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Abstract. Let p be an odd prime and r a divisor of p − 1. We present a characterization of metacyclic
extensions of degree pr containing a given cyclic extension of degree r over a field of characteristic other than p.
Furthermore, we give a method of constructing polynomials with Galois groups which are Frobenius groups of degree
p.

1. Introduction.

Let p be an odd prime and r a divisor of p − 1. Let k be a field of characteristic other
than p. In this note, we investigate metacyclic extensions over k whose Galois groups are
given as a semi-direct product H � N , where H and N are cyclic groups of order r and p,
respectively. We will consider a cyclic extension K/k of degree r satisfying some technical
conditions, and classify cyclic extensions over K of degree p which are Galois over k, and
characterize such metacyclic extensions over k of degree pr in terms of the subextensions of
K(ζ )/k, where ζ is a primitive p-th root of unity. The discussion will be done via Kummer
extensions over K(ζ ) of degree p, for which Cohen’s argument in [2, Chapter 5] is useful to
us.

The Galois group G of an irreducible polynomial over k of degree p is regarded as a
transitive permutation group of degree p. Furthermore, as observed by E. Galois himself, such
G is a Frobenius group of order ps for some divisor s of p − 1, provided G is solvable. We
shall give a method of generating polynomials of degree p whose Galois groups are Frobenius
groups.

This note contains partially the result of Imaoka and Kishi [4]. The authors would like
to thank Prof. K. Miyake, Dr. Y. Kishi and Mr. M. Imaoka for their valuable discussions.

2. The metacyclic group Mp(s|r).
Throughout this note, we will fix an odd prime p. The field Z/pZ of integers modulo p

will be denoted Fp. Let r be a divisor of p − 1.
We begin with the definition of a metacyclic group of order pr , denoted by Mp(s|r), as

follows. For the details of the group theoretical properties, see for example [3]. Consider a
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group given by a semi-direct product H � N , where N is a normal subgroup of degree p and
H is a cyclic subgroup of degree r . This is a metacyclic group with two generators g and h

satisfying

g p = hr = 1 , gh = hg x

where x is regarded as an element of F×
p . In fact, g , h may be taken to be generators of N

and H , respectively. Let s be the order of x. Since ghi = hig xi
for i ∈ Z, we see that s is

a divisor of r , and further, the minimum positive integer i such that hi commutes with g is
given by i = s. It should be noted that the structure of the group is independent of the choice
of x and determined by only r and s. We denote this group by Mp(s|r). A Galois extension
with Galois group Mp(s|r) is called an Mp(s|r)-extension.

Let G be a finite group and N a normal subgroup of G. Suppose G/N is cyclic and N is
abelian. Let Γ1 and Γ2 be abelian subgroups of G containing N . Then it is easy to show that
Γ1Γ2 is also abelian. So there exists the maximum abelian subgroup of G containing N .

LEMMA 1. Let G be a finite group and N a normal subgroup of G. Assume that G/N

and N are cyclic groups of order r and p, respectively. Let s be the index of the maximum
abelian subgroup of G containing N . Then G = Mp(s|r).

PROOF. Let g be a generator of N and take h ∈ G such that its class in G/N is a
generator of G/N . Replacing h by its p-th power if needed, we have g p = hr = 1. There is
x ∈ F×

p such that gh = hg x . Since ghi = hig xi
for i ∈ Z, the order of x is given by

min{i | i > 0, xi = 1} = min{i | i > 0, ghi = hig }
= min{(G : Γ ) | G ⊃ Γ ⊃ N and Γ is abelian} .

The last minimum is equal to s. Hence we obtain G = Mp(s|r). �

One consequence of this lemma is that Mp(s|r) and Mp(s′|r) are never isomorphic if
divisors s, s′ of r are distinct. Besides this, we itemize some properties of Mp(s|r) as follows:

• Mp(s|r) is abelian, therefore cyclic, if and only if s = 1.
• Mp(s|r) is a Frobenius group if and only if s = r > 1.
• Mp(2|2) is the dihedral group of order 2p.

