
TOKYO J. MATH.
VOL. 32, NO. 1, 2009

Some Dynamic Properties of the Modified
Negative Slope Algorithm

Koshiro ISHIMURA

Keio University

(Communicated by A. Tani)

Abstract. S. Ferenczi and L. F. C. da Rocha introduced an algorithm which is slightly different form of the
negative slope algorithm as the normalized multiplicative algorithm deduced from three interval exchange transfor-
mations. It has the form that the ceiling value is taken in the case of x + y > 1. We call this algorithm as the
“modified negative slope algorithm”. In this paper, the author shows that the modified negative slope algorithm is
weak Bernoulli with respect to the absolutely continuous invariant measure and gives an algebraic characterization
of periodic orbits of this algorithm using the natural extension method.

1. Introduction

The original negative slope algorithm was introduced by S. Ferenczi, C. Holton, and
L. Zamboni [1] [2] as an approximation algorithm arising from three interval exchange trans-
formations. Recently, S. Ferenczi and L. F. C. da Rocha [5] showed the existence of an
absolutely continuous invariant measure which is ergodic. The author and H. Nakada [7]
showed that the original negative slope algorithm is weak Bernoulli with respect to the ab-
solutely continuous invariant measure. Then the author and S. Ito [6] characterized purely
periodic points of the negative slope algorithm as pairs of quadratic numbers. S. Ferenczi
and L. F. C. da Rocha [5] also introduced the modified negative slope algorithm which has
a different normalizing parameter from the negative slope algorithm and showed its ergodic
properties. This gave better proofs of some results on the theory of three interval exchange
transformations developed in [3] [4]. In this paper, we show that the modified negative slope
algorithm satisfies Yuri’s conditions [10] for a map to be weak Bernoulli. This implies that the
modified negative slope algorithm satisfies Rohlin’s entropy formula and is weak Bernoulli
with respect to the absolutely continuous invariant measure given in [5]. Then we can com-
pute the explicit value of the entropy of the modified negative slope algorithm by Rohlin’s
entropy formula. We see that the invariant measure is derived from a four dimensional rep-
resentation of the natural extension of the modified negative slope algorithm and obtain the
exponent constant of the denominator of the n-th convergent of simultaneous approximations
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arising from the modified negative slope algorithm. Finally, we characterize purely periodic
points of the modified negative slope algorithm as pairs of quadratic numbers.

In §2, we give the definition of the modified negative slope algorithm. In §3, we show
some lemmas for local inverse of the modified negative slope algorithm and prove that the
modified negative slope algorithm is weak Bernoulli by using Yuri’s conditions [10] for a
map to be weak Bernoulli. In §4, we construct four dimensional natural extension of the
modified negative slope algorithm and give the absolutely continuous invariant measure of it.
Then we compute the entropy of the modified negative slope algorithm by Rohlin’s entropy
formula. Finally, in §5, we characterize purely periodic points of the modified negative slope
algorithm by using the natural extension method originally introduced by [8] for a class of
continued fraction algorithms.

2. Definitions and basic notions of the modified negative slope algorithm

Let’s define a map S on the unit square, which is called the modified negative slope

algorithm. Let X = [0, 1]2 \ {(x, y) | x + y = 1}, we define

S(x, y)=




(⌈
y

(x + y) − 1

⌉
− y

(x + y) − 1
,

⌈
x

(x + y) − 1

⌉
− x

(x + y) − 1

)
if x+y>1

(
1 − y

1 − (x + y)
−
⌊

1 − y

1 − (x + y)

⌋
,

1 − x

1 − (x + y)
−
⌊

1 − x

1 − (x + y)

⌋)
if x+y<1 .

We put

n(x, y) =




⌈
y

(x + y) − 1

⌉
− 1 if x + y > 1

⌊
1 − y

1 − (x + y)

⌋
if x + y < 1 ,

m(x, y) =




⌈
x

(x + y) − 1

⌉
− 1 if x + y > 1

⌊
1 − x

1 − (x + y)

⌋
if x + y < 1 ,

and

ε(x, y) =
{−1 if x + y > 1
+1 if x + y < 1 .

Then we see that n(x, y) ≥ 1 and m(x, y) ≥ 1 for all (x, y) ∈ X.
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We put 


nk(x, y) = n(Sk−1(x, y))

mk(x, y)= m(Sk−1(x, y))

εk(x, y) = ε(Sk−1(x, y))

for k ≥ 1. Then we have a sequence

((ε1(x, y), n1(x, y),m1(x, y)), (ε2(x, y), n2(x, y),m2(x, y)), . . . )

for each (x, y) ∈ X. In §3, we see in Lemma 3.8 that if (x, y) �= (x ′, y ′) ∈ X, then there
exists k ≥ 1 such that

(εk(x, y), nk(x, y),mk(x, y)) �= (εk(x
′y ′), nk(x

′, y ′),mk(x
′, y ′)) . (1)

Now we introduce the projective representation of T . We put

A(+1,n,m) =

 n n − 1 1 − n

m − 1 m 1 − m

−1 −1 1




and

A(−1,n,m) =

n + 1 n −(n + 1)

m m + 1 −(m + 1)

1 1 −1




for m,n ≥ 1. Then we see

A−1
(+1,n,m) =


1 0 n − 1

0 1 m − 1
1 1 n + m − 1




and

A−1
(−1,n,m) =


 0 −1 m + 1

−1 0 n + 1
−1 −1 n + m + 1


 .

We identify (x, y) to


αx

αy

α


 for α �= 0. Then S(x, y) is identified to

A(ε1(x,y),n1(x,y),m1(x,y))


x

y

1




and its local inverse is given by

A−1
(ε1(x,y),n1(x,y),m1(x,y))

.
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In this way, we get a representation of (x, y) by

A−1
(ε1,n1,m1)A

−1
(ε2,n2,m2)A

−1
(ε3,n3,m3) . . . .

For a given sequence ((ε1, n1,m1), (ε2, n2,m2), . . . , (εk, nk,mk)), we define a cylinder
set of length k by

〈(ε1, n1,m1), (ε2, n2,m2), . . . , (εk, nk,mk)〉
= {(x, y) | (εi(x, y), ni(x, y),mi(x, y)) = (εi, ni ,mi), 1 ≤ i ≤ k} .

In the sequel, we simply denote by ∆k a cylinder set of length k ≥ 1. For (x, y) ∈ ∆k ,

Sk(x, y) is identified to

A(εk,nk,mk) . . . A(ε1,n1,m1)


x

y

1


 .

We denote its local inverse

A−1
(ε1,n1,m1)

. . . A−1
(εk,nk,mk)

by Ψ∆k .
Since {(

1 − y

(x + y) − 1
, 1 − x

(x + y) − 1

)
: (x, y) ∈ X, x + y > 1

}
= {(α, β) : α < 0, β < 0} ,

{(
1 − y

1 − (x + y)
,

1 − x

1 − (x + y)

)
: (x, y) ∈ X, x + y < 1

}
= {(α, β) : α ≥ 1, β ≥ 1} ,

we see that

Sl{(x, y) ∈ X : εk(x, y) = εk, nk(x, y) = nk,mk(x, y) = mk, 1 ≤ k ≤ l} = X (2)

except for a set of Lebesgue measure 0 for any {(εk, nk,mk), 1 ≤ k ≤ l}, εk = ±1, nk,mk ≥
1.

Next we define what means that iteration by the modified negative slope algorithm S of
(x, y) ∈ X stops.

