—{1}
So, it is sufficient to put
(1 - &' @A+ T)*N)~IGE(T) if i #0 (mod p— 1)

A — (1 + T)H-17g9 (1) if i=0 (modp—1).

AT, A = {
u(r)
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(II) Let B,(X) be the n-th Bernoulli polynomial defined by

tX 0 tn

Put B, = B,(0), which is the n-th Bernoulli number. For each root of unity p and n € N, we
define the number E, (o) by

oo t"

2 Enlo—  if p#l
P }Jn=0 :
e —p

"~ " (5.2)
;+Z_(:)E,,(1)-ﬂ if p=1.

For each x € Q, we denote by ((x)) the unique element in Q satisfying 0 < ((x)) < 1 and
x—{x) €Z. Letm, r, h, k € Nwith 1 < r < m. For simplicity, we assume that m = 1
(mod 2), m > 3 and (h, k) = 1. Then, as shown in [8], the higher-order Dedekind sum
S ) 41(h, k) is expressed as

setnn = 3 smr(5) ()

=k™m+1=1r Y Enr@GME1G7Y. (5.3)
gk=1
For each even integer « modulo p—1, Kudo constructed a p-adic analytic function Sp o (s; , h, k)
on Z, such that

Spa(m; rh, k) = K" SO (h, k) — P K™ S | (ph. k) (5.4)

holds for any m € N withm + 1 = @ (mod p — 1) and m > r ([8]). In what follows, we
also assume that (k, p) = 1. Let us show that under this assumption, S, o(s; , h, k) is also
expressed as

Spalsirh k) =—@6+1=rr Y Lptr—s5,0"",Gm, T+1—¢ME_1¢™H. (5.5
sk=1
It is sufficient to show that forany m € Nwithm > r+1, m > 3andm+1 =« (mod p—1),
(5.5) holds for s = m. In order to see this, we recall equation (2.8), which shows

—Lyr—m, &, Gm, T +1—2¢")
_ Bmrt10Gm, T+1-8" . Bur+1,1Gm, N, (T +1—¢")
- m—r+1 P m—r+1
for any ¢ € wui. Considering the case x = 1 for (2.9) and (2.10), and taking (5.2) into
consideration, we see that
Bn—r+1,1Gm, T +1-¢" _ ¢*
m-—r+1 1-¢

—H""(¢") = Em— (¢%)
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forany ¢ € uy — {1}. If £ = 1, we also have By, +1,1(Gm, T)/(m —r + 1) = Ep,_ (1) =
Bm—r4+1/(m —r + 1). Further, it is easy to see that Ng,, (T + 1 — ;‘h) =T +1—¢Pkfor any
¢ € uy. Hence, we obtain

_LP(r -m,o*",Gp, T+1— ;h) = Em—r(gh) - Pm—-rEm—r(gph)

for any ¢ € ug, and by virtue of (5.3), we see that the value of the right hand side of (5.5) at
s =mis equal to (5.4). This proves equation (5.5).

Now, take an integer »; € N such that pbl =1 (mod k). Puti =a —r (mod p —1).
Then by (5.5), we have

b1—-1 b1 —1

S . — s 7, Jh’k . j _
Yo Sl e PRD Y Y Ly G T4 1= P E G
¢ (s —Dr ‘

b1 -1 .
=Y Ly, ,Gn, T+1-¢" Y E1¢77).

If ¢ € up — {1}, we have Zb‘ 1E,_ (&~ 1”) € Z,. However, we have Zb'_ol E._1(1) =
b1 B, /r, which is not necessanly in Z,. Taking this into consideration, we take an integer
by € N such that b1byB,/r € Z. We put E({,r — 1,b1) = Zbl IE, 1€~ p’ ) for each
¢ € ug and define

Hyp 1 (T) = { l—[

teur—{1}

Then, we have Ng,, Hy.p (T) = H, 4 1 (T) € A,

{a)_l(l _ Ch)(l _ ;h + T)}sz(f,r—l,bl)] . szE(l,r—l,bl) .

: b1
b
gr)hk(cl s_1)= mzsPl.H(r_s r,p Ih, k),

A/gg)hk(T)A ifi#0, 1 (modp—1)

: gV (1)
Voo = | Af b
v T + 1 - Cy

A/ggfh,k(T)TA if i=0 (mod p—1).

