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Abstract. S. Ferenczi and L. F. C. da Rocha introduced an algorithm which is slightly different form of the
negative slope algorithm as the normalized multiplicative algorithm deduced from three interval exchange transfor-
mations. It has the form that the ceiling value is taken in the case of x + y > 1. We call this algorithm as the
“modified negative slope algorithm”. In this paper, the author shows that the modified negative slope algorithm is
weak Bernoulli with respect to the absolutely continuous invariant measure and gives an algebraic characterization
of periodic orbits of this algorithm using the natural extension method.

1. Introduction

The original negative slope algorithm was introduced by S. Ferenczi, C. Holton, and
L. Zamboni [1] [2] as an approximation algorithm arising from three interval exchange trans-
formations. Recently, S. Ferenczi and L. F. C. da Rocha [5] showed the existence of an
absolutely continuous invariant measure which is ergodic. The author and H. Nakada [7]
showed that the original negative slope algorithm is weak Bernoulli with respect to the ab-
solutely continuous invariant measure. Then the author and S. Ito [6] characterized purely
periodic points of the negative slope algorithm as pairs of quadratic numbers. S. Ferenczi
and L. F. C. da Rocha [5] also introduced the modified negative slope algorithm which has
a different normalizing parameter from the negative slope algorithm and showed its ergodic
properties. This gave better proofs of some results on the theory of three interval exchange
transformations developed in [3] [4]. In this paper, we show that the modified negative slope
algorithm satisfies Yuri’s conditions [10] for a map to be weak Bernoulli. This implies that the
modified negative slope algorithm satisfies Rohlin’s entropy formula and is weak Bernoulli
with respect to the absolutely continuous invariant measure given in [5]. Then we can com-
pute the explicit value of the entropy of the modified negative slope algorithm by Rohlin’s
entropy formula. We see that the invariant measure is derived from a four dimensional rep-
resentation of the natural extension of the modified negative slope algorithm and obtain the
exponent constant of the denominator of the n-th convergent of simultaneous approximations
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arising from the modified negative slope algorithm. Finally, we characterize purely periodic
points of the modified negative slope algorithm as pairs of quadratic numbers.

In §2, we give the definition of the modified negative slope algorithm. In §3, we show
some lemmas for local inverse of the modified negative slope algorithm and prove that the
modified negative slope algorithm is weak Bernoulli by using Yuri’s conditions [10] for a
map to be weak Bernoulli. In §4, we construct four dimensional natural extension of the
modified negative slope algorithm and give the absolutely continuous invariant measure of it.
Then we compute the entropy of the modified negative slope algorithm by Rohlin’s entropy
formula. Finally, in §5, we characterize purely periodic points of the modified negative slope
algorithm by using the natural extension method originally introduced by [8] for a class of
continued fraction algorithms.

2. Definitions and basic notions of the modified negative slope algorithm

Let’s define a map S on the unit square, which is called the modified negative slope
algorithm. Let X = [0, 11>\ {(x, y) | x + y = 1}, we define

(emmilamr lemy=r |- arym) o
G+ -1| G+n-1|G+n—-1| G+yp-1) """~

S(x,y)=
1-— 1— 1-— 1—
( 4 —{ 4 J a —{ a J) ifx+y<l.
l—Gx+y) [1-G+y] 1-G+y) [1-G+Yy)
We put
_ ; _ |
— | -1 ifx+y>1
Gty —1 Y
n(x,y) =
L=y if x+y<1
_ if x <1,
LI —(x+y) Y
S BTN
_— | — I X >
Gty —1 Y
m(x,y) =
L—x if x+y<1
_ if x <1,
L=+ ) Y
and
-1 it x+y>1
S(X’y)_{ﬂ if x+y<1.

Then we see that n(x, y) > 1 and m(x, y) > 1 for all (x, y) € X.
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We put

ng(x, y) = n(S*1(x, y))
mi(x, y) = m(S*1(x, y))
er(x, y) = e(S*1(x, y)

for k > 1. Then we have a sequence

((e1(x, y), ni(x, y), mi(x, y)), (e2(x, ), n2(x, y), ma(x, y)), ...)

for each (x, y) € X. In §3, we see in Lemma 3.8 that if (x, y) # (x/,y") € X, then there
exists k > 1 such that

(e, p), ni(x, ), me(x, y)) # (e xy), ne(x', ¥, myc(x', ) ey

Now we introduce the projective representation of 7. We put

n n—1 1—n
A(—i—l,n,m) = m—1 m 1—m
-1 -1 1
and
n+1 n —(n+1)
Actnm = m m+1 —m+1)
1 1 -1
for m, n > 1. Then we see
1 0 n—1
-1
A(+1,n,m) =10 1 m— 1
1 1 n4+m-—1
and
0 -1 m—+1
-1
A(—l,n,m) =|-1 0 n+1
-1 -1 n4+m+1
ox
We identify (x, y) to | ay | for & # 0. Then S(x, y) is identified to
o

X

Aer (x,y)omi uy)mi ey | Y
1

and its local inverse is given by

-1
A1 (ey)mi ) mi(.)) -
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In this way, we get a representation of (x, y) by

-1 —1 -1
A(€1Jl1,ml)A(Ezynzymz)A(Sssn,z,ms) e

For a given sequence ((e1, n1, m1), (&2, n2,mz), ..., (¢, nk, my)), we define a cylinder
set of length k by
((e1,n1,my), (e2,n2,m2), ..., (&, Nk, mg))

={(x. W1 Eilx, y),ni(x, y),mi(x, ) = (&i,ni,mi), 1 <i <k}.
In the sequel, we simply denote by A a cylinder set of length k > 1. For (x,y) € Ay,
Sk (x, y) is identified to

X

Alepnemy) - Aern,my) | Y
1

We denote its local inverse

-1 -1
A(8|,n1,m|) T A(Sk,nk,mk)
ble/Ak.
Since
y X
1-— , 1 — x,y)eX, x+y>1
( -1 <x+y)—1> () g }
={(a,8): <0, B <0},
11—y I —x
) e,y eX x+y<l1
(1—(x+y) 1—(x+y>> () g }
={(@,B):a=1 =1},
we see that

SH(x, y) € X:er(x, y) = e, me(x, y) = ng, mi(x, y) =mp, 1 <k <} =X (2

except for a set of Lebesgue measure O for any {(e, ng, my), 1 <k <1}, ex = £1, ng, my >
1.