DEFINITION 2.1. We define k-th iteration by the modified negative slope algorithm S

of (x, y) ∈ X by (xk, yk) = Sk(x, y). Then we say that iteration by the modified negative
slope algorithm S of (x, y) ∈ X stops if there exists k0 ≥ 0 such that xk0 = 0 or yk0 = 0 or
xk0 + yk0 = 1.

This implies that iteration by the modified negative slope algorithm S of (x, y) ∈ X

stops if there exists k0 ≥ 0 s.t. (xk0, yk0) ∈ ∂X. From this definition, we get the following
propositions.
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PROPOSITION 2.2 (Ishimura-Ito [6]). If iteration by the modified negative slope algo-
rithm S of (x, y) ∈ X stops, then (x, y) satisfies one of the following equations.

(p + 1)x + py = q

px + (p + 1)y = q

px + py = q

for some integers 0 ≤ q ≤ 2p.

See Proposition 2.5 of [6] for the proof. The next result gives a sufficient condition for
the third equation in Proposition 2.2.

PROPOSITION 2.3 (Ishimura-Ito [6]). If (x, y) ∈ X satisfies the following equation

px + py = q

for any integers 0 ≤ q ≤ 2p, then there exists N > 0 such that the sequence (Sk(x, y) : k ≥
0) stops at k = N .

See Proposition 2.6 of [6] for the proof.

REMARK 2.4. From Theorem 3.3 of [5], we see that for ni,mi ≥ 1, i ≥
1 and for any sequence ((εi, ni ,mi), i ≥ 1), there exists (x, y) ∈ X such that
(εi(x, y), ni(x, y),mi(x, y)) = (εi, ni ,mi) unless there exists k ≥ 1 such that either
(εi,mi) = (±1, 1) for all i ≥ k or (εi, ni) = (±1, 1) for all i ≥ k.

3. Some ergodic properties of the modified negative slope algorithm

In this section, we show that the modified negative slope algorithm is weak Bernoulli by
using Yuri’s conditions. See §3 of [7] for the summary of multidimensional maps for Yuri’s
conditions. Here we only show Yuri’s conditions (C.1)–(C.9).

3.1. Yuri’s conditions and Rényi cylinders. First we fix a constant L ≥ 1 and define
the set of “Rényi cylinders” for a map S of a bounded domain X of Rd onto itself with its
countable partition {Xa : a ∈ I } by

R(S) =
{
〈a1, . . . , ak〉 : sup

x∈Sk〈a1,...,ak〉
| det DΨ〈a1,...,ak〉(x)|

≤ L · inf
x∈Sk〈a1,...,ak〉

| det DΨ〈a1,...,ak〉(x)|, k ≥ 1

}
where 〈a1, . . . , ak〉 indicates a cylinder set of length k for a1, . . . , ak ∈ I . Moreover we put

Dk = {〈a1, . . . , ak〉 : 〈a1, . . . , ai〉 /∈ R(S) for 1 ≤ i ≤ k} ,

Dk =
⋃

〈a1,...,ak〉∈Dk

〈a1, . . . , ak〉 ,
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Bk = {〈a1, . . . , ak〉 ∈ R(S) : 〈a1, . . . , ak−1〉 ∈ Dk−1} ,

and

Bk =
⋃

〈a1,...,ak〉∈Bk

〈a1, . . . , ak〉 .

Yuri’s conditions
(C.1) (S,Q) separates points, that is, for any x �= x ′ ∈ X there exists n ≥ 0 such that
Sn(x) and Sn(x ′) are not the same elements in Q where Q denotes the countable partitions
on X arising from S.
(C.2) For each j, 0 ≤ j ≤ N , there exists 〈a1, . . . , asj 〉 ⊂ Uj such that 〈a1, . . . , asj 〉 ∈
R(S) and Ssj 〈a1, . . . , asj 〉 = X.
(C.3) If 〈a1, . . . , ak〉 ∈ R(S), then 〈b1, . . . , bl, a1, . . . , ak〉 ∈ R(S) unless
〈b1, . . . , bl, a1, . . . , ak〉 is a set of Lebesgue measure 0.

(C.4)
∞∑

k=1

λ(Dk) < ∞

where λ(A) denotes the d-dimensional Lebesgue measure of a Borel set A of Rd .

(C.4)∗
∞∑

k=1

λ(Dk) · log k < ∞.

(C.5) For any l ≥ 1,

∞∑
k=0

( ∑
〈a1,...,ak〉∈Dk

(
sup

x∈Sk〈a1,...,ak〉∩
(⋃l

j=1 Bj

) | det DΨ〈a1,...,ak〉(x)|
))

< +∞ .

(C.6) �D1 < ∞.

(C.7) There exists a positive integer l such that for all k > 0 and all 〈a1, . . . , ak〉 ∈ Dk ,

supx∈Sk〈a1,...,ak〉 | det DΨ〈a1,...,ak〉(x)|
infx∈Sk〈a1,...,ak〉 | det DΨ〈a1,...,ak〉(x)| = O(kl) .

(C.8) log | det DS(·)| is Lebesgue integrable.
(C.9) there exists a positive integer k0 such that if 〈a1, . . . , ak〉 ∈ Dc

k and 〈a2, . . . , ak〉 ∈
Dk−1, then

〈a1, . . . , ak〉 ⊂
k0⋃

j=1

Bj .

For the modified negative slope algorithm S, we define the set R(S) by

R(S) = {〈(ε1, n1,m1), (ε2, n2,m2), . . . , (εk, nk,mk)〉 |
(εk, nk,mk) �= (±1, 1, 1)

or for k ≥ 2 (εk, nk,mk) = (+1, 1, 1) and (εk−1, nk−1,mk−1) �= (+1, 1, 1) ,
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(εk, nk,mk) = (−1, 1, 1) and (εk−1, nk−1,mk−1) �= (−1, 1, 1)} .

Then we see that R(S) satisfies the definition of Rényi cylinders in Lemma 3.7 and the modi-
fied negative slope algorithm S satisfies Yuri’s conditions (C.1)–(C.9) with (C.4)∗ in §3.2. To
show these facts, we prepare some lemmas in the following.

3.2. Some properties for Ψ∆k . We put

Ψ∆k =




p
(k)
1 p

(k)
2 p

(k)
3

r
(k)
1 r

(k)
2 r

(k)
3

q
(k)
1 q

(k)
2 q

(k)
3




for any cylinder ∆k , k ≥ 1. Then we have some lemmas for p
(k)
i , r

(k)
i , q

(k)
i , i = 1, 2, 3,

k ≥ 1 in the following.

LEMMA 3.1. For entries of Ψ∆k , we have


p
(k)
1 = p

(k)
2 + 1

r
(k)
1 = r

(k)
2 − 1

q
(k)
1 = q

(k)
2 .

PROOF. By simple calculation, we see that

A−1
(±1,n,m)


 1

−1
0


 = (+1)


 1

−1
0


 .

Then we see that

A−1
(ε1,n1,m1)

. . . A−1
(εk,nk,mk)


 1

−1
0


 = (+1)


 1

−1
0




for k ≥ 1. Therefore, we obtain 


p
(k)
1 − p

(k)
2

r
(k)
1 − r

(k)
2

q
(k)
1 − q

(k)
2


 =


 1

−1
0


 .

�

LEMMA 3.2. For all k ≥ 1, we have q
(k)
3 > 0 and 2q

(k)
1 + q

(k)
3 > 0.