As mentioned in Introduction, if the Galois group of an irreducible polynomial over k of
degree p is solvable, then it is a Frobenius group of order ps for some divisor s of p − 1. In
other words, the Galois group of such a polynomial is Mp(s|s). We will consider polynomials
of this kind, in the last two sections.

3. Cyclic extensions.

Let ζ be a fixed primitive p-th root of unity. For a field F , F̃ will mean the p-th cyclo-
tomic extension of F , that is, F̃ = F(ζ ). For a Galois extension E/F , we denote its Galois
group by Gal(E/F).
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Let K be a field of characteristic other than p. Put V (K̃) = K̃×/K̃×p which is consid-
ered to be an Fp-vector space. Let

K̃× → V (K̃) , α �→ ᾱ

be the canonical surjective homomorphism. Kummer theory says that any cyclic extension
over K̃ of degree p is given by K̃( p

√
α) for some α ∈ K̃×. Thus, we have a bijection be-

tween the sets of such cyclic extensions and of one-dimensional subspaces of V (K̃). Let
σ be a generator of Gal(K̃/K) and put d = [K̃ : K]. We define the injective homomor-
phism χ : Gal(K̃/K) → F×

p by ζ σ = ζ χ(σ ). Let ε be an idempotent of the group algebra

Fp[Gal(K̃/K)] defined by

ε = 1

d

d−1∑
i=0

χ(σ−i)σ i .

This is an Fp-linear transformation on V (K̃), and its image V (K̃)ε is the eigenspace of σ

with the eigenvalue χ(σ), that is,

ᾱσ = ᾱχ(σ ) ⇔ ᾱ ∈ V (K̃)ε

for α ∈ K̃×. We define

I (K̃) = {α ∈ K̃× | ᾱ ∈ V (K̃)ε} and I∗(K̃) = {α ∈ I (K̃) | α 	∈ K̃×p} .

The following proposition is known (cf. Cohen [2, Chapter 5]).

PROPOSITION 1. If L is a cyclic extension of degree p over K , and α ∈ K̃× satisfies
L̃ = K̃( p

√
α), then we have α ∈ I∗(K̃). Conversely, for any α ∈ I∗(K̃), K̃( p

√
α) is an abelian

extension over K of degree dp which contains a unique cyclic extension L over K of degree
p.

Thus there is a bijection between the sets of cyclic extensions over K of degree p and of
one-dimensional subspaces of V (K̃)ε.

4. Mp(s|r)-extensions.

In this section, we consider the case that K has a subfield k such that K/k is a cyclic
extension of degree r . Let us assume K/k has the following properties:

(A) K ∩ k̃ = k,
(B) r > 1 and r is a divisor of d = [K̃ : K].

We will fix such an extension K/k in the following discussion. Under these assumptions,
we will characterize the cyclic extensions over K of degree p which are Galois extensions
over k with the Galois group Mp(s|r), that is, Mp(s|r)-extensions over k containing K . The
degree [k̃ : k] is equal to d = [K̃ : K] by (A). So the four fields k,K, K̃ and k̃ form a
“parallelogram”. It follows that K̃/k is abelian and its Galois group is the direct product of
those of K̃/K and K̃/k̃. Since d divides p − 1, the assumption (B) implies that the degree
[K̃ : k] = rd is prime to p.



200 SHIN NAKANO AND MASAHIKO SASE

We put V (E) = E×/E×p also for a subextension E of K̃/k. Since E× ∩ K̃×p = E×p,
we can regard V (E) as a subspace of V (K̃). Moreover Gal(K̃/k) acts on V (E) naturally, so
V (E) is an Fp[Gal(K̃/k)]-module.

LEMMA 2. Let H be a subgroup of Gal(K̃/k) and E the subextension of K̃/k corre-
sponding to H . Then, for α ∈ K̃× the following properties (i), (ii) are equivalent:

(i) ᾱ ∈ V (E).
(ii) ᾱξ = ᾱ for every ξ ∈ H .