Next we define what means that iteration by the modified negative slope algorithm S of
(x,y) € Xstops.

DEFINITION 2.1. We define k-th iteration by the modified negative slope algorithm S
of (x,y) € X by (xx, yv) = S¥(x, y). Then we say that iteration by the modified negative
slope algorithm § of (x, y) € X stops if there exists kg > 0 such that x;, = 0 or yx, = 0 or
Xko + Yo = 1.

This implies that iteration by the modified negative slope algorithm S of (x,y) € X
stops if there exists kg > 0 s.t. (xg,, yk,) € 0X. From this definition, we get the following
propositions.
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PROPOSITION 2.2 (Ishimura-Ito [6]). [fiteration by the modified negative slope algo-
rithm S of (x, y) € X stops, then (x, y) satisfies one of the following equations.

(p+Dx+py=gq
px+(p+Dy=gq
px+py=gq
for some integers 0 < g < 2p.

See Proposition 2.5 of [6] for the proof. The next result gives a sufficient condition for
the third equation in Proposition 2.2.

PROPOSITION 2.3 (Ishimura-Ito [6]). If (x, y) € X satisfies the following equation
px+py=gq
for any integers 0 < q < 2p, then there exists N > 0 such that the sequence (SK(x,y) 1k >
0) stops atk = N.
See Proposition 2.6 of [6] for the proof.

REMARK 2.4. From Theorem 3.3 of [5], we see that for n;,m; > 1, i >
1 and for any sequence ((&;,n;,m;),i > 1), there exists (x,y) € X such that
(ei(x,y),ni(x,y),mi(x,y)) = (&i,n;, m;) unless there exists k > 1 such that either
(ei,m;) = (£1, 1) foralli > k or (¢;,n;) = (£1, 1) forall i > k.

3. Some ergodic properties of the modified negative slope algorithm

In this section, we show that the modified negative slope algorithm is weak Bernoulli by
using Yuri’s conditions. See §3 of [7] for the summary of multidimensional maps for Yuri’s
conditions. Here we only show Yuri’s conditions (C.1)—(C.9).

3.1. Yuri’s conditions and Rényi cylinders. First we fix a constant L > 1 and define

the set of “Rényi cylinders” for a map S of a bounded domain X of R? onto itself with its
countable partition {X, : a € I} by

R(S) = {(al, Lo, ag) sup |det DWiq,.....ap) (X)]

xeS¥ay,....ar)

<L inf |det1)w<al,_,_,ak>(x)|,kz1}

- xeSk(al,...,ak)
where (ay, ..., ax) indicates a cylinder set of length k for ay, ..., ax € I. Moreover we put

Dr = {{ar,...,ar) : {a1,...,a;) ¢ R(S) forl <i <k},
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By = {{ai1,...,ar) € R(S) :(a1,...,ar_1) € Dr_1},

and

B.= |J (a....a).

(ay,...,ar)€By

Yuri’s conditions
(C.1) (S8, Q) separates points, that is, for any x # x’ € X there exists n > 0 such that
S$"(x) and S"(x") are not the same elements in Q where Q denotes the countable partitions
on X arising from S.
(C.2) Foreach j, 0 < j < N, there exists (a1, ..., as;) C U; suchthat (ai, ..., as) €
R(S) and $%i{ay, ..., as5;) = X.
(C.3) If {(a1,...,ax) € R(S), then (by,...,b;,ai,...,ar) € R(S) unless

(b1,...,b1,ai,...,ax) is a set of Lebesgue measure 0.
o0

(C4) D ADy) < oo
k=1

where A(A) denotes the d-dimensional Lebesgue measure of a Borel set A of R¢.

o

(C4* Y aDy) -logk < oo.
k=1

(C.5) Foranyl > 1,

Z( > ( sup |detDw<al,,,,,ak>(x)|)) < +00.

k=0 “{ay,...,ar)eDy xESk(a|,...,ak)ﬂ(U]j:1Bj)

(C.6) 4D < oo.

(C.7) There exists a positive integer / such that for all X > 0 and all {(ay, ..., ax) € Dx,
S.upxeSk(ah...,ak) I det Dll/(a1>~~~sdk>(x)| — O(kl) )
lnfxeSk(a] .S | det Dlp(al,...,ak) (x)]
(C.8) log|det DS(-)| is Lebesgue integrable.
(C.9) there exists a positive integer ko such that if (aj, ..., ax) € D,‘(‘ and (a2, ...,ar) €
Dr—_1, then
ko
(at,...,ag) C UBj.
Jj=1

For the modified negative slope algorithm S, we define the set R(S) by

R(S) = {{(e1, n1,my), (e2,n2,m2), ..., (&k, ng, my)) |
(ek, nk, my) # (£1,1, 1)
or for k > 2 (eg,ng,myg) = (+1,1,1) and (&x—1, ng—1, mg—1) = (+1,1, 1),
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(8k7nk7mk)=(_17151) and (Ek—l7nk—lamk—l) #(_171’1)}

Then we see that R(S) satisfies the definition of Rényi cylinders in Lemma 3.7 and the modi-
fied negative slope algorithm § satisfies Yuri’s conditions (C.1)—(C.9) with (C.4)* in §3.2. To
show these facts, we prepare some lemmas in the following.

