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Abstract. Let p be an odd prime and r a divisor of p — 1. We present a characterization of metacyclic
extensions of degree pr containing a given cyclic extension of degree » over a field of characteristic other than p.
Furthermore, we give a method of constructing polynomials with Galois groups which are Frobenius groups of degree

D
1. Introduction.

Let p be an odd prime and r a divisor of p — 1. Let k be a field of characteristic other
than p. In this note, we investigate metacyclic extensions over k whose Galois groups are
given as a semi-direct product H x N, where H and N are cyclic groups of order r and p,
respectively. We will consider a cyclic extension K /k of degree r satisfying some technical
conditions, and classify cyclic extensions over K of degree p which are Galois over k, and
characterize such metacyclic extensions over k of degree pr in terms of the subextensions of
K (¢)/k, where ¢ is a primitive p-th root of unity. The discussion will be done via Kummer
extensions over K (¢) of degree p, for which Cohen’s argument in [2, Chapter 5] is useful to
us.

The Galois group G of an irreducible polynomial over k of degree p is regarded as a
transitive permutation group of degree p. Furthermore, as observed by E. Galois himself, such
G is a Frobenius group of order ps for some divisor s of p — 1, provided G is solvable. We
shall give a method of generating polynomials of degree p whose Galois groups are Frobenius
groups.

This note contains partially the result of Imaoka and Kishi [4]. The authors would like
to thank Prof. K. Miyake, Dr. Y. Kishi and Mr. M. Imaoka for their valuable discussions.

2. The metacyclic group M, (s|r).

Throughout this note, we will fix an odd prime p. The field Z/ pZ of integers modulo p
will be denoted F,. Let r be a divisor of p — 1.

We begin with the definition of a metacyclic group of order pr, denoted by M, (s|r), as
follows. For the details of the group theoretical properties, see for example [3]. Consider a
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group given by a semi-direct product H x N, where N is a normal subgroup of degree p and
H is a cyclic subgroup of degree r. This is a metacyclic group with two generators g and h
satisfying

gpzhrzl’ ghzhgx
where x is regarded as an element of F;. In fact, g, h may be taken to be generators of N

and H, respectively. Let s be the order of x. Since gh! = hig* fori € Z, we see that s is
a divisor of r, and further, the minimum positive integer i such that A commutes with g is
given by i = s. It should be noted that the structure of the group is independent of the choice
of x and determined by only » and 5. We denote this group by M, (s|r). A Galois extension
with Galois group M, (s|r) is called an M, (s|r)-extension.

Let G be a finite group and N a normal subgroup of G. Suppose G/N is cyclic and N is
abelian. Let I and I> be abelian subgroups of G containing N. Then it is easy to show that
I'1 I is also abelian. So there exists the maximum abelian subgroup of G containing N.

LEMMA 1. Let G be a finite group and N a normal subgroup of G. Assume that G/ N
and N are cyclic groups of order r and p, respectively. Let s be the index of the maximum
abelian subgroup of G containing N. Then G = M (s|r).

PROOF. Let g be a generator of N and take &2 € G such that its class in G/N is a
generator of G/N. Replacing & by its p-th power if needed, we have g” = h" = 1. There is
X € FIX, such that gh = hg*. Since gh' = h' g™ fori € Z, the order of x is given by

min{i |i >0, x' =1} =min{i|i > 0, gh' = h'g}
=min{(G : I')|G D I' O N and I is abelian} .

The last minimum is equal to s. Hence we obtain G = M, (s|r). O

One consequence of this lemma is that M, (s|r) and M, (s’|r) are never isomorphic if
divisors s, s” of r are distinct. Besides this, we itemize some properties of M, (s|r) as follows:

e M,(s|r) is abelian, therefore cyclic, if and only if s = 1.
e M,(s|r) is a Frobenius group if and only if s = r > 1.
e M,(2]2) is the dihedral group of order 2p.

As mentioned in Introduction, if the Galois group of an irreducible polynomial over k of
degree p is solvable, then it is a Frobenius group of order ps for some divisor s of p — 1. In
other words, the Galois group of such a polynomial is M, (s|s). We will consider polynomials
of this kind, in the last two sections.