PROOF. It is easy to see that (i) implies (ii). Conversely, if α satisfies (ii), then ᾱ[K̃ :E] =
NK̃/E(α) ∈ V (E). Since [K̃ : E] is prime to p, we have ᾱ ∈ V (E). �

Let σ and ε be as in the previous section. For a subextension E of K̃/k, we also define

I (E) = {α ∈ K̃× | ᾱ ∈ V (E)ε} and I∗(E) = { α ∈ I (E) | α 	∈ K̃×p} .

Note that V (E) ∩ V (K̃)ε = V (E)ε holds, since ε is an idempotent. Let τ be a generator of
Gal(K̃/k̃). Then the Galois group of K̃/k is generated by σ and τ . Let s be a divisor of r and
put

Js = { j | 1 ≤ j ≤ s, (j, s) = 1}.
For j ∈ Js , we define an element of Gal(K̃/k) as

ρ(s, j) = σdj/sτ

and denote by E(s, j) the subextension of K̃/k corresponding to the cyclic subgroup gener-
ated by ρ(s, j).

The main theorem of this note is the following

THEOREM 1. Let L be a cyclic extension of degree p over K and take α ∈ I ∗(K̃) with
L̃ = K̃( p

√
α).

(1) If L/k is Galois, then L/k is an Mp(s|r)-extension for some divisor s of r .
(2) Let s be a divisor of r . Then L/k is an Mp(s|r)-extension if and only if α ∈

I∗(E(s, j)) for some j ∈ Js .

Since (1) is an immediate consequence of Lemma 1, we shall show (2) only. We need
the following two lemmas.

LEMMA 3. Let F be a subfield of K̃ such that K̃/F is a Galois extension. Then, for
α ∈ K̃×, the following (i), (ii) are equivalent:

(i) K̃( p
√

α)/F is a Galois extension.
(ii) For every ξ ∈ Gal(K̃/F ), there exists x ∈ F×

p such that ᾱξ = ᾱx .

PROOF. If K̃( p
√

α)/F is a Galois extension, then K̃(
p
√

αξ ) = K̃( p
√

α) for any ξ ∈
Gal(K̃/F ). Therefore, from Kummer theory, we see that there exists x ∈ F×

p such that
ᾱξ = ᾱx . The converse is obvious. �

LEMMA 4. Suppose α ∈ K̃× satisfies ᾱτ = ᾱx for some x ∈ F×
p . If the order of x is

equal to s, then K̃( p
√

α)/k̃ is an Mp(s|r)-extension.
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PROOF. First we recall that s divides r = [K̃ : k̃]. Let i be a divisor of r and Fi

the subextension of K̃/k̃ corresponding to
〈
τ i

〉
. Suppose xi = 1. Then ᾱτ i = ᾱxi = ᾱ, thus

ᾱ ∈ V (Fi) from Lemma 2. So, there exists β ∈ F×
i such that β̄ = ᾱ, and K̃( p

√
α) contains the

cyclic extension Fi(
p
√

β) over Fi of degree p. Hence K̃( p
√

α)/Fi is abelian. Furthermore, it is
not difficult to verify the converse. So, K̃( p

√
α)/Fi is abelian if and only if xi = 1. Therefore

Fs is the smallest subextension of K̃/k̃ over which K̃( p
√

α) is abelian. Using Lemma 1, we
conclude that K̃( p

√
α)/k̃ is an Mp(s|r)-extension. �

PROOF OF THEOREM 1 (2). Assume that L is an Mp(s|r)-extension of k. Then L̃/k̃

is also an Mp(s|r)-extension. Therefore, it follows from Lemmas 3 and 4 that there exists
x ∈ F×

p of order s with ᾱτ = ᾱx . Since χ(σd/s) is of order s as well, we can choose

j ∈ Js satisfying xχ(σd/s)j = 1. Then ᾱρ(s,j) = ᾱσ dj/s τ = ᾱxχ(σdj/s ) = ᾱ, and thus
ᾱ ∈ V (E(s, j)) from Lemma 2. So we have ᾱ ∈ V (E(s, j))∩V (K̃)ε = V (E(s, j))ε . Hence
α ∈ I∗(E(s, j)).