3.2. Some properties for ¥,,. We put
o k) (k)

P Py P3
Yp = rl(k) rék) r3(k)
k k k
W

® L0 ® a3

for any cylinder Ag, k& > 1. Then we have some lemmas for p; PR P

k > 1 in the following.
LEMMA 3.1. For entries of ¥z, we have

k k
o= 41
RO

k k
g® = q®.

PROOF. By simple calculation, we see that

1 1
-1
A(il’n!m) 1] =HD] -1
0 0
Then we see that
1 1
-1 -1 N
Aernim) - Aememo | 1] =GD -1
0 0
for k > 1. Therefore, we obtain
(k) (k)
Py — P 1
rl(k) — rz(k) =|-1
k k 0
i~

LEMMA 3.2. Forallk = 1, we have ¢\ > 0and2¢\" + ¢ > 0.

PROOF. From the previous lemma, we see that
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k k k
@, a3, i)

k-1 k=1) (k-1 k-1 k—1 k—1
(@ " + a0 a8 + g8V e+ i = 2g Y + i+ mi — DY)
if g =+1
k-1 k-1 k-1 k-1 k-1 k—1
(=g —g& D g% g%V G mi + 26570 + ik + mi + DgE D)
if g =—1.

We see that qél) > 0 and 2q1(1) + qél)

(k=1) (k=1)

> 0 from §1. Assume that qék_l) > 0 and

2q, + g3 > 0 for k > 2. Then, from the above relations and Lemma 3.1, we have
qék) > 0 and
k—1 k—1 k—1 .
o w | eeEm@ T el 4 g if ek = +1
20," T a3 = k=1, (k=1) k=1, =Dy
(g +mp —2)(q" " +q3; )+ Q2qy T Hqy ) if g=-1
>0.
This is the assertion of this lemma. O

Then we have similar results for p;k) and ri(k), i=1,2,3.

LEMMA 3.3. Fork > 1, we have pék) > OandeEk) + pgk) >0,i=1,2.
PROOF. We see that pgl) > 0 and 2p§1) + pgl)

and 2pik7]) + pgkfl) > 0 for k > 2. Then, from Lemma 3.1, we have

> 0 from §1. Assume that pgkfl) >0

o | o mi= (P 4 pEDy 4 pED if e =+1
B (i +m) (P + Dy £ @D 4 pETDy 41 i g = —1
>0
and
2o 4 e +m) (P 4+ pEy 4 pEh g if e =+1
e +me =2+ pd ) + @V + ) tmif e =1
>0.
This is the assertion of this lemma. O

(k)

By the same way, we have r3(k) > (0 and 2rl.(k) +ry’ > Ofork >1,i =1, 2. Moreover,

we see that the signs of pfk), rl.(k), ql.(k), i =1,2aresame forall k > 1.
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LEMMA 3.4. For(x,y) € Xandk > 1, we have
k k k k
_ @ G+ w0 + 0y 15

k k
qé ) (o + i) +q§ )

X+y

k k k k k k
ad )+~ P g = 1.

PROOF. By taking the determinant of ¥4, , we have

® (k) (k)
Py Py P3 k) (k) *) (k) ®) k)
&k Kk | _ w2 w3 LW rn
TP w| TP ko w| TP d |
k) (k) (k) 92 43 q1 " 43 q, " 49,
q1 4, 43
From Lemma 3.1, the right hand side is equal to
*) (k) (k) (k) (k) (k)
SCINPN EERRE B BN L) —1r3 NI —1n
P2 w0 |~ P2 o k| TP3 GG
9 493 q1 qs 9 q,
Since det ¥, = 1, we have
k k k k k k k k
r3"a5” = P43 + (04 = pPah = 1.
Substituting pik) = pék) + 1, rl(k) = rék) — 1 and ql(k) = qék) for (3), we see that

k) (k k) (k k) (k k) (k
04— g + (g~ p0g) = 1.

From (3) and (4), we have

k k k k k k
p§)+rl()_p§)+r§)_p§)+l’3() 1
k - k - k BEGH
AT TP
Then we see that
(k) (k) (k)
ax P Py D3 Xk
ay | = rl(k) rz(k) rgk) Vi
k k k 1
« a? a? ¢
for @ # 0. Therefore, we obtain
k k k
= P§ )Xk+P§ )yk+P§)
T Tk k X
ql( )Xk +61§ ))’k +61§ )
. Vl(k)Xk + rék)yk + r3(k)
V=" @ @®©

q; Xk +4q, Yk + 45

63

3)

“)

(&)

(6)

)
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Since qék) > 0 for k > 1, the denominators of the above two equations are not equal to 0.

From pgk) = p;k) +1, rl(k) = rék) — 1 and ql(k) = qék), we have

_ 0 0w + () 1) ®

k k
61§ (ke + Vi) +q§ )

xX+y

This is the assertion of this lemma.

LEMMA 3.5. Fork > 1, we have

(k) (k) (k) (k)
+r +r
) 2 P3 3 } Y

max {
k ’ k

PROOF. From (5) of Lemma 3.4, we see that
k k k k
P§)+V3() <p§)+r§)
(k) (k)
q3 9>
k k k k
Pé)""’z() 5 p§)+r3()
(k) (k)
49, q3

if qék) >0

if qék) <0.