A ifi=1 (modp—1)

REMARK. Inthe case that « is odd, by defining S(r) +1(h, k) and Sp.a(s;r, h, k) by (5.3)
and (5.5) respectively, the above argument is valid as well However, we should note that in
this case, we have

0 if r=2
S sroh k) = _ _ ) 5.6
palsir b K) %(k)sw‘” MLyl —s, ™Y if r=1. 5.6)
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In order to verify this, we put

h -1
Fmy=Y ——— -

etl — {h etz — ;-—1 :

gk=1
Then,
D D M e
F(—n, —t) = - i = .
- — -t _ -1 —h _ pt — b2
. 1e ¢ e ¢ ] ¢ el ¢ —e
¢
= 1+ —m )(1 + )
ng:I ( t1 —_ etz — C
=k k F
= +ek’l—1+e’“2——1+ (11, 12) .

Expanding above equation as power series of #; and 2, and comparing the coefficients of
e '1 for m and r in N with m > r + 1, we see from (5.2) and (5.3) that

s .
(—1y"15 b, by = | om0 ifr=2
Spmy1(h, kY+ B, ifr=1.
Hence, if ¢ = 1 (mod 2) andni+1 = o (mod p — 1), we have m = 0 (mod 2) and
S(r) +1(h, k) =0or (=1/2)Bp according as r > 2 or r = 1. The same result also holds for

S o %1(ph, k). Therefore, (5.6) follows from (5.4).

6. Proofs of propositions in Section 3.

(I) Proof of Proposition 3.1.
We first prove the following

LEMMA 6.1. Letu € Uy and put G,(T) = gu(T) — (n/p)gu((1 + T)* — 1). Then
foranyn € Nwithn =i (mod p — 1), we have

" dn—l
= (1 - F)d—z-mgu(ez bl 1)

n—1

gu(eZ—1)

Gy —1) = Tz 19u

Z=0 z=0

PROOF. By (2.1) and (3.4), we have

9= [ 5 dug

/4
forany n € Nwithn =i (mod p — 1). In general, for any g(T) € O[[T]], putting §(T) =
9(T) — (1/p) 3_pp=y 9 (1 + T) — 1), we have

n

d
n ~ Z
.[z" x" dhg(x) dan(e

14

zZ=0
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for any n € N. By (3.2), (3.3) and (1.1), it is easy to deduce that
Y atQ+T) - 1) =mg (1 +T)" —1).
P=1
Hence, our assertion follows immediately.

Let us prove Proposition 3.1.
By (1.4) and (3.1), we have R;,(T) = R,([k(c)]r(T)) forany 0 € Gy and u € Uyo.
Hence, by (1.1) and (3.3), we deduce

9ou(T) = D{1og(Ry 0 ¢r)((1 + TY*@ — 1)} = k(o) g ((1 + T)*@ —1).
Then, we see from Lemma 6.1 that
Goe," = 1) =k(@)"GP(c,” — 1)
holds for anyn € Nwithn =i (mod p — 1). It follows that
GINT) = &' (k(@))(1 + TY NGO (T) .
In particular, we have
G = k' (5GP (T) (6.1)

for any § € A and

Gya(T) = (1 + THGINT).

The first statement follows immediately from these equations.
Let j be an integer modulo p — 1. Then, for any u € Uy, and § € A we see from (1.5)
and (6.1) that

60y = —— T kGG T)
p deA
Hence, if j # i (mod p — 1), we have gi"( 5 (T) = 0, namely the map u — gfjg)(T) is the
0-map on Ug). :
Letu = (un)n>o € U&) and suppose that Q,Ei)(T) = 0. Then, from what we have just
shown above, we have Q,Sj )(T) = 0 for any integer j modulo p — 1. It follows from Lemma
6.1 that

n—1

dzn—1%

eZ-1| =0
Z=0
holds for any n € N — {1}. This shows that g, (T’) is constant, namely g, (T) = g,(0).