PROOF. From the previous lemma, we see that
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(q
(k)
1 , q

(k)
2 , q

(k)
3 )

=




(
q

(k−1)
1 + q

(k−1)
3 , q

(k−1)
2 + q

(k−1)
3 , (nk + mk − 2)q

(k−1)
1 + (nk + mk − 1)q

(k−1)
3

)
if εk = +1

(− q
(k−1)
2 − q

(k−1)
3 , −q

(k−1)
1 − q

(k−1)
3 , (nk + mk + 2)q

(k−1)
1 + (nk + mk + 1)q

(k−1)
3

)
if εk = −1 .

We see that q
(1)
3 > 0 and 2q

(1)
1 + q

(1)
3 > 0 from §1. Assume that q

(k−1)
3 > 0 and

2q
(k−1)
1 + q

(k−1)
3 > 0 for k ≥ 2. Then, from the above relations and Lemma 3.1, we have

q
(k)
3 > 0 and

2q
(k)
1 + q

(k)
3 =


(nk + mk)(q

(k−1)
1 + q

(k−1)
3 ) + q

(k−1)
3 if εk = +1

(nk + mk − 2)(q
(k−1)
1 + q

(k−1)
3 ) + (2q

(k−1)
1 + q

(k−1)
3 ) if εk = −1

> 0 .

This is the assertion of this lemma. �

Then we have similar results for p
(k)
i and r

(k)
i , i = 1, 2, 3.

LEMMA 3.3. For k ≥ 1, we have p
(k)
3 ≥ 0 and 2p

(k)
i + p

(k)
3 > 0, i = 1, 2.

PROOF. We see that p
(1)
3 ≥ 0 and 2p

(1)
1 + p

(1)
3 > 0 from §1. Assume that p

(k−1)
3 ≥ 0

and 2p
(k−1)
1 + p

(k−1)
3 > 0 for k ≥ 2. Then, from Lemma 3.1, we have

p
(k)
3 =




(nk + mk − 2)(p
(k−1)
1 + p

(k−1)
3 ) + p

(k−1)
3 + n − 1 if εk = +1

(nk + mk)(p
(k−1)
1 + p

(k−1)
3 ) + (2p

(k−1)
1 + p

(k−1)
3 ) + m + 1 if εk = −1

≥ 0

and

2p
(k)
1 + p

(k)
3 =


(nk + mk)(p

(k−1)
1 + p

(k−1)
3 ) + p

(k−1)
3 + n if εk = +1

(nk + mk − 2)(p
(k−1)
1 + p

(k−1)
3 ) + (2p

(k−1)
1 + p

(k−1)
3 ) + m if εk = −1

> 0 .

This is the assertion of this lemma. �

By the same way, we have r
(k)
3 ≥ 0 and 2r

(k)
i + r

(k)
3 > 0 for k ≥ 1, i = 1, 2. Moreover,

we see that the signs of p
(k)
i , r

(k)
i , q

(k)
i , i = 1, 2 are same for all k ≥ 1.
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LEMMA 3.4. For (x, y) ∈ X and k ≥ 1, we have

x + y = (p
(k)
2 + r

(k)
2 )(xk + yk) + (p

(k)
3 + r

(k)
3 )

q
(k)
2 (xk + yk) + q

(k)
3

and (p
(k)
2 + r

(k)
2 )q

(k)
3 − (p

(k)
3 + r

(k)
3 )q

(k)
2 = −1 .

PROOF. By taking the determinant of Ψ∆k , we have∣∣∣∣∣∣∣∣
p

(k)
1 p

(k)
2 p

(k)
3

r
(k)
1 r

(k)
2 r

(k)
3

q
(k)
1 q

(k)
2 q

(k)
3

∣∣∣∣∣∣∣∣ = p
(k)
1

∣∣∣∣∣ r
(k)
2 r

(k)
3

q
(k)
2 q

(k)
3

∣∣∣∣∣ − p
(k)
2

∣∣∣∣∣ r
(k)
1 r

(k)
3

q
(k)
1 q

(k)
3

∣∣∣∣∣ + p
(k)
3

∣∣∣∣∣ r
(k)
1 r

(k)
2

q
(k)
1 q

(k)
2

∣∣∣∣∣ .
From Lemma 3.1, the right hand side is equal to

(p
(k)
2 + 1)

∣∣∣∣∣ r
(k)
2 r

(k)
3

q
(k)
2 q

(k)
3

∣∣∣∣∣ − p
(k)
2

∣∣∣∣∣ r
(k)
2 − 1 r

(k)
3

q
(k)
1 q

(k)
3

∣∣∣∣∣ + p
(k)
3

∣∣∣∣∣ r
(k)
2 − 1 r

(k)
2

q
(k)
1 q

(k)
2

∣∣∣∣∣ .

Since det Ψ∆k = 1, we have

(r
(k)
2 q

(k)
3 − r

(k)
3 q

(k)
2 ) + (p

(k)
2 q

(k)
3 − p

(k)
3 q

(k)
2 ) = 1 . (3)

Substituting p
(k)
1 = p

(k)
2 + 1, r

(k)
1 = r

(k)
2 − 1 and q

(k)
1 = q

(k)
2 for (3), we see that

(r
(k)
1 q

(k)
3 − r

(k)
3 q

(k)
1 ) + (p

(k)
1 q

(k)
3 − p

(k)
3 q

(k)
1 ) = 1 . (4)

From (3) and (4), we have

p
(k)
1 + r

(k)
1

q
(k)
1

= p
(k)
2 + r

(k)
2

q
(k)
2

= p
(k)
3 + r

(k)
3

q
(k)
3

+ 1

q
(k)
2 q

(k)
3

. (5)

Then we see that


αx

αy

α


 =




p
(k)
1 p

(k)
2 p

(k)
3

r
(k)
1 r

(k)
2 r

(k)
3

q
(k)
1 q

(k)
2 q

(k)
3




xk

yk

1




for α �= 0. Therefore, we obtain

x = p
(k)
1 xk + p

(k)
2 yk + p

(k)
3

q
(k)
1 xk + q

(k)
2 yk + q

(k)
3

, (6)

y = r
(k)
1 xk + r

(k)
2 yk + r

(k)
3

q
(k)
1 xk + q

(k)
2 yk + q

(k)
3

. (7)
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Since q
(k)
3 > 0 for k ≥ 1, the denominators of the above two equations are not equal to 0.

From p
(k)
1 = p

(k)
2 + 1, r

(k)
1 = r

(k)
2 − 1 and q

(k)
1 = q

(k)
2 , we have

x + y = (p
(k)
2 + r

(k)
2 )(xk + yk) + (p

(k)
3 + r

(k)
3 )

q
(k)
2 (xk + yk) + q

(k)
3

. (8)

This is the assertion of this lemma. �

LEMMA 3.5. For k ≥ 1, we have

max

{
p

(k)
2 + r

(k)
2

q
(k)
2

,
p

(k)
3 + r

(k)
3

q
(k)
3

}
< 2 .

PROOF. From (5) of Lemma 3.4, we see that


p
(k)
3 + r

(k)
3

q
(k)
3

<
p

(k)
2 + r

(k)
2

q
(k)
2

if q
(k)
2 > 0

p
(k)
2 + r

(k)
2

q
(k)
2

<
p

(k)
3 + r

(k)
3

q
(k)
3

if q
(k)
2 < 0 .

(I) Suppose that q
(k−1)
2 > 0 and

p
(k−1)
2 +r

(k−1)
2

q
(k−1)
2

< 2 for k ≥ 2. Then we have the

following.

(i) If εk = +1, which means q
(k)
2 > 0, then we have

p
(k)
2 + r

(k)
2

q
(k)
2

= p
(k−1)
2 + r

(k−1)
2 + p

(k−1)
3 + r

(k−1)
3

q
(k−1)
2 + q

(k−1)
3

.