(k=1) , (k=1)

(I) Suppose that qék_l) > 0 and % < 2 for k > 2. Then we have the
9

following.
(i) If gy = +1, which means qék) > 0, then we have

Since

k—1 k—1 k—1 k—1

W, (0,1) = oA S L W £(1,1)

A1\ ) = k=1) k=1 (k=1 (k—1) T
4 Tt 49, 143

then we obtain

k k
p® 4
=< <2,
(k)
q,
(ii) If g = —1, which means qék) < 0, then we have
k k k—1 k—1 k—1 k—1
P+ 2+ i+ DG )
k - k—1 k—1
g3 —2g3 7" + (g + mg + g
~ p;k—l) +r3(k—1) >

k— T k= k —
gy g0 (=2¢0 + i + mi + DY)
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(k—1) (k—1)

p3 + V3
R e <2
a3
from Lemma 3.2 and (5) of Lemma 3.4.
k1) Py 6D
(I)  Suppose that g, < 0and % < 2 for k > 2, then we have the follow-
3
ing.
(i) If &y = +1, which means qék) > 0, then we have
k k k—1 k—1 k—1 k—1
p§)+r§)_p§ )+r£ )+p§ )+r3( )
k - k—1 k—1
qé) qé )—i-q; )
Since

(k—1 (k—1) (k—1) +r(l<7])

)
(P2 " tp3 ) 3
lm“mn—((kn 3 o 2 @U>#UJL

k—1
q, +4q5 q, ) +4q3

then we obtain

(k) (k)

+r
pZTZ <2,
q,
(ii) If & = —1, which means qék) < 0, then we have
k k k—1 k—1
p§)+r3()_p§ )+r3( ) 2
k - k—1 T k k—1
g5” gy " 3" (=243" + (x + mi + g ™)
k—1 k—1
D 4 D
<= <2
(k—1)
43
from Lemma 3.2 and (5) of Lemma 3.4. This is the assertion of this lemma. a
LEMMA 3.6. For any sequence ((¢1,n1,m1), (g2,n2,m2), ..., (&, ng, mg)), & =

+1,n;,,m; >1,1<i <k, we see that
(i) S =X,
(i)
1

k k k :
@Fx + gy + g3

|det DYA, (x,y)| =

PROOF. It is an easy consequence of induction and calculation, respectively (see also
E. Schweiger [9], Proposition 2 for (ii)). O

From the above lemmas, we can show that R(S) is the set of Rényi cylinders.
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LEMMA 3.7. If Ax € R(S), then

sup |det DWy, (x, y)| <53 1nf Ndet DWa, (x, y)].
(x.y)eX

PROOF. (Case 1) For Ay = ((e1,n1,my), ..., (&, ng, my)), assume that
(&k, nk, mg) # (£1, 1, 1), then we see that

(k) (k)
(M) if q(k) -0

k
SUP(x, y)exX |det DW4, (x, y)| _ (I§ )
infry B *) 3
ll‘lf(x,})ex |det DlI/Ak (x, y)| (I37 y © N
® 4 W g
2g," + 45

G If ql(k) > 0 and &y = —1 then we see that

k k—1 k—1
0<q® = _gkD _ gk

This is the contradiction to Lemma 3.2. Then it implies & = +1 for q(k) > 0. So we have

k k k—1 k—1 k—1
qé) () = (ng +my — 3)(611( )+q§ ))+q( > 0.

From this fact, we obtain

k k k
2q()+q§) <3q§)_3
(k) ky — 7
qs q3
i) If qfk) < 0 and g = +1 then we see that
k k—1 k—1

0> q( ) ql( )+q§ )
This is the contradiction to Lemma 3.2. Then it implies that ey = —1 for q(k) < 0. So we see
that

1 1
g e me+2)g] " + (g me + gl
200 + ¢ e+ mogl " + e+ mi — g
2q (k—l) +2g (k—l)
=1+ (= 1) (= 1) 7)) k=1)
(nk +my — 2)(q, +q3 )+ (2q, +q5 )
1 quk 1 +2q(k 1
<
3q(k D +2q(k -
From Lemma 3.2, we obtain
2q1k b 2q(k 1 )
=D =

3qk 1)Jr2q
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(Case 2) For Ay = ((e1,n1,m1), ..., (&, ng, my)), assume (g, ng, my) = (+1,1, 1)
and (ex—1, nk—1, mr—1) # (41, 1, 1), then we see the following two cases:
(i) Ifer_1 =+1andng_1 + my_1 > 3, then we have

k=1) (k=1 (k-2 k—2 k-2
(4} ),615 ) = (g} )+Q§ ), (et +my—y —2)g

+ (nimt +mi—t — i)
(ii)) Ifer_; = —1, then we have

k—1 (k—1 k—2 k2 k=2
@ g8y = (¢ P = P o+ et +2)¢

+ (ng—1 +my— 1+1)61(k 2.

(k) (k=1) (k—1)

(k=1) k=1 0,95 =gq5 > 0and g,

Thus we see that ‘11( =q, +4;
cases. So we have

SUP(y y)ex [det DWa, (x, y)| (Zq(k) +Q§k)) (2q(k b +3q§kl)>3 <53

inf(x,y)ex |det DWWy, (x, y)| N qék) qék_l)

< qék_l) for both

(Case 3) For Ay = ((e1,n1,m1), ..., (&, nk, my)), assume (&, ng,my) =
(—=1,1,1) and (gg—1, ng—1, mr—1) # (—1, 1, 1), then we see the following two cases:
(i) Ifer_1 =—1andng_1 + my_1 > 3, then we have

1 —1 2 -2 -2 -2
@, g%y = (=g%2 = ¢ o +me 1 +2¢ 5P+ o +mi 1+ Dg )

k (k k—1 k—1 k—1 k—1
and (¢, g3") = (=g TV =gV 4g TV 1347

(k=1)

Since g, < 0 and q(k) < 0, we obtain

Sup(x,y)eX Idet DlI/Ak (-xs )7)|
inf(x,y)eX |det DWW, (x, y)|

k 3 (k—1 k 1

(k 1) 3
(k 1) (k— 1))

+4q3

2+
-2 k—2
(nk—1 + my— 1)q] + (ng—1 + my 1—1)q( )

