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Abstract. We consider the existence of a non-trivial weak solution for the equation

—Apu = f(x,u) in 2,
u=>0 on 052,

p—1

where f satisfies f(x,u) = aul = — 1714}_7_l + o(lulpfl) (p > 1) at 0 or co. By using Morse theory and calcu-

lating the critical groups, we show the existence of a non-trivial weak solution to the equation under mild auxiliary
conditions.

1. Introduction and the Main result

In this paper, we consider the equation

®) {—A,,u:f(x,u) in 2,

u=~0 on 052,

where 2 C RY is a bounded domain, A p denotes the p-Laplacian defined by Aj,u :=
div (|Vu|p72Vu) (p > 1). We will treat f € C(£2 x R) satisfying

flx,u) = aui71 —bu”" + o(u)Ph

as |lu| — 0O or |u] - oo, where u4 := max{tu,0}. We say that u € Wol’p(.Q) is a weak
solution of (P) if

/|vu|l’*2vuvgodx=/ fx, u)pdx
2 2

holds for any ¢ € Wol’p(.Q).
The equation (P) in the case of f(x, u) = auffl — bu? ~! has been considered by Fucik
[7] (p = 2) and many authors (cf. [4], [3], [5]). The set X', of points (a, b) € R? for which
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the equation

1

—Apu=aul ™ =7 we Wy () (1)

has a non-trivial weak solution is called the Fucik spectrum of the p-Laplacian on W(;’p (£2)
(1 < p <00)([3]). Inthe case of a = b = A € R, the equation (1) reads —A ,u = MulP2u.
Hence (A, 1) belongs to X, if and only if A is an eigenvalue of —A,, i.e., there exists a
non-zero weak solution u € W(}’p(.Q) to —Apu = AlulP~2u. The set of all eigenvalues of
—A) is, as usual, denoted by o (—A ). It is well known that the first eigenvalue A; of —A),
is positive, simple, and has a positive eigenfunction ¢; € W(;’p (£2). Therefore, X}, contains
the lines {11} x R and R x {A1}. Moreover, by using the Mountain Pass Theorem, Cuesta—
de Figueiredo—Gossez [3] showed that there exists a continuous curve C; contained in X,

which passes through (A2, A2), where 1, is the second eigenvalue of —A,. The curve C; is
described as

Co:={(s+c(s),c)|s=0}U{(c(s),s+c(s))|s=>0]},

where c(s) is a continuous, strictly decreasing function on R with the property c(0) = A,
and limg_, oo c(s) = A1.

It is obvious that critical points of the following functional correspond to weak solutions
of (1):

La.p) () ;:/ |Vu|pdx—a/ uidx—b/ u? dx, uew(}”’(.(z). 2)
2 2 2

To explain our results of this paper, recall the notation of the critical groups of an isolated
critical point at u of a C!-class functional 1. The critical groups at u are defined as

Cil,u) :=HUNI,U\{u}NI%,

where ¢ = I(u), [€ :={u; I(u) <c}, U is aneighborhood of u containing no other critical
points, and H.(-, -) are the relative singular homology groups with a coefficient group G.

Dy

D Dy




EXISTENCE OF A WEAK SOLUTION FOR p-LAPLACIAN EQUATIONS 335

In addition, we should introduce subsets D; to D4 of R? as follows (see the figure below).

Dy ={(a,b)la,b < i}

Dy ={(a,b)|b< i <a}U{(a,b)|a < A < b}

D3 ={(a,b)|(a,b) & D1 U D and (a, b) lies below the curve C; }
D4 = {(a, b) | (a, b) lies above the curve C; }

Then, in [5] and [3], it is shown that D; N X', = @ (i = 1,2, 3). Moreover, the following
result is also obtained in [5] and [3] as to the critical groups of I, p) at O:

Cq(Ua,b),0) = 840G if (a,b) € Dy
CyU@p),0)=0 if (a,b) € Dy 3)
Cq(Ua,p),0) = 841G if (a,b) € D3

Co(la,p),0) = C1((4,p),0) =0 if (a,b) € D4\ &)

However, if (a, b) € D4 \ X}, with a # b, [5] and [8] do not tell about C;(I(4,1), 0) (¢ > 2).
One of our main purpose is to show that if (a, b) belongs to some region in D4 \ X, then
there exists some number ¢ > 2 such that C; (4,5, 0) is nontrivial.