Since

Ψ∆k−1(0, 1) =
(

p
(k−1)
2 + p

(k−1)
3

q
(k−1)
2 + q

(k−1)
3

,
r
(k−1)
2 + r

(k−1)
3

q
(k−1)
2 + q

(k−1)
3

)
�= (1, 1) ,

then we obtain

p
(k)
2 + r

(k)
2

q
(k)
2

< 2 .

(ii) If εk = −1, which means q
(k)
2 < 0, then we have

p
(k)
3 + r

(k)
3

q
(k)
3

= −2(p
(k−1)
2 + r

(k−1)
2 ) + (nk + mk + 1)(p

(k−1)
3 + r

(k−1)
3 )

−2q
(k−1)
2 + (nk + mk + 1)q

(k−1)
3

= p
(k−1)
3 + r

(k−1)
3

q
(k−1)
3

− 2

q
(k−1)
3 (−2q

(k)
2 + (nk + mk + 1)q

(k−1)
3 )
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<
p

(k−1)
3 + r

(k−1)
3

q
(k−1)
3

< 2

from Lemma 3.2 and (5) of Lemma 3.4.

(II) Suppose that q
(k−1)
2 < 0 and

p
(k−1)
3 +r

(k−1)
3

q
(k−1)
3

< 2 for k ≥ 2, then we have the follow-

ing.

(i) If εk = +1, which means q
(k)
2 > 0, then we have

p
(k)
2 + r

(k)
2

q
(k)
2

= p
(k−1)
2 + r

(k−1)
2 + p

(k−1)
3 + r

(k−1)
3

q
(k−1)
2 + q

(k−1)
3

.

Since

Ψ∆k−1(0, 1) =
(

p
(k−1)
2 + p

(k−1)
3

q
(k−1)
2 + q

(k−1)
3

,
r
(k−1)
2 + r

(k−1)
3

q
(k−1)
2 + q

(k−1)
3

)
�= (1, 1) ,

then we obtain

p
(k)
2 + r

(k)
2

q
(k)
2

< 2 .

(ii) If εk = −1, which means q
(k)
2 < 0, then we have

p
(k)
3 + r

(k)
3

q
(k)
3

= p
(k−1)
3 + r

(k−1)
3

q
(k−1)
3

− 2

q
(k)
3 (−2q

(k)
2 + (nk + mk + 1)q

(k−1)
3 )

<
p

(k−1)
3 + r

(k−1)
3

q
(k−1)
3

< 2

from Lemma 3.2 and (5) of Lemma 3.4. This is the assertion of this lemma. �

LEMMA 3.6. For any sequence ((ε1, n1,m1), (ε2, n2,m2), . . . , (εk, nk,mk)), εi =
±1, ni,mi ≥ 1, 1 ≤ i ≤ k, we see that

(i) Sk(∆k) = X,
(ii)

|det DΨ∆k (x, y)| = 1

(q
(k)
1 x + q

(k)
2 y + q

(k)
3 )3

.

PROOF. It is an easy consequence of induction and calculation, respectively (see also
F. Schweiger [9], Proposition 2 for (ii)). �

From the above lemmas, we can show that R(S) is the set of Rényi cylinders.
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LEMMA 3.7. If ∆k ∈ R(S), then

sup
(x,y)∈X

|det DΨ∆k (x, y)| ≤ 53 inf
(x,y)∈X

|det DΨ∆k (x, y)| .

PROOF. (Case 1) For ∆k = 〈(ε1, n1,m1), . . . , (εk, nk,mk)〉, assume that
(εk, nk,mk) �= (±1, 1, 1), then we see that

sup(x,y)∈X |det DΨ∆k (x, y)|
inf(x,y)∈X |det DΨ∆k (x, y)| =




(
2q

(k)
1 + q

(k)
3

q
(k)
3

)3

if q
(k)
1 > 0

(
q

(k)
3

2q
(k)
1 + q

(k)
3

)3

if q
(k)
1 < 0 .

(i) If q
(k)
1 > 0 and εk = −1 then we see that

0 < q
(k)
1 = −q

(k−1)
1 − q

(k−1)
3 .

This is the contradiction to Lemma 3.2. Then it implies εk = +1 for q
(k)
1 > 0. So we have

q
(k)
3 − q

(k)
1 = (nk + mk − 3)(q

(k−1)
1 + q

(k−1)
3 ) + q

(k−1)
3 > 0 .

From this fact, we obtain

2q
(k)
1 + q

(k)
3

q
(k)
3

<
3q

(k)
3

q
(k)
3

= 3 .

(ii) If q
(k)
1 < 0 and εk = +1 then we see that

0 > q
(k)
1 = q

(k−1)
1 + q

(k−1)
3 .

This is the contradiction to Lemma 3.2. Then it implies that εk = −1 for q
(k)
1 < 0. So we see

that

q
(k)
3

2q
(k)
1 + q

(k)
3

= (nk + mk + 2)q
(k−1)
1 + (nk + mk + 1)q

(k−1)
3

(nk + mk)q
(k−1)
1 + (nk + mk − 1)q

(k−1)
3

= 1 + 2q
(k−1)
1 + 2q

(k−1)
3

(nk + mk − 2)(q
(k−1)
1 + q

(k−1)
3 ) + (2q

(k−1)
1 + q

(k−1)
3 )

< 1 + 2q
(k−1)
1 + 2q

(k−1)
3

3q
(k−1)
1 + 2q

(k−1)
3

.

From Lemma 3.2, we obtain

2q
(k−1)
1 + 2q

(k−1)
3

3q
(k−1)
1 + 2q

(k−1)
3

< 2 .
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(Case 2) For ∆k = 〈(ε1, n1,m1), . . . , (εk, nk,mk)〉, assume (εk, nk,mk) = (+1, 1, 1)

and (εk−1, nk−1,mk−1) �= (+1, 1, 1), then we see the following two cases:
(i) If εk−1 = +1 and nk−1 + mk−1 ≥ 3, then we have

(q
(k−1)
1 , q

(k−1)
3 ) = (q

(k−2)
1 + q

(k−2)
3 , (nk−1 + mk−1 − 2)q

(k−2)
1

+ (nk−1 + mk−1 − 1)q
(k−2)
3 ) .

(ii) If εk−1 = −1, then we have

(q
(k−1)
1 , q

(k−1)
3 ) = (−q

(k−2)
1 − q

(k−2)
3 , (nk−1 + mk−1 + 2)q

(k−2)
1

+ (nk−1 + mk−1 + 1)q
(k−2)
3 ) .

Thus we see that q
(k)
1 = q

(k−1)
1 +q

(k−1)
3 > 0, q(k)

3 = q
(k−1)
3 > 0 and q

(k−1)
1 < q

(k−1)
3 for both

cases. So we have

sup(x,y)∈X |det DΨ∆k (x, y)|
inf(x,y)∈X

∣∣det DΨ∆k (x, y)
∣∣ =

(
2q

(k)
1 + q

(k)
3

q
(k)
3

)3

=
(

2q
(k−1)
1 + 3q

(k−1)
3

q
(k−1)
3

)3

< 53 .

(Case 3) For ∆k = 〈(ε1, n1,m1), . . . , (εk, nk,mk)〉, assume (εk, nk,mk) =
(−1, 1, 1) and (εk−1, nk−1,mk−1) �= (−1, 1, 1), then we see the following two cases:

(i) If εk−1 = −1 and nk−1 + mk−1 ≥ 3, then we have

(q
(k−1)
1 , q

(k−1)
3 ) = (−q

(k−2)
1 − q

(k−2)
3 , (nk−1+mk−1+2)q

(k−2)
1 +(nk−1+mk−1+1)q

(k−2)
3 )

and (q
(k)
1 , q

(k)
3 ) = (−q

(k−1)
1 −q

(k−1)
3 , 4q

(k−1)
1 +3q

(k−1)
3 ) .