- In the first place, suppose that # # p. Then, Lemma 6.1 also shows that g,(0) = 0,
and consequently, g,(T) = 0. It follows from (3.3) that R,(T) is constant, that is, u, =
R, (tn) = R,(0) € Z, holds for any n € N. By taking the norm from K, to K,_, this
yields R, (0)? = un,? = u,—1 = R,(0). Since R,(0) =1 (mod pZ,), we obtain R, (0) = 1,
namely, u = 1.
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Next, suppose that ¥+ = p. Then, Lemma 6.1 shows that 9.(T) = ¢u(T) —
gu((1 + T)? — 1) = 0. It follows from (1.1) and (3.3) that

2 {log (Ru 0 $5)(T)) = ~ = {l0g (Ru 0 o) (1 + T)? — 1
7 og (Ry o ¢F)( )}—pdT og (R, o ¢r)(1 +T)Y — 1)}

1 d
1;;ﬁ{log (Ry o [plF 0 ¢F)(T)}.

Hence, R,(T)?/(R, o [plF)(T) is constant, namely
R,(T)?/(Ry o [PIF)(T) = Ry(0)P' € Z,.

Substituting t, for T, we see up,? /up_1 = Ry 0P~ 1, Taking norm from K, to K,_1, we
obtain

Thus, we obtain R,(0) = 1, and hence R, (T)? = (R, o [plr)(T). This implies u €

proj limu,a+1. As we noted just before Proposition 3.1, proj lim#,.+1 is contained in U&l)).

Hence, in order to complete the proof, it is sufficient to show that G (T) = 0 holds for any
u € projlim Upn+1. Since equation R, (T)? = (R, o [plF)(T) yields g,(T) = 0, the required
equation G{(T) = 0 follows immediately from Lemma 6.1. This completes the proof of
Proposition 3.1.

(II) Proof of Proposition 3.2.

(1) As in Section 3, let N,, be the norm map from K, to Q,. In order to prove V,,(i) =

,5"), it is enough to show that N,(4) = 1 holds for any u € U,gi). Let N, o denote the norm

map from K, to Kp. Since ) 5.4 k! (8) = 0 holds for any i # 0 (mod p — 1), we see that

No@) = [ Nu0@)® = [ Nuo@*'® =1

seA seA

holds for any u € U,gi).

Now, let M,, denote the maximal p-abelian p-ramified extension of K,. We put Mo, =

;’,":0 M,, X, = Gal(M,/K,) and Xo = Gal(Mx/Kx). The Galois group G operates

on X, and X, by conjugation. We regard G, as operating trivially on Z,. Then, Xn, Xoo

and Z, become compact I"-modules and also A-modules. As in the proof of Lemma 2 of

[1], we make use of the relations among the structures of Ueo, Un, Xoo and AX,, which are

obtained by local class field theory. We have the following canonical commutative diagram
of A-modules:

1—>U°o—)Xoo——->Zp—>l

J J ) (6.2)

1>U, > X, »>Z,—1,
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where the horizontal sequences are exact. Since Zg) = {0} fori # 0 (mod p — 1), (6.2)
induces the following commutative diagram:

v 5 x9
{ \ - (6.3)
v S x®.
Since we have V,,(i) = U,Ei), the vertical homomorphisms in (6.3) are surjective. Further, the
kernel of the homomorphism X, — X, in (6.2) is Gal(M«,/M,), which is the commutative

subgroup of Gal(M«,/K,) and coincides with XO’QP -1 = w,(T)X>. Hence, we see from
(6.3) that

UD = UD jw,(THUL).
(2) The diagram (6.2) induces the following commutative one:
l—>Ug%)—>X§g)—>Zp—->l
- 2 \ (6.4)
1——>U(()0)—>X(()O)—>Zp—>1,

where the horizontal sequences are exact.

In the first place, let us show that X9 = A. Since we have Uéo) =UpNQp =1+ pZp,
we see from the lower sequence in (6.4) that Xéo) is isomorphic to Z 1% as Z,-modules. Further,
since ¥ /Gal(Mo/Koo)@ = I'® = " = Z,,, we also see that Gal(Mo/Koo)® = Z). 1t
follows that

Gal(Mo/Koo)® = X9 /Gal(Moo /M) @ = X0 /TXQD =Z,,.