3+

A

( mk1+mk1+2m 24 mk1+mk1+n¢k”)
( (k 2)

2q1k 2)+2 (k—2)
k 2)+2q
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From Lemma 3.2, we obtain

quk 2)+2q(k 2)

<2.
3q1k 2)+2q(k 2)

(ii) Ifer_; = +1, then we have

k=1) (k-1 k—2 k-2 -2 k=2
(ql( ),Q§ e (( )+q§ )(nk1+mk1—2)q1 )+(nkl+mkl—1)q( )

k (k k—1 (k—1 k—1 k—1
and (g, ¢ = (=Y — g8 ag "V 348Dy,

(k=1)

Since ¢, > 0 and q(k) < 0, we obtain

SUpe ey Idet DlI/Ak(X,,Y)I_( qgk) >3 (4q(k D434 (k1)>3
inf(y y)ex [det DWa, (x, y)| 2q(k)+q(k) 2q1" ])+q(k b

q(kfl) 3
- 2+3—)
( 2q1k Dy =D

<33,

Then we complete this lemma. O

3.3. Weak Bernoulli properties. Now we will show that the modified negative slope
algorithm is weak Bernoulli by verifying Yuri’s conditions. From Lemma 3.6 (i) and Lemma
3.7, they imply that the modified negative slope algorithm satisfies (C.2) and (C.3) of Yuri’s
conditions. We check other conditions of Yuri’s conditions as follows.

LEMMA 3.8. (C.1) Forany (x,y) # (x',y) € X, there exists n > 0 such that
S"(x,y) and S"(x', y') are not the same element in a partition of X.

PROOF. Itis easy to see that

(k) (k)
p r
Va, 0.0)= (=5 =5 )+
9" ¢f"
(k) (k) (k) (k)
v, (1,0 = (2P ARk
A, (1,0) = q(k) +q(k) > q(k) +q(k)
1 3 1 3
(k) n P k) (k) +r (k)
Pp (0,1)= < (k) +q(k)’ (k) +q(k))
(") + )+ pék) r 4+
and ¥, (0,0)= (k) ) W)’ (k) ) (k)
+ay + a5 Tt
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Then we show that the diameter of A; is bounded above by the distance between the point
W4, (0, 1) and the point ¥4, (1, 0) as follows. Let [ be the line that passes the point ¥4, (0, 1)
and the point ¥4, (1, 0). Then we see that

@ + a3+ = () + ) + ) ) =0

Let d(k, x,y) be the distance between the point ¥, (0, 1) and the point ¥4, (1, 0),
hi(k, x, y) be the distance between the line / and the point ¥4, (0, 0) and A2 (k, x, y) be the
distance between the line / and the point ¥4, (1, 1). Then we have

s ( p® 4 p§k> PO L pBNT 0B B b2
X Y) = 3 3 3 3 X X X o)
0 ® 1 g® (>+q§> <>+q§> <>+q§>
®) (k) +r3( W) ) 0 )
(9, )T (py" +p3 +r +r3)
q3
hitk,x,y)= E - and
v2(q;” + 43
ha(k, x,y)
NN BT N S B3
(<k> <k>)l’1 +Pz tpy At —(p® 4 p® L0 6y
1 7® 1 g® 4 0 piFpy g A3
1 2 3

V2P + ¢

From Lemma 3.2 and (3), (4) and (5) of Lemma 3.4, we obtain

V2
d(k,x,y)zﬂ,
q, " +4q3
ik, v, y) = 1
1K, X,y 7 k k
V241 q{" + ¢

]
k (k k k k)
V2@ + 8@ + 4 + ¢

and ha(k,x,y) =

These imply that the diameter of Ay is bounded above by d(k, x, y). Next we show that
d(k, x, y) is monotone decreasing.

G If ql(k_l) > (, then by Lemma 3.2, we see that

(k=1) (k—1)

(ng +mg — g + (nk + mg)qs if e =+1

(k) (k)
+gq
3 (k—1) (k—1)

e +my + D5 4 e+ mpgEY i g = -1

>q§k ])+q(k D for g = +1.
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ai) If ql(k_l) < 0, then by Lemma 3.2, we see that

k—1 k—1 k—1 .
® |, (k) (e +mi = (g ™ + g8 ) + 4870 if e = +1
q, t+q3° =

-1 -1 -1 —1 .
(e +me = D@l + a8 + gV + 48 if e = -1

> ql(kil) + q;kil) for g = +1.

These complete the proof of this lemma. a

LEMMA 3.9. (C4) We have
o0
E:MDw<cw
k=1

where A(A) denotes the two dimensional Lebesgue measure of a Borel set A of R2.

PROOF. Itis easy to see that

D = {{((+1,1,D),..., (+1, 1, D)), (1,1, 1), ..., (—=1,1, 1))}.

k times k times

Then we see that

(LD Ly =t ey o oy
-1, 1, g ey \T 1, 1, = ) - = < [ = < .
Y K =Y K+l k+1 =7
k times
From Lemma 4.5 of [7], we obtain
ADy) = 2
W=k rhek+ D
This is the assertion of this lemma. O

Then we obtain the following theorem by Theorem 1 of [10].

THEOREM 3.10. There exists an absolutely continuous invariant probability measure
wu for S and (S, ) is exact.

PROOF. We see that the modified negative slope algorithm satisfies (C.1)-(C.4)

of Yuri’s conditions. Hence we complete the proof of Theorem 3.10 by Theorem 1 of
[10]. O

REMARK 3.11. The exactness implies not only ergodicity but also mixing of all de-

grees. In [5], they showed the explicit form of the density function Z—’;, which we will see in
§4, and its ergodicity.

Next we show the following theorem.
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THEOREM 3.12 (Rohlin’s entropy formula).  The entropy h,(S) of (X, S, ) is given

hu(S) = / log |det DS|du .
X

In the following, we show (C.5)—(C.8) of Yuri’s conditions, which imply this theorem.
LEMMA 3.13 (C.5).