Since q
(k−1)
1 < 0 and q

(k)
1 < 0, we obtain

sup(x,y)∈X |det DΨ∆k (x, y)|
inf(x,y)∈X |det DΨ∆k (x, y)|

=
(

q
(k)
3

2q
(k)
1 + q

(k)
3

)3

=
(

4q
(k−1)
1 + 3q

(k−1)
3

2q
(k−1)
1 + q

(k−1)
3

)3

=
(

2 + q
(k−1)
3

2q
(k−1)
1 + q

(k−1)
3

)3

=
(

2 + (nk−1 + mk−1 + 2)q
(k−2)
1 + (nk−1 + mk−1 + 1)q

(k−2)
3

(nk−1 + mk−1)q
(k−2)
1 + (nk−1 + mk−1 − 1)q

(k−2)
3

)3

<

(
3 + 2q

(k−2)
1 + 2q

(k−2)
3

3q
(k−2)
1 + 2q

(k−2)
3

)3

.
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From Lemma 3.2, we obtain

2q
(k−2)
1 + 2q

(k−2)
3

3q
(k−2)
1 + 2q

(k−2)
3

< 2 .

(ii) If εk−1 = +1, then we have

(q
(k−1)
1 , q

(k−1)
3 ) = (q

(k−2)
1 + q

(k−2)
3 , (nk−1 + mk−1 − 2)q

(k−2)
1 + (nk−1 + mk−1 − 1)q

(k−2)
3 )

and (q
(k)
1 , q

(k)
3 ) = (−q

(k−1)
1 − q

(k−1)
3 , 4q

(k−1)
1 + 3q

(k−1)
3 ) .

Since q
(k−1)
1 > 0 and q

(k)
1 < 0, we obtain

sup(x,y)∈X |det DΨ∆k (x, y)|
inf(x,y)∈X |det DΨ∆k (x, y)| =

(
q

(k)
3

2q
(k)
1 + q

(k)
3

)3

=
(

4q
(k−1)
1 + 3q

(k−1)
3

2q
(k−1)
1 + q

(k−1)
3

)3

<

(
2 + q

(k−1)
3

2q
(k−1)
1 + q

(k−1)
3

)3

< 33 .

Then we complete this lemma. �

3.3. Weak Bernoulli properties. Now we will show that the modified negative slope
algorithm is weak Bernoulli by verifying Yuri’s conditions. From Lemma 3.6 (i) and Lemma
3.7, they imply that the modified negative slope algorithm satisfies (C.2) and (C.3) of Yuri’s
conditions. We check other conditions of Yuri’s conditions as follows.

LEMMA 3.8. (C.1) For any (x, y) �= (x ′, y ′) ∈ X, there exists n ≥ 0 such that
Sn(x, y) and Sn(x ′, y ′) are not the same element in a partition of X.

PROOF. It is easy to see that

Ψ∆k(0, 0) =
(

p
(k)
3

q
(k)
3

,
r
(k)
3

q
(k)
3

)
,

Ψ∆k (1, 0) =
(

p
(k)
1 + p

(k)
3

q
(k)
1 + q

(k)
3

,
r
(k)
1 + r

(k)
3

q
(k)
1 + q

(k)
3

)
,

Ψ∆k (0, 1) =
(

p
(k)
2 + p

(k)
3

q
(k)
2 + q

(k)
3

,
r
(k)
2 + r

(k)
3

q
(k)
2 + q

(k)
3

)

and Ψ∆k(0, 0) =
(

p
(k)
1 + p

(k)
2 + p

(k)
3

q
(k)
1 + q

(k)
2 + q

(k)
3

,
r
(k)
1 + r

(k)
2 + r

(k)
3

q
(k)
1 + q

(k)
2 + q

(k)
3

)
.
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Then we show that the diameter of ∆k is bounded above by the distance between the point
Ψ∆k(0, 1) and the point Ψ∆k (1, 0) as follows. Let l be the line that passes the point Ψ∆k(0, 1)

and the point Ψ∆k(1, 0). Then we see that

l : (q
(k)
1 + q

(k)
3 )(x + y) − ((p

(k)
1 + p

(k)
3 ) + (r

(k)
1 + r

(k)
3 )) = 0 .

Let d(k, x, y) be the distance between the point Ψ∆k(0, 1) and the point Ψ∆k(1, 0),
h1(k, x, y) be the distance between the line l and the point Ψ∆k(0, 0) and h2(k, x, y) be the
distance between the line l and the point Ψ∆k(1, 1). Then we have

d(k, x, y) =
√√√√(

p
(k)
1 + p

(k)
3

q
(k)
1 + q

(k)
3

− p
(k)
2 + p

(k)
3

q
(k)
2 + q

(k)
3

)2

+
(

r
(k)
1 + r

(k)
3

q
(k)
1 + q

(k)
3

− r
(k)
2 + r

(k)
3

q
(k)
2 + q

(k)
3

)2

,

h1(k, x, y) =

∣∣∣∣∣(q(k)
1 + q

(k)
3 )

p
(k)
3 + r

(k)
3

q
(k)
3

− (p
(k)
1 + p

(k)
3 + r

(k)
1 + r

(k)
3 )

∣∣∣∣∣
√

2(q
(k)
1 + q

(k)
3 )

and

h2(k, x, y)

=

∣∣∣∣∣(q(k)
1 + q

(k)
3 )

p
(k)
1 + p

(k)
2 + p

(k)
3 + r

(k)
1 + r

(k)
2 + r

(k)
3

q
(k)
1 + q

(k)
2 + q

(k)
3

− (p
(k)
1 + p

(k)
3 + r

(k)
1 + r

(k)
3 )

∣∣∣∣∣
√

2(q
(k)
1 + q

(k)
3 )

.

From Lemma 3.2 and (3), (4) and (5) of Lemma 3.4, we obtain

d(k, x, y) =
√

2

q
(k)
1 + q

(k)
3

,

h1(k, x, y) = 1√
2q

(k)
3 (q

(k)
1 + q

(k)
3 )

and h2(k, x, y) = 1√
2(q

(k)
1 + q

(k)
3 )(q

(k)
1 + q

(k)
2 + q

(k)
3 )

.

These imply that the diameter of ∆k is bounded above by d(k, x, y). Next we show that
d(k, x, y) is monotone decreasing.

(i) If q
(k−1)
1 > 0, then by Lemma 3.2, we see that

q
(k)
1 + q

(k)
3 =



(nk + mk − 1)q

(k−1)
1 + (nk + mk)q

(k−1)
3 if εk = +1

(nk + mk + 1)q
(k−1)
1 + (nk + mk)q

(k−1)
3 if εk = −1

> q
(k−1)
1 + q

(k−1)
3 for εk = ±1 .
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(ii) If q
(k−1)
1 < 0, then by Lemma 3.2, we see that

q
(k)
1 + q

(k)
3 =




(nk + mk − 1)(q
(k−1)
1 + q

(k−1)
3 ) + q

(k−1)
3 if εk = +1

(nk + mk − 1)(q
(k−1)
1 + q

(k−1)
3 ) + (2q

(k−1)
1 + q

(k−1)
3 ) if εk = −1

> q
(k−1)
1 + q

(k−1)
3 for εk = ±1 .