Then, Nakayama’s lemma ([15, Lemma 13.16]) shows that ég) is generated over A by a
single element. Moreover, (6.4) shows that Xég) has a submodule isomorphic to Uég), which
has no A-torsion as a result of Proposition 3.1. 'Hence, we conclude that

X0 =A. (6.5)

Next, note that the image of the projection Uég) — Uéo) in (6.4) is

VO = (u e UP|No@w) = 1} = {u € 1 + pZp|uP™' =1} = {1}.
From this, it is easy to see that the maps in (6.4) satisfy
mUQ - X9) =Ker(xQ - ¥ =1x9. (6.6)
Identifying U with In(UL — X)), we see from (6.2) that
vO = y®/(Gal(Meo/ M@ NUD) = UL /(wn(T) XD N TXD)

wn (T)

0
T v®.

=UQ jw,(T)XQ =UQ /

This completes the proof.
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(II) Proof of Proposition 3.3.
We first prove some preliminary lemmas.

LEMMA 6.2. Letn € N. Ifn+ 1 < vy, then Kn = Qp(uyn+1). Otherwise, the group
of p-power roots of unity in K, is upvx.

PROOF. The norm groups of the extensions K, /Qp and Qp(u,+1)/Q) are
(14 p"MZ,) x (7™ m € Z} and (1+ p"t'Z,) x {p™Im € Z},

respectively. Both of them coincide if and only if n + 1 < v,. Hence, the statements follow
immediately by local class field theory.

LEMMA 6.3. LetneN and put v(rr, n + 1) = min{vy,, n + 1}. Then, as Z,-modules,
we have U = Zgn or U = Zﬁn X Upverntr) according asi # 1 (mod p — 1) ori = 1
(mod p — 1).

PROOF. In the same way as in the proof of Lemma 1 of Chapter 7 in [9], we see that

rankzp ,E") = p". By Lemma 6.2, the torsion subgroup of U, is Upv(z.n+1) and in fact, it is

contained in U,ﬁl). Hence, the statement is obvious.
Let 2 € Z* be as defined in Section 1.

LEMMA 6.4. There exists an element v € U, which is independent of i and satisfies
the following: '

(1) Ifi £ 1 (mod p — 1) or vy = 0, then G&(T) e T[[T11*.

@ Ifve > 0, then (2G,"(T) — (1 = D/(T +1 - ¢y) € TUTN™.

PROOF. Let F denote the basic Lubin-Tate formal group belonging to &, namely, the
formal group such that [7]£(T) = T? + nT. There exists an isomorphism n : F — F
over Z, such that n’(0) = 1. Lete € 1+ pZ, be a (p — 1)-st root of 1 — 7 and put
ve = (& — 1n(Ta))n>0. Let us show that v is in Us,. Indeed, for each n € N, the minimal
equation for ¢ —n(z,) over K,_ is [x]r(e —T) —n(zn—1) = 0, and so, the image of £ —n(z,)
by the norm map from K, to K,,_; is [7]£(€) — n(th—1) = €? + e — n(t,—1), which is also
equal to &£ — 7(t,_1) by virtue of e?~1 = 1 — . It follows that v; € Uso.

Now, it is obvious that R, (T) = ¢ — n(T). Hence, (3.3) yields

o) 1/1 k
9u.(T) = —D[ k}:“l E(;(n o ¢p)(T)) ]

k
1 1
=—-Q1+T) E (;(n o ¢F)(T)) oo ¢r) (T) .
k=0
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Note that we have (1 o ¢F)(eZ — 1) = ex(§2~!Z), which implies (1 o ¢F) (eZ — 1) - €% =

Q“lefr([z“lZ). Hence, putting v = v ¢, we have

['s} k
g - =27 ep(27'2) (éef(.(z-IZ)) : 6.7)
=0

Further, the equation []£(T) = TP + n T implies ex (7 Z) = er(Z)? + nwexr(Z). From
this, we deduce

1
er(Z)=Z +
TP

ZP (mod degreep + 1),

and by (6.7) and by virtue of gP~1 =1 — 7, we obtain

pR!-F =
g -1 =0""! (1 + ————ZP-I) Y e @7*z* (mod degree p)
nb—m k=0
p—2 1
=Y etz o P + ZzP~'  (mod degree p).  (6.8)
a@pP1-1) 1-mx

k=0
Hence, if i % 1 (mod p — 1) or v, = O, then for a unique integer k satisfying k = i
(mod p—1)and1 <k < p— 1, Lemma 6.1 shows that Igl(,i)(c,,k — 1)| = 1. The statement

(1) follows immediately from this.
Let us prove the statement (2). Suppose that v, > 0. By (6.8) and Lemma 6.1, we have