To state our result in this paper, let us recall the definition of the Perera’s eigenvalues of

—A,. For symmetric subset A C Wol’p(.Q) \ {0}, we denote by iy(A) the Yang index (see
[11] and Appendix). Then, Perera has proved in [11] that

Am = inf{ sup/ |Vu|? dx; A C S is symmetric and iy (A) > m — 1 } , )
Q

ueA

where S = {u € W&’p(.Q); [o lul? dx =1}, is the eigenvalue of —A , such that A,, / +00
as m — 00. We define

Om ={(a,b) eR*; Ay < a,b < Any1}.
Now our result reads as follows.
PROPOSITION 1. If(a,b) € Q,, \ X, form > 2, then Cy,(I(41), 0) # O.

REMARK 2. For p = 2, the above result is contained in several papers (cf. [13]).
In the case of (a,b) € Q,, \ X, with a = b, Perera [11] proved Cp, (1(4,q), 0) # 0, and
Jiang [8] showed that there exists some number g such that Cy (/(4,4), 0) # 0.

For our main result on the existence of non-trivial weak solutions to (P), we consider the
following assumptions for f € C(£2 x R) and set F(x, u) := fou f(x,s)ds;

(fY) fa.u)=aoul " —bou” " +o(ulP~!)  as|ul - 0,
( fzo) there exist some § > 0 and u € (0, p) such that
fx,wu >0 if 0 <|ul <§,
wFx,u) > f(x,uwu >0 if |u| <4,
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(f2) (x,u) = au’ ™' —puP 4 o(lulP~Y  as ju| — oo,

1 +

(f2°°) there exist some numbers R, ¢ > 0,g < p* — 1,0 > p such that
[f(x,u)| <c(1+[ul?) forany (x,u),
fx,u)u >60F(x,u) >0 if |u| >R,

where p* = Np/(N — p) forp < N, p* = oo for p > N.
Our existence result is the following.

THEOREM 3. (i) If(flo) with (ag, bg) € am \ Xp (m = 2)and (fzoo) hold, then (P)
has a non-trivial weak solution.

(i) If(fzo) and (f7°) with (a,b) € am \ X, hold, then (P) has a non-trivial weak
solution.

(iii) If(flo) with (ap, bo) € Dy \ X and (f°) with (a, b) € D3 hold, then (P) has at
least two non-trivial weak solution.

REMARK 4. Inthe cases (ag, bo) € D; (i =1,2,3),a0 = bo & o(—Ap), Jiang ([8])
showed under ( f7°) that (P) has a non-trivial solution. Under the same assumptions as (iii) in
Theorem 1, it was proved that (P) has at least one non-trivial solution in [5].

For p = 2,if Q,, # @, then Q,,, N (R? \ X2») # @ (see [14]). However, for p # 2, we do
not know whether Q,, N X}, is empty or not.

2. Preliminaries

Now we recall the definition of homological linking (see [2]).

DEFINITION 5. Let D, S, A be subsets of a real Banach space X, m a nonnegative
integer, and K a field. We say that (D, S) links A homologically in dimension m over K, if
S C D, SN A = ¢ and there exists a z € H,, (X, S; K) such that

zelmiy, z¢Imj,, ()
where iy: Hy, (D, S; K) — Hy(X, S;K), j«: Ho(X\ A, S; K) - Hy(X, S; K).
The following result is proved in [2] by using Z;-cohomological index (see [6]).

THEOREM 6 ([2, Theorem 4.1]). Let {A,}, be the Perera’s spectrum of — A, defined
by (4). Let m e NU{0}, Ajy < @ < B < A1 (Where Lyp = —o0), R > 0 and set

S:= {u e Wy"(2); R =/ |Vu|? dx <oz/ |u|de},
2 2

A {ueW&’p(Q);/ Vuldx = p [ |u|”dx}.
2 2

Then there exists a compact subset C of W(} "P(£2) such that (S U C, S) links A homologically
in dimension m over 2.
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By this homological linking, we can find a critical value.