These complete the proof of this lemma. �

LEMMA 3.9. (C.4) We have

∞∑
k=1

λ(Dk) < ∞

where λ(A) denotes the two dimensional Lebesgue measure of a Borel set A of R2.

PROOF. It is easy to see that

Dk = {〈(+1, 1, 1), . . . , (+1, 1, 1︸ ︷︷ ︸
k times

)〉, 〈(−1, 1, 1), . . . , (−1, 1, 1︸ ︷︷ ︸
k times

)〉} .

Then we see that

〈(−1, 1, 1), . . . , (−1, 1, 1︸ ︷︷ ︸
k times

)〉 =
{
(x, y) | 2 − k + 1

k
x ≤ y < 1,

k

k + 1
− k

k + 1
x ≤ y < 1

}
.

From Lemma 4.5 of [7], we obtain

λ(Dk) = 2

(k + 1)(2k + 1)
.

This is the assertion of this lemma. �

Then we obtain the following theorem by Theorem 1 of [10].

THEOREM 3.10. There exists an absolutely continuous invariant probability measure
µ for S and (S, µ) is exact.

PROOF. We see that the modified negative slope algorithm satisfies (C.1)–(C.4)
of Yuri’s conditions. Hence we complete the proof of Theorem 3.10 by Theorem 1 of
[10]. �

REMARK 3.11. The exactness implies not only ergodicity but also mixing of all de-

grees. In [5], they showed the explicit form of the density function dµ
dλ

, which we will see in
§4, and its ergodicity.

Next we show the following theorem.
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THEOREM 3.12 (Rohlin’s entropy formula). The entropy hµ(S) of (X, S, µ) is given
by

hµ(S) =
∫

X

log | det DS| dµ .

In the following, we show (C.5)–(C.8) of Yuri’s conditions, which imply this theorem.

LEMMA 3.13 (C.5).

∞∑
l=0

∑
∆l∈Dl

(
sup

(x,y)∈
(
∪ k

j=1Bj

) | det DΨ∆l (x, y)|
)

< ∞ .

PROOF. It is easy to see that

det DΨ∆l (x, y) = 1

(−lx − ly + 2l + 1)3

for ∆l = 〈(−1, 1, 1), . . . , (−1, 1, 1)〉. Then we complete this lemma from Lemma 4.7
of [7]. �

LEMMA 3.14 (C.6).

�D1 = 2 .

PROOF. This is obvious. �

LEMMA 3.15 (C.7). For every ∆k ∈ Dk , we have

sup(x,y)∈X |det DΨ∆k (x, y)|
inf(x,y)∈X |det DΨ∆k (x, y)| = O(k3) .

PROOF. This follows from Lemma 3.13 and Lemma 4.9 of [7]. �

LEMMA 3.16 (C.8). The function log | det DS| is integrable with respect to λ.

PROOF. We can complete this lemma by Lemma 4.10 of [7]. �

Then we finish the proof of the Theorem 3.12 by Theorem 2 of [10].
We show that the modified negative slope algorithm is weak Bernoulli in the following.

THEOREM 3.17. The modified negative slope algorithm with the absolutely continu-
ous invariant probability measure µ is weak Bernoulli.

To prove this theorem, we show (C.4)∗ and (C.9) of Yuri’s conditions.

LEMMA 3.18 (C.4)∗.

∞∑
k=1

λ(Dk) · log k < ∞ .
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PROOF. Since we have λ(Dk) = 2
(k+1)(2k+1)

from the proof of Lemma 3.9. This is the

assertion of this lemma. �

LEMMA 3.19 (C.9). If 〈(ε1, n1,m1), . . . , (εk, nk,mk)〉 ∈ Dc
k and 〈(ε2, n2,m2), . . . ,

(εk, nk,mk)〉 ∈ Dk−1, then we have 〈(ε1, n1,m1)〉 ∈ B1, that is, (ε1, n1,m1) �= (±1, 1, 1).

PROOF. It is easy to see from the definitions of Dk and Bk . �

Since S satisfies (C.1)–(C.9) with (C.4)∗, it implies the assertion of Theorem 3.17 by
Theorem 3 of [10].

4. Absolutely continuous invariant measure

In [5], the density function of the absolutely continuous invariant probability measure of
the modified negative slope algorithm was given by

dµ

dλ
= 1

4 log 2

1

(x + y)(2 − x − y)
.

This was checked by Kuzmin’s equation

f (x, y) =
∑

ε=±1,n,m≥1

f (Ψ(ε,n,m)(x, y))| det Ψ(ε,n,m)(x, y)|

where f (x, y) = 1
(x+y)(2−x−y)

.

In this section, we give the same result by a different way which is called a “natural
extension method”. This method was originally introduced by [8] for a class of continued

fraction algorithms. Let X = X × {(−∞, 0)2 ∪ (1,∞)2}. For (x, y, z,w) ∈ X, we define a

map S on X by

S(x, y, z,w)

=




(
n′(x, y) − y

(x + y) − 1
, m′(x, y) − x

(x + y) − 1
, n′(x, y) − w

(z + w) − 1
,

m′(x, y) − z

(z + w) − 1

)
if x + y > 1(

1 − y

1 − (x + y)
− n(x, y),

1 − x

1 − (x + y)
− m(x, y),

1 − w

1 − (z + w)
− n(x, y),

1 − z

1 − (z + w)
− m(x, y)

)
if x + y < 1 ,

where n′(x, y) = n(x, y) + 1 and m′(x, y) = m(x, y) + 1. Then it is easy to see that S is

bijective on X except for the set of four dimensional Lebesgue measure 0.
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PROPOSITION 4.1. The measure µ defined by

dµ

dλ
= 1

|(x + y) − (z + w)|3

is an invariant measure for S, where λ denotes the four dimensional Lebesgue measure.

PROOF. We complete this lemma by Proposition 5.1 of [7]. �

COROLLARY 4.2. The measure µ defined by

dµ

dλ
= 1

4 log 2

1

(x + y)(2 − x − y)

is an invariant probability measure for S.

PROOF. It is easy to see that the projection of µ to X is an invariant measure for S. Then
we have∫

(−∞,0)×(−∞,0)

1

|(x + y) − (z + w)|3 dzdw +
∫

(1,∞)×(1,∞)

1

|(x + y) − (z + w)|3 dzdw

= 1

(x + y)(2 − x − y)
.

This is the assertion of this corollary. �

Then we can compute the entropy hµ(S) explicitly from Theorem 3.12 and Corollary
4.2.

PROPOSITION 4.3.

hµ(S) = π2

8 log 2
.

PROOF. From Proposition 5.3 of [7] and Corollary 4.2, we complete this lemma. �

From this proposition, we obtain the exponential divergence of q
(k)
3 as k → ∞.

PROPOSITION 4.4.

lim
k→∞

1

k
log q

(k)
3 = π2

24 log 2

for λ-a.e. (x, y) ∈ X.