Z Z < sup |det DWy, (x, y)l) <00
=0 A

€D N ye(UhB))
PROOF. Itis easy to see that

1
(—lx —ly + 21+ 1)

for A = ((—1,1,1),..., (—=1,1,1)). Then we complete this lemma from Lemma 4.7
of [7]. O

LEMMA 3.14 (C.6).

det DWA, (x,y) =

tD) =2.
PROOF. This is obvious. |
LEMMA 3.15 (C.7). Forevery Ay € Dy, we have

SUP(y, yyex [det DWa, (x, y)|

: = O@K%).
1nf(x,y)eX |det DWW, (x, y)|

PROOF. This follows from Lemma 3.13 and Lemma 4.9 of [7]. O
LEMMA 3.16 (C.8). The functionlog|det DS)| is integrable with respect to A.
PROOF. We can complete this lemma by Lemma 4.10 of [7]. a

Then we finish the proof of the Theorem 3.12 by Theorem 2 of [10].
We show that the modified negative slope algorithm is weak Bernoulli in the following.

THEOREM 3.17. The modified negative slope algorithm with the absolutely continu-
ous invariant probability measure [ is weak Bernoulli.

To prove this theorem, we show (C.4)* and (C.9) of Yuri’s conditions.

LEMMA 3.18 (C.4)*.

o
> Ay -logk < oo
k=1
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PROOF. Since we have A(Dy) = W from the proof of Lemma 3.9. This is the
assertion of this lemma. O

LEMMA 3.19 (C.9). If ((e1,n1,m1), ..., (&, ng, mg)) € IDIL; and ((ep,n2, my), ...,
(&k, nk, mi)) € Dr_1, then we have ((e1, n1, m1)) € By, that is, (e1, n1, my) # (£1, 1, 1).

PROOF. It is easy to see from the definitions of Dy and B. O

Since § satisfies (C.1)—(C.9) with (C.4)*, it implies the assertion of Theorem 3.17 by
Theorem 3 of [10].

4. Absolutely continuous invariant measure

In [5], the density function of the absolutely continuous invariant probability measure of
the modified negative slope algorithm was given by

dp 1 1
dr  4log2 (x+y)2—x—y) '

This was checked by Kuzmin’s equation

fe = Y fWenm G, ) det W (x, )]

e==x1,n,m>1

1
x+y)2—x—y)"

In this section, we give the same result by a different way which is called a “natural
extension method”. This method was originally introduced by [8] for a class of continued
fraction algorithms. Let X = X x {(—o0, 0)2 U (1, 00)2}. For (x, y, z, w) € X, we define a

map S on X by

where f(x,y) =

E(-xsyvsz)
<n’(x )—* m'(x )—# n' (x )_L
IR Sy R R R S A S G Fus
/ .z .
- m'(x,y) (Z+w)_1) if x+y>1
- l—y l—x l—w
<1_(x+y) _”(xa)’)’ 1_(x+y) _m(-x7y)a 1—(z+w) _n(-x7y)a
1—z .
m—m(x,y)) 1fx+y<1,

where n’(x,y) = n(x,y) + 1 and m’(x, y) = m(x, y) + 1. Then it is easy to see that S is
bijective on X except for the set of four dimensional Lebesgue measure 0.
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PROPOSITION 4.1. The measure [t defined by
die 1
dr 1@ +y) = +w)l

is an invariant measure for S, where X denotes the four dimensional Lebesgue measure.
PROOF. We complete this lemma by Proposition 5.1 of [7]. a
COROLLARY 4.2. The measure y defined by

dp 1 1
dr 4log2 (x +y)2—x —y)

is an invariant probability measure for S.

PROOF. Itis easy to see that the projection of 7t to X is an invariant measure for S. Then
we have

1 1
/ 3alzdw+/ 3alzdw
(—00,0)x(—00,0) |(X +¥) — (2 + w)] (1,oo)x(1,00) (X +¥) — (z + w)]

1
G+ NR-x—y)
This is the assertion of this corollary. |

Then we can compute the entropy £, (S) explicitly from Theorem 3.12 and Corollary
4.2.
PROPOSITION 4.3.
2

b4
hu(8) = 8log2 "

PROOF. From Proposition 5.3 of [7] and Corollary 4.2, we complete this lemma. a

From this proposition, we obtain the exponential divergence of qgk) as k — oo.

PROPOSITION 4.4.

* _ w?
3 7 241og2

1

lim —1
dim, e
for h-a.e. (x,y) € X.

PROOF. From the Shannon-MacMillan-Breiman theorem, we have
2

b4
8log2

1
— lim —logu(Ay) = J-a.e.
k—oco k
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where Ay is defined by (&;, nj, m;) = (&;i(x, y),ni(x,y),mi(x,y)) for 1 <i < k. We take
(x,y) sothat h(S(x, y, z, w))-| det D(S(x, y, z, w))|-h ' (x, y, z, w) = 1 forh(x, y, z, w) =
d/dx holds. Then we choose a subsequence ((Ix) : k > 1) by

Iy =min{l = 1] (er(x, y), mi(x, y),mi(x, y)) # (£1, 1, D}

and
L+ 1 i (eg, (x, v), (6, ), my, (6, ) # (£1, 1, 1)
Ik +max{l > 0| (eg,, (x, ), nyy,; (X, y), my, (x, )
=H1,1,1) for 0<i<I}+1
L1 = if (eg,(x, y), my, (x, ), my (x, y)) = (+1, 1, 1)

I + max{l > 0| (&1, (x, ¥), ny,; (x, y), my; (x, ¥))
=(-1,1,1) for0<i<I}+1

if (er (x, y), ny (x, ), my (x, y)) = (=1, 1, 1)

for k > 1, which means that we choose all cylinders A; € R(S). Since A; is bounded away
from (0, 0) and (1, 1), there exists a constant C; > 1 such that

1
C—lk(Azk) < u(4y) < Ci1a(4y) .
On the other hand, there exists a constant C» > 1 such that

G

<MA) < ——
(@)

CagPy

whenever A; € R(S), see Lemma 3.7. Hence we obtain

1 I
lim — logg® =
k—o0 I, 84;

~ 24log2
for p-ae. (x,y) € X. Itis clear that ¢ = ¢ if (sx(x, y), nk(x, y), mi(x, y)) =
(+1, 1, D and 2¢ + ¢ = 27V + g8V i (e (e, ) miCx, y)me(x, ) = (<1, 1, 1.