Conversely, suppose α ∈ I∗(E(s, j)) for some j ∈ Js . Then we have ᾱρ(s,j) = ᾱ. On
the other hand, we know the relation ᾱσ = ᾱχ(σ ) and the fact that Gal(K̃/k) is generated by
σ and ρ(s, j). Thus, by Lemma 3, we see that L̃/k is Galois. So, if L′ is a conjugate field of
L over k, then L′ is contained in L̃ and [L′ : K] = p, and thus L′ must coincide with L. This
means that L/k is Galois. The Galois group of L/k is isomorphic to Gal(L̃/k̃). Now we have
ᾱτ = ᾱσ−dj/sρ(s,j) = ᾱχ(σ−dj/s ). Since j is prime to s, the order of χ(σ−dj/s) is equal to s.
Therefore, by Lemma 4, L̃/k̃ is an Mp(s|r)-extension, and so is L/k. �

In case s = 1, the theorem claims that L/k is abelian extension if and only if α ∈ I ∗(k̃).
The case r = s = 2 where the Galois groups are dihedral was treated also by Imaoka and
Kishi [4].

5. Defining polynomials for Mp(s|r)-extensions.

Let notations and assumptions be as in the previous section. We will fix e ∈ Z[G]
satisfying yε ≡ e mod p for some y ∈ F×

p . Then we have

I (E) = {βeγ p | β ∈ E×, γ ∈ K̃×} ,

for a subextension E of K̃/k.
Now it follows from Proposition 1 that a cyclic extension L over K of degree p is given

by L = K(T rL̃/L( p
√

βe)) with β ∈ K̃× satisfying βe 	∈ K̃×p, namely, βe ∈ I∗(K̃). For such

β, denote by fβ(X) the monic minimal polynomial of T rL̃/L( p
√

βe) over K . The next lemma
on the coefficients of fβ(X) is obtained by thorough calculations in Cohen [2, Chapter 5].

LEMMA 5. Every coefficient of fβ(X) of degree less than p is given in the form of a
finite sum ∑

ν

cνβ
zν , cν ∈ FK, zν ∈ Z[Gal(K̃/K)] ,

where FK is the prime field contained in K .
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Suppose β ∈ E(s, j)× satisfies βe 	∈ E(s, j)×p , where s is a divisor of r and j ∈ Js .
Then βe ∈ I∗(E(s, j)) and, by Theorem 1, the cyclic extension obtained by adjoining a root
of fβ(X) to K is an Mp(s|r)-extension over k. Furthermore, an Mp(s|r)-extension of this
kind is always constructed in this manner. Now Lemma 5 implies that fβ(X) ∈ k[X], since
K ∩ E(s, j) = k. So we are interested in the minimal splitting field of fβ(X) over k. The
Galois group of fβ(X) needs to be a Frobenius group, that is, Mp(t|t) with a divisor t of
p − 1. In fact, the following result is obtained in the case s = r .

THEOREM 2. Let j ∈ Jr and β ∈ E(r, j)× satisfying βe 	∈ E(r, j)×p. Then fβ(X) ∈
k[X] and its minimal splitting field over k is the Mp(r|r)-extension L over k such that K ⊂
L ⊂ K̃( p

√
βe).

PROOF. Let Lβ be the minimal splitting field of fβ(X) over k, and put Kβ = Lβ ∩ K .
Then, since Lβ/Kβ is a cyclic extension of degree p, it follows that L = LβK is abelian
over Kβ . However, by Lemma 1, the Mp(r|r)-extension L/k never contains a subextension
F such that F � K and L/F is abelian. Thus Kβ must be equal to K . Hence we conclude
Lβ = L. �

As for a divisor s of r , we have the following

THEOREM 3. Let s be a divisor of r and j ∈ Js . Take β ∈ E(s, j)× such that
βe 	∈ E(s, j)×p . Then fβ(X) ∈ k[X] and its Galois group over k is isomorphic to Mp(s|s).