T
26V, -1 =1- >

.le(,l)(cyp—l)z.{?l”p(l—%)(p——l)!( P 4! )

a@,1—-1) 1-m=m

Hence, we can write
200 =1-Z 4 (T +1-¢)AD)
p

for some A(T) € Z[[T]] such that

_r P_ 1 =0 _”_p — 14 1 )
1 p+(c,, ¢, )A(cy,? —1) = 2 P(1 p)(p 1)!(:rr(JtP"1—1)+1—n' . (6.9)

In order to complete the proof, it is sufficient to show that A(c,? —1) # 0 (mod pZ). Recall
that 2V /2 = p/m, which implies 2P-1 = p/7 (mod pI). By the assumption v, > 0, we
have 1 — (r/p) =0 (mod pZ,). Hence, we see from (6.9) that

1-— % + (¢y? —c))A(c,)P - 1) = .QI—P(p — 1)!(—5— +1 +:rr) (mod sz)

i

1.(_1)(—£+1+n) (mod p37)
p T

2
_T (mod pZI).
4

1-=
p
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Since ord,(cy P — ¢)) = 1, it follows that
2
A(cy? - 1) =—————— %0 (mod pI).
Y 7 =P d

This completes the proof of Lemma 6.4.

Let us proceed to prove Proposition 3.3.
We note that, in general if a rank one A-submodule K of Z[[T]] contains an element
G € I[[T])*, then we have

K=gA.
In the case i = 0 (mod p — 1), we see from (6.5) and (6.6) that
K=uQ=a.
Let v € Uy be as in Lemma 6.4. Then, we have
GO(T) = G(T) e TUTN™,
and consequently
0
KO =g (a.
In the case wherei # 0 (mod p — 1) and eitheri £ 1 (mod p — 1) Or vy = 0, Lemma
6.3 shows that Ué') = Z,. Then, by Proposition 3.2 (1), we have UY) /TU @) ~ Z, It
follows from Nakayama’s lemma that U&) is generated over A by a single element. Further,
by Proposition 3.1, Ug,) has no A-torsion. Hence, we see that
U = A,
and in the same way as in the previous case, we obtain gf)’;,., (T) € Z[[T1Y* and
K® =g (na.
In the case wherei =1 (mod p — 1) and m = p, Lemma 6.3 together with Proposition

3.2 (1) shows that there exists an element u = (un)n>0 € Uc(xl,) such that Uél) is generated

over Zp by ug and up. Then, by Nakayama’s lemma and by the fact that proj lim .+ is in
(1)

oo » We have
Ug) = Au - projlimu,n+1.
On the other hand, Lemma 6.1 shows that ng‘) (cy —1) = Oholds forany u € Ué},). It follows
that K C (T + 1 — ¢,)Z[[T]]. Hence, by Proposition 3.1 and Lemma 6.4 (2), we see that

G /(T +1-¢,) € TITT* and
KO =g ma.

It remains to prove the statement in the case wherei = 1 (mod p—1) and0 < v; < o0.
Foreachn € N, let £ ,»+1 denote the primitive p"*1-th root of unity such that ¢ Flpr1—1) =

T,. If n 4+ 1 < v;, Lemma 6.2 shows that Spnt1 € U,. More precisely, we have Epnt1 € U,Sl)
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and ;pflﬂ = ¢{pn. By Lemma 6.3, there exist two elements u’ = (u,,)n>0 and v/ = (V),)n>0 in
Ué},) such that u, = g pnt forall n € N with n + 1 < v, and that Uél) is generated over Z,

by ¢p and v;. Then, by Proposition 3.2 and Nakayama’s lemma, U(Q)) is generated over A by
u’ and v’. It follows from Proposition 3.1 that

v® =KD =gl MAa+gPMA. (6.10)

Since (ug)? = (u;”_l)Pv” = 1, Proposition 3.2 (1) shows that (u")? € TU&I,) and (W)P”" €
wvﬂ_l(T)Uo(é). Then, by (6.10), we can write

PG (T) = TGP (T AL(T) + G5 (T Ax(T)}, (6.11)

u/
p**G(T) = wy, .1 (THGP (T) BI(T) + G4 (T) BoT)} ~(6.12)
for some A1(T), A2(T), Bi(T) and B»(T) in A. Applying p-adic Weierstrass Preparation

Theorem ([15, Theorem 7.3]) to the power series G4 (T), we see from (6.12) that G’ (T) is
divided by w,, —1(T) in Z[[T']], namely, we can write

GO(T) = wy, —1(T)P(T) (6.13)
with P(T) = p~={G\P(T)B1(T) + G’ (T) Bo(T)} € T[[T]]. Let us show that in fact, P(T)

u/

is in Z[[T']]*. Equation (R, o ¢F)(¢p — 1) = Ry (T0) = {p implies

wi(T)
T I[[T]]) .