PROOF. From the Shannon-MacMillan-Breiman theorem, we have

− lim
k→∞

1

k
log µ(∆k) = π2

8 log 2
µ-a.e.
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where ∆k is defined by (εi, ni ,mi) = (εi(x, y), ni(x, y),mi(x, y)) for 1 ≤ i ≤ k. We take

(x, y) so that h(S(x, y, z,w))·| det D(S(x, y, z,w))|·h−1(x, y, z,w) = 1 for h(x, y, z,w) =
dµ/dλ holds. Then we choose a subsequence ((lk) : k ≥ 1) by

l1 = min{l ≥ 1 | (εl(x, y), nl(x, y),ml(x, y)) �= (±1, 1, 1)}
and

lk+1 =




lk + 1 if (εlk (x, y), nlk (x, y),mlk (x, y)) �= (±1, 1, 1)

lk + max{l ≥ 0 | (εlk+i (x, y), nlk+i (x, y),mlk+i (x, y))

= (+1, 1, 1) for 0 ≤ i ≤ l} + 1

if (εlk (x, y), nlk (x, y),mlk (x, y)) = (+1, 1, 1)

lk + max{l ≥ 0 | (εlk+i (x, y), nlk+i (x, y),mlk+i (x, y))

= (−1, 1, 1) for 0 ≤ i ≤ l} + 1

if (εlk (x, y), nlk (x, y),mlk (x, y)) = (−1, 1, 1)

for k ≥ 1, which means that we choose all cylinders ∆l ∈ R(S). Since ∆l is bounded away
from (0, 0) and (1, 1), there exists a constant C1 > 1 such that

1

C1
λ(∆lk ) < µ(∆lk) < C1λ(∆lk ) .

On the other hand, there exists a constant C2 > 1 such that

1

C2(q
(l)
3 )3

< λ(∆l) <
C2

(q
(l)
3 )3

whenever ∆l ∈ R(S), see Lemma 3.7. Hence we obtain

lim
k→∞

1

lk
log q

(lk)
3 = π2

24 log 2

for µ-a.e. (x, y) ∈ X. It is clear that q
(k)
3 = q

(k−1)
3 if (εk(x, y), nk(x, y),mk(x, y)) =

(+1, 1, 1) and 2q
(k)
1 +q

(k)
3 = 2q

(k−1)
1 +q

(k−1)
3 if (εk(x, y), nk(x, y),mk(x, y)) = (−1, 1, 1).

Since the indicator function of 〈(±1, 1, 1)〉 is obviously integrable with respect to µ,

lim
k→∞

lk − lk−1

lk
= 0

for µ-a.e. (x, y) ∈ X. Hence we have

lim
l→∞

1

l
log q

(l)
3 = π2

24 log 2

for µ-a.e, or equivalently λ-a.e, (x, y) ∈ X. �
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5. Characterization of periodic points of the modified negative slope algorithm

In the previous section, we define S, the natural extension of the modified negative slope

algorithm, on X = X×{(−∞, 0)2∪(1,∞)2}. In this section, we show the following theorem.

THEOREM 5.1. Suppose iteration by the modified negative slope algorithm S of
(x, y) ∈ X does not stop. Then the sequence (Sk(x, y) : k ≥ 0) is purely periodic if and

only if x and y are in the same quadratic extension of Q and (x, y, x∗, y∗) ∈ X where x∗
denotes the algebraic conjugate of x.

5.1. Necessary part of Theorem 5.1. We show two lemmas to prove the necessary
condition of Theorem 5.1.

LEMMA 5.2. Suppose iteration by the modified negative slope algorithm S of (x, y) ∈
X does not stop. Then, x and y are in the same quadratic extension of Q if the sequence
(Sk(x, y) : k ≥ 0) is purely periodic.

PROOF. Suppose the sequence (Sk(x, y) : k ≥ 0) is purely periodic for (x, y) ∈ X,
then there exists l > 0 such that Sl(x, y) = (x, y). From Lemma 3.4, we see that

x + y = (p
(l)
2 + r

(l)
2 )(x + y) + (p

(l)
3 + r

(l)
3 )

q
(l)
2 (x + y) + q

(l)
3

.

Then we have the following quadratic equation with respect to (x + y).

q
(l)
2 (x + y)2 + (q

(l)
3 − p

(l)
2 − r

(l)
2 )(x + y) − (p

(l)
3 + r

(l)
3 ) = 0 .

Here, we put a function g(z) as follows.

g(z) = q
(l)
2 z2 + (q

(l)
3 − p

(l)
2 − r

(l)
2 )z − (p

(l)
3 + r

(l)
3 ) .

Then it is clear that g(z) = 0 has a root in 0 < z < 2.
From Lemma 3.2, Lemma 3.3 and Lemma 3.5, we see the following.

(I) If q
(l)
2 > 0, we see that

g(0) = −p
(l)
3 − r

(l)
3 < 0 and

g(2) = 4q
(l)
2 + 2q

(l)
3 − 2(p

(l)
2 + p

(l)
3 ) − (p

(l)
3 + r

(l)
3 )

= 2q
(l)
2

(
2 − p

(l)
2 + r

(l)
2

q
(l)
2

)
+ q

(l)
3

(
2 − p

(l)
3 + r

(l)
3

q
(l)
3

)
> 0 .

(II) If q
(l)
2 < 0, we see that

g(0) = −p
(l)
3 − r

(l)
3 < 0 and

g(2) = 2q
(l)
2

(
2 − p

(l)
2 + r

(l)
2

q
(l)
2

)
+ q

(l)
3

(
2 − p

(l)
3 + r

(l)
3

q
(l)
3

)
.
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From (5) of Lemma 3.4, we have

g(2) = 2q
(l)
2

{
2 −

(
p

(l)
3 + r

(l)
3

q
(l)
3

+ 1

q
(l)
2 q

(l)
3

)}
+ q

(l)
3

(
2 − p

(l)
3 + r

(l)
3

q
(l)
3

)

= 1

q
(l)
3

{
(2q

(l)
3 − (p

(l)
3 + r

(l)
3 ))(2q

(l)
2 + q

(l)
3 ) − 2

}
.

We see that 2q
(l)
3 −(p

(l)
3 +r

(l)
3 ) and 2q

(l)
2 +q

(l)
3 are positive integers. So, if 2q

(l)
2 +q

(l)
3 = 1,

then we have

Ψ∆l (1, 1) =
(

p
(l)
1 + p

(l)
2 + p

(l)
3

q
(l)
1 + q

(l)
2 + q

(l)
3

,
r
(l)
1 + r

(l)
2 + r

(l)
3

q
(l)
1 + q

(l)
2 + q

(l)
3

)

= (p
(l)
1 + p

(l)
2 + p

(l)
3 , r

(l)
1 + r

(l)
2 + r

(l)
3 )

∈ X .

Thus we see

0 ≤ p
(l)
1 + p

(l)
2 + p

(l)
3 ≤ 1 .

From Lemma 3.1, we have

−1 ≤ 2p
(l)
2 + p

(l)
3 ≤ 0 .

This is the contradiction to Lemma 3.3. Then we have

(2q
(l)
3 − (p

(l)
3 + r

(l)
3 ))(2q

(l)
2 + q

(l)
3 ) ≥ 2 .

Note that if x + y ∈ Q for (x, y) ∈ X, then (Sk(x, y) : k ≥ 0) is not periodic from

Proposition 2.3. Since we assume that (Sk(x, y) : k ≥ 0) is purely periodic for (x, y) ∈ X,
we obtain g(2) �= 0. This implies that g(2) > 0.

Thus, if (Sk(x, y) : k ≥ 0) is purely periodic for (x, y) ∈ X, then x + y is a quadratic

irrational number and the algebraic conjugate of x + y satisfies (x + y)∗ < 0 if q
(l)
2 > 0 or

(x + y)∗ > 2 if q
(l)
2 < 0 from (I) and (II). Furthermore, from Lemma 3.1 and Lemma 3.4, we

have

x = p
(k)
2 (x + y) + p

(k)
3

q
(k)
2 (x + y) + q

(k)
3 − 1

,

y = r
(k)
2 (x + y) + r

(k)
3

q
(k)
2 (x + y) + q

(k)
3 + 1

.