3. Cyclic extensions.

Let ¢ be a fixed primitive p-th root of unity. For a field F, F will mean the p-th cyclo-
tomic extension of F, thatis, F = F(¢). For a Galois extension E/F, we denote its Galois
group by Gal(E/F).
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Let K be a field of characteristic other than p. Put V(K) = K */K *? which is consid-
ered to be an F,-vector space. Let

K* > V(K), ar—a

be the canonical surjective homomorphism. Kummer theory says that any cyclic extension
over K of degree p is given by K ({/a) for some @ € K*. Thus, we have a bijection be-
tween the sets of such cyclic extensions and of one-dimensional subspaces of V (K). Let
o be a generator of Gal(K/K) and put d = [K : K]. We define the injective homomor-
phism x : Gal(K/K) — FJby¢? = ¢ @) Let & be an idempotent of the group algebra
F,[Gal(K /K)] defined by

= o
&= Ezgx(aﬂ)a’ )

This is an F-linear transformation on V(K), and its image V (K)¢ is the eigenspace of
with the eigenvalue x (o), that is,

@ =a*? & ae V(K
for o« € K*. We define
I(K)={eeK*|aeV(K)} and I"(K)={ael(K)|agK*P}.
The following proposition is known (cf. Cohen [2, Chapter 5]).

PROPOSITION 1. If L is a cyclic extension of degree p over K, and « € K* satisfies
L = K(¥/a), then we have a € I*(K). Conversely, forany a € I*(K), K ({/a) is an abelian
extension over K of degree dp which contains a unique cyclic extension L over K of degree
D

Thus there is a bijection between the sets of cyclic extensions over K of degree p and of
one-dimensional subspaces of V (K)®.

4. M,(s|r)-extensions.

In this section, we consider the case that K has a subfield k such that K/k is a cyclic
extension of degree r. Let us assume K /k has the following properties:

(A) KnNnk=k,

(B) r > landrisadivisorofd = [K : K].
We will fix such an extension K/k in the following discussion. Under these assumptions,
we will characterize the cyclic extensions over K of degree p which are Galois extensions
over k with the Galois group M, (s|r), that is, M, (s|r)-extensions over k containing K. The
degree [12 : k]lisequaltod = [IZ : K] by (A). So the four fields k, K, K and k form a
“parallelogram”. It follows that K /k is abelian and its Galois group is the direct product of
those of K /K and K /k. Since d divides p — 1, the assumption (B) implies that the degree
[I% : k] = rd is prime to p.
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We put V(E) = E*/E*P also for a subextension E of K /k. Since EX N K*P = EXP,
we can regard V (E) as a subspace of V (K). Moreover Gal(K / k) acts on V (E) naturally, so
V(E) is an F,[Gal(K / k)]-module.

LEMMA 2. Let H be a subgroup ofGal(k/k) and E the subextension 0f1€/k corre-
sponding to H. Then, for « € K* the following properties (i), (ii) are equivalent:

i) ae€V(E).

(i) @ =aforevery& € H.

PROOF. Itiseasy to see that (i) implies (ii). Conversely, if « satisfies (ii), then alK:E]

Nk/E(O‘) e V(E). Since [I% : E]1is prime to p, we have o € V(E). O

Let o and ¢ be as in the previous section. For a subextension E of K /k, we also define
I(E)={e e KX|@a e V(E)} and I*(E)={aecl(E)|a¢gK*F}.
Note that V(E) N V(k )¢ = V(E)® holds, since ¢ is an idempotent. Let T be a generator of
Gal(K /k). Then the Galois group of K / k is generated by ¢ and t. Let s be a divisor of  and
put
Js={jll=j=s.(,s) =1}
For j € Ji, we define an element of Gal([?/k) as
ps, j) =¥/t
and denote by E (s, j) the subextension of K/k corresponding to the cyclic subgroup gener-
ated by p(s, j).

The main theorem of this note is the following

THEOREM 1. Let L be a cyclic extension of degree p over K and take o € I*(K) with
L = K(Ya).

