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Abstract. We consider the existence of a non-trivial weak solution for the equation
{−∆pu = f (x, u) in Ω ,

u = 0 on ∂Ω ,

where f satisfies f (x, u) = au
p−1
+ − bu

p−1
− + o(|u|p−1) (p > 1) at 0 or ∞. By using Morse theory and calcu-

lating the critical groups, we show the existence of a non-trivial weak solution to the equation under mild auxiliary
conditions.

1. Introduction and the Main result

In this paper, we consider the equation

(P)

{−∆pu = f (x, u) in Ω ,

u = 0 on ∂Ω ,

where Ω ⊂ RN is a bounded domain, ∆p denotes the p-Laplacian defined by ∆pu :=
div

(|∇u|p−2∇u
)

(p > 1). We will treat f ∈ C(Ω × R) satisfying

f (x, u) = au
p−1
+ − bu

p−1
− + o(|u|p−1)

as |u| → 0 or |u| → ∞, where u± := max{±u, 0}. We say that u ∈ W
1,p

0 (Ω) is a weak
solution of (P) if ∫

Ω

|∇u|p−2∇u∇ϕ dx =
∫

Ω

f (x, u)ϕ dx

holds for any ϕ ∈ W
1,p

0 (Ω).

The equation (P) in the case of f (x, u) = au
p−1
+ − bu

p−1
− has been considered by Fučík

[7] (p = 2) and many authors (cf. [4], [3], [5]). The set Σp of points (a, b) ∈ R2 for which
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the equation

−∆pu = au
p−1
+ − bu

p−1
− , u ∈ W

1,p
0 (Ω) (1)

has a non-trivial weak solution is called the Fučík spectrum of the p-Laplacian on W
1,p

0 (Ω)

(1 < p < ∞) ([3]). In the case of a = b = λ ∈ R, the equation (1) reads −∆pu = λ|u|p−2u.
Hence (λ, λ) belongs to Σp if and only if λ is an eigenvalue of −∆p, i.e., there exists a

non-zero weak solution u ∈ W
1,p

0 (Ω) to −∆pu = λ|u|p−2u. The set of all eigenvalues of
−∆p is, as usual, denoted by σ(−∆p). It is well known that the first eigenvalue λ1 of −∆p

is positive, simple, and has a positive eigenfunction ϕ1 ∈ W
1,p

0 (Ω). Therefore, Σp contains
the lines {λ1} × R and R × {λ1}. Moreover, by using the Mountain Pass Theorem, Cuesta–
de Figueiredo–Gossez [3] showed that there exists a continuous curve C2 contained in Σp ,
which passes through (λ2, λ2), where λ2 is the second eigenvalue of −∆p. The curve C2 is
described as

C2 := { (s + c(s), c(s)) | s ≥ 0 } ∪ { (c(s), s + c(s)) | s ≥ 0 } ,

where c(s) is a continuous, strictly decreasing function on R+ with the property c(0) = λ2

and lims→∞ c(s) = λ1.
It is obvious that critical points of the following functional correspond to weak solutions

of (1):

I(a,b)(u) :=
∫

Ω

|∇u|p dx − a

∫
Ω

u
p
+ dx − b

∫
Ω

u
p
− dx , u ∈ W

1,p

0 (Ω) . (2)

To explain our results of this paper, recall the notation of the critical groups of an isolated

critical point at u of a C1-class functional I . The critical groups at u are defined as

C∗(I, u) := H∗(U ∩ I c, U \ {u} ∩ I c) ,

where c = I (u), I c := { u ; I (u) ≤ c }, U is a neighborhood of u containing no other critical
points, and H∗(·, ·) are the relative singular homology groups with a coefficient group G.
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In addition, we should introduce subsets D1 to D4 of R2 as follows (see the figure below).

D1 = {(a, b) | a, b < λ1 }
D2 = {(a, b) | b < λ1 < a} ∪ {(a, b) | a < λ1 < b}
D3 = {(a, b) | (a, b) �∈ D1 ∪ D2 and (a, b) lies below the curve C2 }
D4 = {(a, b) | (a, b) lies above the curve C2 }

Then, in [5] and [3], it is shown that Di ∩ Σp = ∅ (i = 1, 2, 3). Moreover, the following
result is also obtained in [5] and [3] as to the critical groups of I(a,b) at 0:




Cq(I(a,b), 0) = δq,0G if (a, b) ∈ D1

Cq(I(a,b), 0) = 0 if (a, b) ∈ D2

Cq(I(a,b), 0) = δq,1G if (a, b) ∈ D3

C0(I(a,b), 0) = C1(I(a,b), 0) = 0 if (a, b) ∈ D4 \ Σp

(3)

However, if (a, b) ∈ D4 \ Σp with a �= b, [5] and [8] do not tell about Cq(I(a,b), 0) (q ≥ 2).
One of our main purpose is to show that if (a, b) belongs to some region in D4 \ Σp, then
there exists some number q ≥ 2 such that Cq(I(a,b), 0) is nontrivial.