Then, by (3.3), we have |g,/(0)| = 1, and by Lemma 6.1, we have further
ord, (GS (cy — 1)) = ord, (1 — (7/p))guw (0)) = vz .
It follows from (6.13) that

(Rw 0 ¢p)(T) =T + 1 (mod

6P, - 1)
Wy, —1(cy — 1)

ord,(P(cy, — 1)) = ordp( ) =vy — vy =0.

Thus, we see that P(T) € Z[[T11*.
If v, = 1, then (6.13) becomes G’ (T) = T P(T). It follows from (6.11) that
(p — TALT)P(T) = G (1) Ax(T) .

Substituting O for T, we see that either ord,(G.,’(0)) = 1 or ord,(A2(0)) = 1 holds. If the
latter held, then we would have gi,l)(T) € Z[[T]}*, which contradicts the result of Lemma

6.1 for n = 1. Hence, we must have ordp(gl(),l)(O)) = 1, and consequently A,(T) € A*.
Then, we see from (6.10) that

KO =TP(TYA+ (p -~ TAI(T)P(T)A = (TA+ pA)P(T),

and obtain the assertion in the case v; = 1.
Suppose that v; > 1. Combining (6.11) and (6.13), we deduce

(p — TAY D)y, 1 (T)P(T)/T = G (T) Ao(T). (6.14)
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Let us show that A»(T) is in (wy,—-1(T)/T)A. Forany n € N with 0 < n < v, we see from
(6.14) that GV (£ pn — 1) Az (Lpn — 1) = 0. I G4 (¢ n — 1) = O held, then by (6.10) and (6.13),
we would have g,ﬁl)(gpn -1 = gﬂl)) (¢pn — 1) = O for all u € Uso, which contradicts Lemma
6.4 (2). Hence, we must have A>({p» — 1) = 0 and consequently, A>(T) € (w,,—1(T)/T)A.
Write A2(T) = wy, —1(T)A3(T)/T with A3(T) € A. Then, equation (6.14) becomes

(p — TAIT)P(T) = G (T)A3(T). (6.15)

In the same way that we have shown A2(T) € A* in the case v; = 1, we see that A3(T) €
A*. Further, we also have A{(T) € A*. Indeed, by (6.15) and Lemma 6.1, we have

ord,(p — (¢y — DA1(cy — 1)) = 0rdp (G (cy — 1)) = vr

and by the assumption v, > 1, we see that ord,((c, — 1)A1(cy, — 1)) = 1, and hence
A1(T) € A*. Then, applying p-adic Weierstrass Preparation Theorem to the power series
p — TA(T), we have

p—TA(T) € (T —n")A™
for some prime element v’ of Z p- It follows from (6.10), (6.13) and (6.15) that
KN = (w,,_1(T)A + (T — ") A)P(T).
By remainder theorem, we have further
KO = (wy,—1(x)A + (T —7)A)P(T)
= (p"A+ (T —n)A)P(T).

In order to complete the proof, it is sufficient to show that 7’ = ¢, — 1 (mod p**Z,). Let v
be as in Lemma 6.4, and write

2G0T =1~ (x/p) + (T +1-¢,)Q(T)
= (p""C1(T) + (T —n")Co(T)) P(T) %2, (6.16)
with Q(T) € Z[[T1]* and C(T), C2(T) € A. Substituting O for T in (6.16), we see
(1 —¢,)Q(0) = —n'C2(0) P(0)2 (mod p**T).

By the assumption v, > 1, this implies C2(T) € A*. Then, substituting ¢, — 1 for T in
(6.16), we obtain

(cy —1=7")Calcy = DP(cy — )2 = 2G ) (cy —1) =0 (mod p**T)
and consequently :
a'=c¢,—1 (mod p*"Zp).

This completes the proof of Proposition 3.3.
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