(1) IfL/k is Galois, then L/k is an M, (s|r)-extension for some divisor s of r.

(2) Let s be a divisor of r. Then L/k is an My(s|r)-extension if and only if o €
I*(E(s, j)) for some j € Js.

Since (1) is an immediate consequence of Lemma 1, we shall show (2) only. We need
the following two lemmas.

LEMMA 3. Let F be a subfield of K such that K/ F is a Galois extension. Then, for
ae KX, the following (i), (ii) are equivalent:

(i) K( Y/a)/F is a Galois extension.

(ii) Forevery & € Gal(K/F), there exists x € FJ such that at =at.

PROOF. If K(/a)/F is a Galois extension, then K (¥of) = K (/) for any & €
Gal(K /F). Therefore, from Kummer theory, we see that there exists x € F; such that
aé = @*. The converse is obvious. a

LEMMA 4. Supposea € K* satisfies @* = & for some x € F . If the order of x is
equal to s, then IZ( {’/&)/l; is an My (s|r)-extension.
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PROOF. First we recall that s divides r = [I% : Ig]. Let i be a divisor of r and F;
the subextension of K /k corresponding to <ti>. Suppose x’ = 1. Then @ = &' = @, thus
a € V(F;) from Lemma 2. So, there exists 8 € Fl.X such that,B_ = a, and IZ({’/&) contains the
cyclic extension F; (&/B) over F; of degree p. Hence K ({/«)/ F; is abelian. Furthermore, it is
not difficult to verify the converse. So, K ({/«)/F; is abelian if and only if x’ = 1. Therefore
F is the smallest subextension of K /k over which K ({/a) is abelian. Using Lemma 1, we
conclude that 1%((7&)//2 is an M, (s|r)-extension. O

PROOF OF THEOREM 1 (2). Assume that L is an M, (s|r)-extension of k. Then L /k
is also an M (s|r)-extension. Therefore, it follows from Lemmas 3 and 4 that there exists
X € F; of order s with @® = &*. Since x(c%/%) is of order s as well, we can choose
j € J satisfying xx(0%/%)/ = 1. Then @) = a T = e = a, and thus
@ € V(E(s, j)) from Lemma?2. Sowehave@ € V(E(s, j))NV(K)¢ = V(E(s, j))°. Hence
a € I*(E(s, J)).

Conversely, suppose a € I*(E(s, j)) for some j € J;. Then we have @”*/) = @. On
the other hand, we know the relation @° = @*(®) and the fact that Gal(K / k) is generated by
o and p(s, j). Thus, by Lemma 3, we see that i/k is Galois. So, if L’ is a conjugate field of
L over k, then L’ is contained in L and [L' : K] = p, and thus L’ must coincide with L. This
means that L /k is Galois. The Galois group of L/ k is isomorphic to Gal(L /k). Now we have
&t = q° Pr6) = g ") Since j is prime to s, the order of x (o ~%/*) is equal to s.
Therefore, by Lemma 4, I:/l; is an M (s|r)-extension, and so is L/k. O

In case s = 1, the theorem claims that L/k is abelian extension if and only if « € [ *(l;).

The case r = s = 2 where the Galois groups are dihedral was treated also by Imaoka and
Kishi [4].

5. Defining polynomials for M, (s|r)-extensions.

Let notations and assumptions be as in the previous section. We will fix e € Z[G]
satisfying ye = e mod p for some y € F . Then we have

I(E) ={pyP|Be E*,y € K™},

for a subextension E of I?/k.

Now it follows from Proposition 1 that a cyclic extension L over K of degree p is given
by L = K(Tr, (YB) with B € K satisfying B¢ ¢ K*?, namely, ¢ € I*(K). For such
B, denote by fg(X) the monic minimal polynomial of TrZ/L (4/B°) over K. The next lemma
on the coefficients of fg(X) is obtained by thorough calculations in Cohen [2, Chapter 5].