THEOREM 7 ([2, Theorem 3.2]). Let (D, S) link A homologically in dimension m
over K, and let 7 € H,(X, S; K) satisfy (5). Assume that I € cY(X,R) satisfies (PS)
condition and

—oo <infl, supl <+4oo, supl <infl.
A D S A

And define

¢ = inf beR; ScI’andzbelongstotheimage of the homomorphism
o H,, (1", S;K) — H, (X, S; K) induced by inclusion ’

where 1 := {u € X; I(w) < b}. Then c is a critical value of I such thatinfy I < ¢ <
supp, 1. Moreover, if each element of K. := {u € X ; I'(u) = 0, I (u) = c} is isolated in the
critical set of 1, then there exists u € K. with Cy,, (1, u) # 0.

Now we prove Proposition 1 which is the main tool for the proof of (i) and (ii) in Theo-
rem 3.

PROOF OF PROPOSITION 1. For every (ao, by) € R? \ Xp, according to [5, Proposi-
tion 1.2.], if (a, b) is sufficiently close to (ao, bo), then Cy(I(4,p), 0) = Cx({(4g,by), 0) holds.
Hence, it suffices to show that Cy, ({(4,5), 0) # 0 for (a, b) € O \ X, because X, is closed.

Therefore, let (a,b) € On \ X,. Choose o, B satisfying A, < o < min{a, b} <
max{a, b} < B < Ap+1 and R > 0. Define

S:= {u e W, "(R2); R =/ |Vul? dx < af |u|pdx},
Q Q
A= {u € Wé”’(ﬂ); / [Vul|? dx > /3/ |u|pdx}.
2 2
By Theorem 6, there exists some compact subset C of WOl P (£2) such that (S U C, S) links A

homologically in dimension m over Z,.
In the case of b < a, we have forany u € S

Lapy)= [ |Vul?dx — b [ [ulP dx — (a — b) [, u} dx
<(l—->b/a)RP.

Similarly, if a < b, then I, p)(u) < (1 —a/a)R? for any u € S. Therefore supg /(4 p)
(1 — min{a, b}/a)RP < 0. On the other hand, foru € A,

IA

Lapy) =B [olulPdx —a [, uidx —bf, u? dx
>(B—a) [quldx+(B—b) [qu’dx>0.

Thus inf /¢4,y = 0 and hence supg /4,5y < infa I(4,p). Since C is compact and /(4 p) is
C'-class, maxc I(4p) < 400 and so supg ¢ Iia.p) < +00.
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It follows from Theorem 7 that Cy, (I(4,1), 0) # 0 because O is the only critical point of
La.py- |

3. Proof of Theorem 3

Now we prove Theorem 3. Define X := W& P (§2) and

J () ::i/ |Vu|pdx—/ F(x,u)dx
PJe 2

foru € X, where F(x,u) = fou f(x,s)ds. Then J is a functional of class C!, and critical
points of J are weak solutions of the equation (P). Moreover, it is well known that J satisfies
(PS) condition if () with (a,b) & X, or (f5°) holds (see [12], [9]). If there exists a
constant ¢ such that J¢ := {u € X ; J(u) < ¢} contains no critical value of J, then we define
Cy(J, 00) := H.(X, J¢), which denotes the critical groups of J at infinity.

PROOF OF (I). Jiang [8] has shown that if (f;°) holds, then C;(J, 00) = 0 for any
q € Z. Moreover, it follows from the homotopy invariance that Cy ({(4y,5,), 0) = Cy(J, 0) for
any g € Z under the assumption (flo) with (ag, bo) ¢ X (see [8]).

By Proposition 1,

Cm(J,00) =0 # Cp(Ligg.by), 0) = Cin(J, 0) .

Hence J must have a non-trivial critical point (cf. [1]).

PROOF OF (11). It is known that C,(J,0) = 0 for any ¢ € Z by the assumption
( fzo) (see [9]). By the homotopy invariance, it follows from (f>°) with (a,b) ¢ X, that
Cy(J,00) = Cy(I(4,p),0) for any g € Z (see [8]).

Therefore C,, (J, 0) 2 Cp,(J, 00) by Proposition 1. This yields that J has a non-trivial
critical point.

PROOF OF (111). Let

fx,u) if tu>0,

Jlo,u) = {o if +u<0,

u
Fi(x,u) 1=/ Sx(x,s)ds
0
and
1
J+(u) :=—/ |Vu|pdx—/ Fi(x,u)dx.
pJe Q

If (a,b) € Dy, thenb < A1 <aora < A1 < bholds. Thus, we treat each case.