Since the indicator function of ((£1, 1, 1)) is obviously integrable with respect to u,

e — L
lim X%l _
k—o00 Ik

for u-a.e. (x, y) € X. Hence we have

o__7

1
lim ~1
oo 1 8B T 41082

for pu-a.e, or equivalently A-a.e, (x, y) € X. o
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5. Characterization of periodic points of the modified negative slope algorithm

In the previous section, we define S, the natural extension of the modified negative slope
algorithm, on X = X x {(—o00, 0)2U(1, 00)?}. In this section, we show the following theorem.

THEOREM 5.1. Suppose iteration by the modified negative slope algorithm S of
(x,y) € X does not stop. Then the sequence (SK(x,y) : k = 0) is purely periodic if and
only if x and y are in the same quadratic extension of Q and (x,y, x*, y*) € X where x*
denotes the algebraic conjugate of x.

5.1. Necessary part of Theorem 5.1. We show two lemmas to prove the necessary
condition of Theorem 5.1.

LEMMA 5.2. Suppose iteration by the modified negative slope algorithm S of (x, y) €
X does not stop. Then, x and y are in the same quadratic extension of Q if the sequence
(SK(x, y) : k > 0) is purely periodic.

PROOF. Suppose the sequence (S*(x, y) : k > 0) is purely periodic for (x,y) € X,
then there exists / > 0 such that S’ (x, y) = (x, ¥). From Lemma 3.4, we see that

1 ! 1 !
Y e+ + Y + )

1 1
qé)(x+y)+q§)

Then we have the following quadratic equation with respect to (x + y).

X+y

! ! ! l ! l
e+ 0+ @ = pd =i+ 9 - o+ =0.
Here, we put a function ¢(z) as follows.

l l l [ [ [
9@ =02+ @y = py) == + ).

Then it is clear that g(z) = Ohasarootin0 < z < 2.
From Lemma 3.2, Lemma 3.3 and Lemma 3.5, we see the following.

@ If qél) > 0, we see that
g =—py =" <0 and
I I 1 1 1 I
9@ =443 +24y" =20 + pi) — (p{ + 1)
O] @) O] @)
+r +r
=240 ,_ P2 2 ) 4 q® ,_P3 3 Voo,
2 ) 3 O]
q; a3
a If qél) < 0, we see that

g(0) = —pgl) — r3(l) <0 and

W 4 0 O 4 L0
nf, Py nf, Py
g(z)zzqg)(z— - >+q§)(2— 33 )

l l
g o
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From (5) of Lemma 3.4, we have

OIN0, O, 0

5D Py +r3 1 0 Pyt

1= 2 {2_( o tooo ) te Pt w
q3 2 43 q3

1 I I I I I
= —51@a = 9 +rNgd +4) -2}
q3

We see that 2q§l)— ( pél)+r3(l)) and 2q§l)+q§l) are positive integers. So, if Zqél)+q§l) =1,

then we have

P tpy +p3y ri 4

wAl(l’l)z( ] I D’ a 1 ]
6]1()+q£)+6]§) 6]1()+q£)+6]§)

o) O] [OIE0) ) O] )

l l [ l
=y + Y + i !

e X.

O]

1
+r, +r3())

Thus we see

0< pf” +p§l) +p§” <1.

From Lemma 3.1, we have

—1=2pY +p{’ <0.

This is the contradiction to Lemma 3.3. Then we have
! 1 ! ! 1
@y = (P’ +r" e + 4"y = 2.

Note that if x + y € Q for (x, y) € X, then (S¥(x, y) : k > 0) is not periodic from
Proposition 2.3. Since we assume that (SK(x,y) 1 k = 0) is purely periodic for (x, y) € X,
we obtain g(2) # 0. This implies that g(2) > 0.

Thus, if (S¥(x, y) : k > 0) is purely periodic for (x, y) € X, then x + y is a quadratic
irrational number and the algebraic conjugate of x + y satisfies (x + y)* < 0 if qél) > Qor
(x+y)* > 2if qél) < 0 from (I) and (II). Furthermore, from Lemma 3.1 and Lemma 3.4, we
have

k k

_ P (x +y) + py
- k k ’
qé)(x+y)+q§)—1

k k
ré)(x+y)+r3()

- k k :
q§ )(x+y)+q§)+1

This is the assertion of this lemma. O
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LEMMA 5.3. LetI’' = {(z,w) |z4+w < 0, z+ w > 2}. Suppose iteration by the
modified negative slope algorithm S of (x,y) € X does not stop. Then, for (x,y,z,w) €

X x I', there exists ko € N s.t. for k > ko, Ek(x, y,Z,w) € X.

PROOF. Suppose that (z, w) € {(—00,0)? U (1,00)?}, (z/,w') € I'\{(—0o0,0)> U
(1,00)?} and z + w = 7’ + w’ (see Fig. 1).