PROOF. Let Ks be the cyclic extension over k of degree s contained in K . Then K̃s

is the subextension of K̃/k̃ corresponding to the subgroup 〈τ s〉. Since τ s = ρ(s, j)s ∈
〈ρ(s, j)〉, we have E(s, j) ⊆ K̃s . So, applying the above discussion to the extension Ks/k

instead of K/k, we completes the proof. �

Polynomials with Frobenius groups of degree p as Galois groups are studied from an-
other viewpoint, by Bruen, Jensen and Yui [1].

6. Examples.

We will illustrate the above results with some numerical examples. Take k = Q and

p = 5. In this case, Q̃ = Q(ζ ) is cyclic over Q of degree 4. Let K = Q(
√

2 + √
2). Then

K/Q is a cyclic extension of degree 4 satisfying the properties K ∩ Q̃ = Q and [K̃ : K] = 4.
Put

θ1 =
√

2 + √
2 , θ2 =

√
2 − √

2 , θ3 = −
√

2 − √
2 , θ4 = −

√
2 + √

2 .

We can take generators σ, τ of Gal(K̃/K) and Gal(K̃/k̃), respectively, such as ζ σ = ζ 2 and
θτ

1 = θ2. Then it is easy to check θτ
2 = θ4 and θτ

4 = θ3. Now we put e = 3 + 4σ + 2σ 2 + σ 3

which satisfies the congruence 2ε ≡ e mod 5. For β ∈ K̃× satisfying βe ∈ I∗(K̃), the
minimal polynomial fβ(X) of T rL̃/L( 5

√
βe) is written in the form
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fβ(X) = X5 − 10N(β)X3 − 5N(β)T (β1+σ )X2

+ 5N(β)(N(β) − T (β1+2σ+σ 2
))X − N(β)T (β2+3σ+σ 2

)

with N = N
K̃/K

and T = T r
K̃/K

, which had appeared in Cohen [2, Chapter 5]. Using this,
we present several defining polynomials for Frobenius extensions over Q via E(4, 1), E(4, 3)

and E(2, 1).
(1) E(4, 1) = Q(ξ) with ξ = θ1ζ + θ2ζ

2 + θ4ζ
4 + θ3ζ

3. If we choose β1 = ξ + 1,
then βe

1 ∈ I∗(E(4, 1)) and

fβ1(X) = X5 − 310X3 − 620X2 + 10385X + 20956 .

The Galois group of fβ1(X) over Q is E5(4|4), that is, the Frobenius group of order 20.
(2) E(4, 3) = Q(η) with η = θ1ζ + θ2ζ

3 + θ4ζ
4 + θ3ζ

2. Taking β2 = η + 1, we have
βe

2 ∈ I∗(E(4, 3)) and

fβ2(X) = X5 − 1110X3 − 2220X2 + 259185X + 75036 ,

which Galois group over Q is also the Frobenius group of order 20.

(3) E(2, 1) = Q(ω) with ω =
√

−5 + 2
√

5
√

2. Put β3 = ω + 1. Then βe
3 ∈

I∗(E(2, 1)) and

fβ3(X) = X5 − 410X3 − 820X2 + 23985X − 13284 .

The Galois group of fβ3(X) over Q is the dihedral group of order 10.

References

[ 1 ] A. A. BRUEN, C. U. JENSEN and N. YUI, Polynomials with Frobenius groups of prime degree as Galois
groups II, J. Number Theory 24 (1986), 305–359.

[ 2 ] H. COHEN, Advanced topics in computational number theory, Springer (2000).
[ 3 ] B. HUPPERT, Endliche Gruppen I, Springer (1967).
[ 4 ] M. IMAOKA and Y. KISHI, Spiegelung relation between dihedral extensions and Frobenius extensions, preprint.

Present Address:
DEPARTMENT OF MATHEMATICS, GAKUSHUIN UNIVERSITY,
MEJIRO, TOKYO, 171–8588, JAPAN.
e-mail: shin@math.gakushuin.ac.jp

sasem@math.gakushuin.ac.jp