This is the assertion of this lemma. �
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LEMMA 5.3. Let Γ = {(z,w) | z + w < 0, z + w > 2}. Suppose iteration by the
modified negative slope algorithm S of (x, y) ∈ X does not stop. Then, for (x, y, z,w) ∈
X × Γ , there exists k0 ∈ N s.t. for k > k0, S

k
(x, y, z,w) ∈ X.

PROOF. Suppose that (z,w) ∈ {(−∞, 0)2 ∪ (1,∞)2}, (z′, w′) ∈ Γ \{(−∞, 0)2 ∪
(1,∞)2} and z + w = z′ + w′ (see Fig. 1).

0 1

1

(z,w)(z,w)

(z,w)

(z′, w′)
(z′, w′)

FIGURE 1

w

z

Then we have

|z1 − z′
1| + |w1 − w′

1|

=




∣∣∣∣ 1 − w

1 − (z + w)
− 1 − w′

1 − (z′ + w′)

∣∣∣∣ +
∣∣∣∣ 1 − z

1 − (z + w)
− 1 − z′

1 − (z′ + w′)

∣∣∣∣ if ε1 = +1∣∣∣∣ w′

(w′ + z′) − 1
− w

(z + w) − 1

∣∣∣∣ +
∣∣∣∣ z′

(w′ + z′) − 1
− z

(z + w) − 1

∣∣∣∣ if ε1 = −1

=




1

|1 − (z + w)| (|w
′ − w| + |z′ − z|) if ε1 = +1

1

|(z + w) − 1| (|w − w′| + |z − z′|) if ε1 = −1

< |z − z′| + |w − w′| .

Here, we write k-th iteration by S of (z,w) ∈ Γ as (zk,wk) for simplicity. By the simple
calculation, we see that zk + wk = z′

k + w′
k for k ≥ 1. Then, if iteration by the modified
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negative slope algorithm S of (x, y) ∈ X does not stop, there exists C > 1 s.t.

|zk − z′
k| + |wk − w′

k| <
1

Ck
(|z − z′| + |w − w′|)

for k ≥ 1. Since X is S-invariant, there exists k0 ∈ N s.t. for k > k0, we have

(z′
k, w

′
k) ∈ (−∞, 0)2 ∪ (1,∞)2 .

Note that the sequence ((zk,wk) : k ≥ 1) does not converge to the boundary of X if the

sequence (Sk(x, y) : k ≥ 1) does not stop at any finite k. We write the image by S of (z,w)

as S(z,w) for simplicity.
(I) For w < 0, we see that

S(0, w) =




(
1 − n ,

1

1 − w
− m

)
if ε = +1(

n + 1

w − 1
, 1 + m

)
if ε = −1 .

(II) For w > 1, we see that

S(1, w) =




(
1

w
− (1 + n) , −m

)
if ε = +1(

n , (1 + m) − 1

w

)
if ε = −1 .

From Remark 2.4, we see that ((zk,wk) : k ≥ 1) does not converge to the boundary of X if

the sequence (Sk(x, y) : k ≥ 1) does not stop at any finite k. �

Now we can complete the necessary part of Theorem 5.1.

PROOF (necessary part of Theorem 5.1). Suppose the sequence (Sk(x, y) : k ≥ 0) is
purely periodic for (x, y) ∈ X. Then we see that x and y are in the same quadratic extension

of Q from Lemma 5.2. It is easy to see that (S
k
(x, y, x∗, y∗) : k ≥ 0) is purely periodic if

(Sk(x, y) : k ≥ 0) is purely periodic, where x∗ is the algebraic conjugate of x (see Remark 3.5

of [6] for details). Therefore we see that there exists N > 0 such that S
N

(x, y, x∗, y∗) ∈ X

from Lemma 5.3. Since X is S-invariant, we obtain (x, y, x∗, y∗) ∈ X. �

5.2. Sufficient part of Theorem 5.1. We show the sufficient part of Theorem 5.1 in
this subsection. Suppose x and y are in the same quadratic extension of Q and (x, y, x∗, y∗) ∈
X. Then we show that the cardinality of (x, y, x∗, y∗) ∈ X is finite and the orbit of

(x, y, x∗, y∗) by S is purely periodic. We prepare some lemmas to prove the sufficient condi-
tion of Theorem 5.1.

LEMMA 5.4 (Ishimura-Ito [6]). If α′ is equivalent to a quadratic irrational number α

with respect to modular transformations, then the discriminant of α′ and α are equal.
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See Lemma 3.8 of [6] for the proof of this lemma, Definition 3.6 of [6] for the definition
of “discriminant” and Definition 3.7. of [6] for the definition of “equivalent”.

LEMMA 5.5 (Ishimura-Ito [6]). The cardinality of quadratic equations ax2+bx+c =
0 with fixed discriminant where a, b, c ∈ Z, GCM(a, b, c) = 1, ac < 0 is finite.

See Lemma 3.9 of [6] for the proof of this lemma.

LEMMA 5.6. Assume that α and β are in the same quadratic extension of Q and

(α, β, α∗, β∗) ∈ X, then Dα+β is greater than Dα and Dβ , where Dα is the discriminant
of α.

PROOF. If (α, β, α∗, β∗) ∈ X × (−∞, 0)2, we obtain the assertion of this lemma from
Lemma 3.10 of [6]. If (α, β, α∗, β∗) ∈ X × (1,∞)2, we see that

(α, α∗) =
(−b − c

√
θ

a
,
−b + c

√
θ

a

)
, a, c > 0 , GCM(a, b, c) = 1

(β, β∗) =
(

−q − r
√

θ

p
,
−q + r

√
θ

p

)
, p, r > 0 , GCM(p, q, r) = 1

where θ does not contain square numbers as factors. By the same calculations as Lemma 3.10
of [6], we complete this lemma. �

We give the last lemma to complete Theorem 5.1.

LEMMA 5.7. Suppose iteration by S of (x, y) ∈ X does not stop. Then the sequence

(S
k
(x, y, x∗, y∗) : k ≥ 0) is purely periodic if x and y are in the same quadratic extension of

Q and (x, y, x∗, y∗) ∈ X, where x∗ denotes the algebraic conjugate of x.

PROOF. If x and y are in the same quadratic extension of Q and (x, y, x∗, y∗) ∈ X, then
we see that x + y is equivalent to xk + yk, k ≥ 1 with respect to S from (3) and (8) of Lemma
3.4. It implies that Dx+y is equal to Dxk+yk for all k ≥ 1 by Lemma 5.4. From Lemma 5.6,
Dxk and Dyk are bounded above by Dx+y for all k ≥ 1. This implies that the cardinality of

{Sk(x, y) | (x, y) ∈ X, k ≥ 0} is finite from Lemma 5.5. Since X is S-invariant, there exists
l ≥ 1 s.t. for any k > l,

S
k
(x, y, x∗, y∗) = S

k+l
(x, y, x∗, y∗) .

Since S is bijective on X, we see that

S
k−1

(x, y, x∗, y∗) = S
k+l−1

(x, y, x∗, y∗) .

By induction, we get

(x, y, x∗, y∗) = S
l
(x, y, x∗, y∗) .

This completes this lemma and the proof of Theorem 5.1. �
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Then we have the following corollary of Theorem 5.1.

COROLLARY 5.8. Suppose iteration by the modified negative slope algorithm S of
(x, y) ∈ X does not stop. Then x and y are in the same quadratic extension of Q if and only

if the sequence (Sk(x, y) : k ≥ 0) is eventually periodic.

See Corollary 3.12. of [6] for the proof.
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