\<w)
1 / !
(Z/’ w/) \.\(Z , W )

0 1 ¢
(z, w)
FIGURE 1
Then we have
lz1 — 2} + lw1 — w]|
1—w 1—w 1—z 1-7 .
_ — if 61 =+1
I =G+w) 1-(E+w) l-Gz+w) 1-(E+w)
B w’ w 7 Z .
_ + — if 1 =—1
w+z)-1 (@+w) -1 w+z)-1 +w) -1

Torw W YT D e =

(lw—w'|+|z=7]) if eg=-1

[(z+w)—1]
<|lz—-Z|+|w—-u].

Here, we write k-th iteration by S of (z, w) € I' as (zx, wi) for simplicity. By the simple
calculation, we see that z; + w; = 12 + w,/( for £ > 1. Then, if iteration by the modified
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negative slope algorithm S of (x, y) € X does not stop, there exists C > 1 s.t.
/! ! 1 /! /
2k — zg | + [wk — wy | < E(IZ—ZI-l-Iw—w D

fork > 1. Since X is S-invariant, there exists ko € N s.t. for k > kg, we have
(2h. wp) € (—00,0)% U (1, 00)°.

Note that the sequence ((zx, wi) : kK > 1) does not converge to the boundary of X if the
sequence (Sk (x,y) : k > 1) does not stop at any finite k. We write the image by S of (z, w)
as S(z, w) for simplicity.

(I) For w < 0, we see that

(1 __m> if e = 41
( 1+m> if e=-—1.
w—1"

1
— —(14n), > if &= +1
w

E(O, U)) =

(I) Forw > 1, we see that

S(1,w) =

(n,(l—l—m)—%) if e=-—1.

From Remark 2.4, we see that ((zx, wi) : k > 1) does not converge to the boundary of X if
the sequence (Sk (x,¥) : k > 1) does not stop at any finite k. O

Now we can complete the necessary part of Theorem 5.1.

PROOF (necessary part of Theorem 5.1). Suppose the sequence (Sk (x,y) : k>=0)is
purely periodic for (x, y) € X. Then we see that x and y are in the same quadratic extension
of Q from Lemma 5.2. It is easy to see that (Ek(x, v, x*, y*) : k > 0) is purely periodic if
(S¥(x, y) : k > 0) is purely periodic, where x* is the algebraic conjugate of x (see Remark 3.5
of [6] for details). Therefore we see that there exists N > 0 such that EN (x,y,x* y" € X

from Lemma 5.3. Since X is S-invariant, we obtain (x, vy, x*, y%) € X. O

5.2. Sufficient part of Theorem 5.1. We show the sufficient part of Theorem 5.1 in
this subsection. Suppose x and y are in the same quadratic extension of Q and (x, y, x*, y*) €
X. Then we show that the cardinality of (x,y,x™, y*) € X is finite and the orbit of
(x, v, x*, y*) by S is purely periodic. We prepare some lemmas to prove the sufficient condi-
tion of Theorem 5.1.

LEMMA 5.4 (Ishimura-Ito [6]). If o is equivalent to a quadratic irrational number o
with respect to modular transformations, then the discriminant of o' and o are equal.
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See Lemma 3.8 of [6] for the proof of this lemma, Definition 3.6 of [6] for the definition
of “discriminant” and Definition 3.7. of [6] for the definition of “equivalent”.

LEMMA 5.5 (Ishimura-Ito [6]). The cardinality of quadratic equations ax*+bx+c =
0 with fixed discriminant where a, b, c € Z, GCM(a, b, c) = 1, ac < 0 is finite.

See Lemma 3.9 of [6] for the proof of this lemma.

LEMMA 5.6. Assume that a and B are in the same quadratic extension of Q and
(a, B, a*, B*) € X, then Dy g is greater than Dy and Dg, where Dy is the discriminant
of a.

PROOF. If (o, B, a*, B*) € X x (—o0, 0)2, we obtain the assertion of this lemma from
Lemma 3.10 of [6]. If (&, B8, o™, B*) € X x (1, 00)2, we see that

. <—b—c\/§ —b+c /0
(@, 0”) = ,

a a

), a,c>0, GCM(a,b,c)=1

—q—r\/g —q +r0
» )

B, B") = (
P

) , p,r>0, GCM(p,q,r)=1

where 6 does not contain square numbers as factors. By the same calculations as Lemma 3.10
of [6], we complete this lemma. O

We give the last lemma to complete Theorem 5.1.
LEMMA 5.7. Suppose iteration by S of (x, y) € X does not stop. Then the sequence
(Ek (x,y,x*, y*) : k > 0) is purely periodic if x and y are in the same quadratic extension of

Qand (x,y, x*, y*) € X, where x* denotes the algebraic conjugate of x.

PROOF. If x and y are in the same quadratic extension of Q and (x, y, x*, y*) € X, then
we see that x + y is equivalent to x; + yk, kK > 1 with respect to S from (3) and (8) of Lemma
3.4. It implies that Dy is equal to Dy, 1y, forall K > 1 by Lemma 5.4. From Lemma 5.6,
D,, and Dy, are bounded above by Dy, for all k£ > 1. This implies that the cardinality of

{S¥(x, y) | (x,y) € X, k > 0} is finite from Lemma 5.5. Since X is S-invariant, there exists
[ > 1s.t. forany k > [,

Sy, 2%y =M @y, 0% ).
Since S is bijective on X, we see that

k=1
S

—k—1
S (x,y,xt Yy = (x,y,x%,y).

By induction, we get
=1
(x, y, x5, y") = 8 (x, y, x%, y%).

This completes this lemma and the proof of Theorem 5.1. a
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Then we have the following corollary of Theorem 5.1.

COROLLARY 5.8. Suppose iteration by the modified negative slope algorithm S of
(x, y) € X does not stop. Then x and y are in the same quadratic extension of Q if and only
if the sequence (S*(x, y) : k > 0) is eventually periodic.

See Corollary 3.12. of [6] for the proof.
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