LEMMA 5. Every coefficient of fg(X) of degree less than p is given in the form of a
finite sum

chﬁz", ¢y € Fg, z, € Z[Gal(K /K)],
v

where Fx is the prime field contained in K.
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Suppose B € E(s, j)* satisfies 8¢ ¢ E(s, j)*P, where s is a divisor of r and j € J;.
Then B¢ € I*(E(s, j)) and, by Theorem 1, the cyclic extension obtained by adjoining a root
of fg(X) to K is an M, (s|r)-extension over k. Furthermore, an M (s|r)-extension of this
kind is always constructed in this manner. Now Lemma 5 implies that fg(X) € k[X], since
K N E(s, j) = k. So we are interested in the minimal splitting field of fg(X) over k. The
Galois group of fg(X) needs to be a Frobenius group, that is, M, (¢|t) with a divisor ¢ of
p — 1. In fact, the following result is obtained in the case s = r.

THEOREM 2. Letj € J, and B € E(r, j)* satisfying B¢ & E(r, j)*P. Then fg(X) €
k[X] and its minimal splitting field over k is the M, (r|r)-extension L over k such that K C
L C K(YP°).

PROOF. Let Lg be the minimal splitting field of fg(X) overk, and put Kg = Lg N K.
Then, since Lg/Kg is a cyclic extension of degree p, it follows that L = LgK is abelian
over Kg. However, by Lemma 1, the M, (r|r)-extension L/k never contains a subextension

F such that F C K and L/F is abelian. Thus Kz must be equal to K. Hence we conclude
Lg=L. O

As for a divisor s of r, we have the following

THEOREM 3. Let s be a divisor of r and j € J;. Take B € E(s, j)* such that
B¢ € E(s, j)*P. Then fg(X) € k[X] and its Galois group over k is isomorphic to Mp(s|s).

PROOF. Let K be the cyclic extension over k of degree s contained in K. Then K

is the subextension of K /k corresponding to the subgroup (z°). Since ¥ = p(s, j)* €
(p(s, j)), we have E(s, j) € K. So, applying the above discussion to the extension K/k
instead of K /k, we completes the proof. a

Polynomials with Frobenius groups of degree p as Galois groups are studied from an-
other viewpoint, by Bruen, Jensen and Yui [1].

6. Examples.

We will illustrate the above results with some numerical examples. Take k = Q and

p = 5. In this case, Q = Q(¢) is cyclic over Q of degree 4. Let K = Q(v2 + V/2). Then
K /Q is a cyclic extension of degree 4 satisfying the properties K NQ = Q and [K : K] = 4.

Put
=2++2, =V2-V2, 63=—y2-— =—\/2+ 2.

We can take generators o, 7 of Gal(K /K) and Gal(K /k), respectively, such as ¢° = ¢Z and
67 = 6. Then it is easy to check 6; = 64 and 6; = 03. Now we pute = 3 + 40 + 202 4¢3
which satisfies the congruence 2¢ = e mod 5. For B € K* satisfying B¢ € I*(K), the
minimal polynomial fg(X) of Trj /L (/B®) is written in the form
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f3(X) = X" — 10N(B)X = SN(B)T (B'*7) X*

+5NBYN(B) — T(B277 )X — N(B)T (B>

with N = N /K and T =Trg /K which had appeared in Cohen [2, Chapter 5]. Using this,
we present several defining polynomials for Frobenius extensions over Q via E (4, 1), E(4, 3)
and £(2,1).

(1) E@4,1) = Q&) with & = 017 + 6222 + 64¢* + 6323, If we choose B = & + 1,
then B{ € I*(E(4, 1)) and

fp,(X) = X° —310X> — 620X + 10385X + 20956..

The Galois group of fg, (X) over Q is E5(4[4), that is, the Frobenius group of order 20.
() E4,3)=Q(n) withn = 01 + 62¢> + 04¢* + 6302, Taking 2 = n + 1, we have
B5 € I*(E(4,3)) and

fp(X) = X° — 1110X> — 2220X> + 259185X + 75036,

which Galois group over Q is also the Frobenius group of order 20.

(3) EQ2,1) = Q) with © = vV=5+24/5v2. Put 3 = w + 1. Then g €
I*(E(2,1)) and

fp,(X) = X° — 410X> — 820X? +23985X — 13284
The Galois group of fg, (X) over Q is the dihedral group of order 10.
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