THE CASE OF b < A1 < a. ltis easily seen that J_ is bounded below and coercive.
Therefore there exists a global minimum point w of J_. From Lemma 2.2. in [5], w is a
critical point and a local minimum point of J. Hence

Cy(J,w) =Cy(J-,w) =0840G forany q € Z. (6)
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Moreover, it follows from (flo) with (ap, bo) € D4\ X, that J_(w) = miny J_ < 0= J_(0),
and so w # 0.

We assume that J has no critical points other than 0 and w. Because w is a critical point
of J_, w is a negative function and J_(w) = J(w). Letc := J(w) = J_(w) < J_(0) = 0.
Then, for ¢ > 0 sufficiently small with ¢ 4+ ¢ < 0,

Hy(X, JT¢) =2 Cy(J,0) forany g € Z,
Hq(J“*e, JTH =Cy(J,w) =84,0G forany g € Z, @)
and Hy(X,J %) =Cy(J,00) = Cy(I(a,),0) =0 forany g € Z.
Set B,(A, B) := rank H,(A, B) and P(t, A, B) := Z:o:O B, (A, B)t". It follows from the
exact sequence for (X, J¢*¢, J¢7¢) that fort > 0

P(t, X, JTO) + P, JE, T8 = P(t, X, JT) + (1 +1) Q)
where Q(7) = > 12y Rpy11", Ry := rank 9, and
Ot Hy(X, JET0) — Hyy (JE75,1979)
denotes the boundary homomorphism (see [10]). From (7), we obtain
1+ P, X, JT)=1+000). ®)

Taking ¢ = 0 in the equation (8), we have Q(0) = 1 because P(0, X, J¢T¢) = 0. Moreover,
taking = —1 in the equation (8), we have also P(—1, X, J°T®) = —1, and so there exists
some number gg > 2 such that C,(J,0) # 0 because C4(J,0) = C;(I(gy,b,),0) = 0 for
q = 0, 1. It yields that there exists some no > 1 such that R,,+| # 0. Indeed, if R,41 =0
foralln > 1, then for¢ > 0,

1+ (rankCyy(J, 0)) 1% < 14 P(1, X, JT) = (1 + )Ry .

This shows a contradiction.
Now from Ry,+1 # 0,

0 # Huy(JTE, T8 = Cpy(J, w).
It contradicts to (6). Thus J has a critical point other than 0 and w.

THE CASE OF a < A1 < b. Itis easily seen that J is bounded below and coercive.
By using J; instead of J_, we can prove that J has at least two non-trivial critical points,
similarly as in the case of b < A1 < a.

APPENDIX. Following Perera [11], let (X, A), A C X, be a pair of closed symmetric
subsets of a Banach space. C(X, A) denotes the singular chain complex with Z coefficients,
and T} the chain map of C(X, A) induced by the antipodal map 7': x — —x. We say that
a g-chain ¢ is symmetric if Tx(c) = ¢, which holds if and only if ¢ = ¢’ + T;(c’) for some
g-chain ¢/. The symmetric g-chains form a subgroup C, (X, A; T) of C4(X, A). Then the
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boundary operator 3, maps Cy (X, A; T) into C4—1(X, A; T), hence these subgroups form a
subcomplex C (X, A; T).
Define homomorphisms v: Z,(X; T) — Z; inductively in g by

__JIn(c) for g =0,
V(@) = {v(ac) for g > 1,

if z = ¢+ Tx(c), where the index In (c) of a O-chainc = ), n;o; is defined by In (¢) = ), n;
(mod 2).
Then we can define the homomorphism

ve: Hy(X; T) = Zy by vi([z]) = v(2),
and the Yang index of X by
iy(X) =inf{l > —1; v, Hi11(X; T) =0}

taking inf ) = oo.
Now we consider the spectrum of —A . The eigenvalues of

—Apu = AMulP™?u in 2,
Apt = Mul ©
u=>0 on 052,
are critical values of the following C! functional
I(u):/ |Vul?dx, forueS:={uecX; / lul?dx =1},
Q Q
which satisfies the (PS) condition.
Let A be the class of closed symmetric subsets of S, and set
Fri={AeA;iy(A)=1-1},
Ar:= inf supI(u).
AeF]| yeA
Then A; is an eigenvalues of (9) and {A;} satisfies 0 < A] < A < --- < X < ---, and

A ' 400 asl — oo ([12, Proposition 3.1.]).
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