To state our result in this paper, let us recall the definition of the Perera’s eigenvalues of

−∆p. For symmetric subset A ⊂ W
1,p

0 (Ω) \ {0}, we denote by iY (A) the Yang index (see
[11] and Appendix). Then, Perera has proved in [11] that

λm := inf

{
sup
u∈A

∫
Ω

|∇u|p dx ; A ⊂ S is symmetric and iY (A) ≥ m − 1

}
, (4)

where S := {u ∈ W
1,p

0 (Ω) ; ∫
Ω |u|p dx = 1 }, is the eigenvalue of −∆p such that λm ↗ +∞

as m → ∞. We define

Qm := {(a, b) ∈ R2 ; λm < a, b < λm+1} .

Now our result reads as follows.

PROPOSITION 1. If (a, b) ∈ Qm \ Σp for m ≥ 2, then Cm(I(a,b), 0) �= 0.

REMARK 2. For p = 2, the above result is contained in several papers (cf. [13]).

In the case of (a, b) ∈ Qm \ Σp with a = b, Perera [11] proved Cm(I(a,a), 0) �= 0, and
Jiang [8] showed that there exists some number q such that Cq(I(a,a), 0) �= 0.

For our main result on the existence of non-trivial weak solutions to (P), we consider the
following assumptions for f ∈ C(Ω × R) and set F(x, u) := ∫ u

0 f (x, s) ds;

(f 0
1 ) f (x, u) = a0u

p−1
+ − b0u

p−1
− + o(|u|p−1) as |u| → 0,

(f 0
2 ) there exist some δ > 0 and µ ∈ (0, p) such that

f (x, u)u > 0 if 0 < |u| ≤ δ ,

µF(x, u) ≥ f (x, u)u ≥ 0 if |u| ≤ δ ,
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(f ∞
1 ) f (x, u) = au

p−1
+ − bu

p−1
− + o(|u|p−1) as |u| → ∞,

(f ∞
2 ) there exist some numbers R, c > 0, q < p∗ − 1, θ > p such that

|f (x, u)| ≤ c(1 + |u|q) for any (x, u) ,

f (x, u)u ≥ θF (x, u) > 0 if |u| ≥ R ,

where p∗ = Np/(N − p) for p < N , p∗ = ∞ for p ≥ N .
Our existence result is the following.

THEOREM 3. (i) If (f 0
1 ) with (a0, b0) ∈ Qm \ Σp (m ≥ 2) and (f ∞

2 ) hold, then (P)
has a non-trivial weak solution.

(ii) If (f 0
2 ) and (f ∞

1 ) with (a, b) ∈ Qm \ Σp hold, then (P) has a non-trivial weak
solution.

(iii) If (f 0
1 ) with (a0, b0) ∈ D4 \ Σp and (f ∞

1 ) with (a, b) ∈ D2 hold, then (P) has at
least two non-trivial weak solution.

REMARK 4. In the cases (a0, b0) ∈ Di (i = 1, 2, 3), a0 = b0 �∈ σ(−∆p), Jiang ([8])
showed under (f ∞

2 ) that (P) has a non-trivial solution. Under the same assumptions as (iii) in
Theorem 1, it was proved that (P) has at least one non-trivial solution in [5].

For p = 2, if Qm �= ∅, then Qm ∩ (R2 \Σ2) �= ∅ (see [14]). However, for p �= 2, we do
not know whether Qm ∩ Σp is empty or not.

2. Preliminaries

Now we recall the definition of homological linking (see [2]).

DEFINITION 5. Let D, S, A be subsets of a real Banach space X, m a nonnegative
integer, and K a field. We say that (D, S) links A homologically in dimension m over K, if
S ⊂ D, S ∩ A = ∅ and there exists a z ∈ Hm(X, S; K) such that

z ∈ Im i∗ , z �∈ Im j∗ , (5)

where i∗ : Hm(D, S; K) → Hm(X, S; K), j∗ : Hm(X \ A, S; K) → Hm(X, S; K).

The following result is proved in [2] by using Z2-cohomological index (see [6]).

THEOREM 6 ([2, Theorem 4.1]). Let {λn}n be the Perera’s spectrum of −∆p defined
by (4). Let m ∈ N ∪ {0}, λm < α ≤ β < λm+1 (where λ0 = −∞), R > 0 and set

S :=
{
u ∈ W

1,p

0 (Ω) ; Rp =
∫

Ω

|∇u|p dx < α

∫
Ω

|u|p dx

}
,

A :=
{
u ∈ W

1,p

0 (Ω) ;
∫

Ω

|∇u|p dx ≥ β

∫
Ω

|u|p dx

}
.

Then there exists a compact subset C of W
1,p
0 (Ω) such that (S ∪ C, S) links A homologically

in dimension m over Z2.
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By this homological linking, we can find a critical value.

THEOREM 7 ([2, Theorem 3.2]). Let (D, S) link A homologically in dimension m

over K, and let z ∈ Hm(X, S; K) satisfy (5). Assume that I ∈ C1(X, R) satisfies (PS)
condition and

−∞ < inf
A

I , sup
D

I < +∞ , sup
S

I < inf
A

I .

And define

c := inf

{
b ∈ R ; S ⊂ Ib and z belongs to the image of the homomorphism

Hm(Ib, S; K) → Hm(X, S; K) induced by inclusion

}
,

where Ib := {u ∈ X ; I (u) ≤ b}. Then c is a critical value of I such that infA I ≤ c ≤
supD I . Moreover, if each element of Kc := {u ∈ X ; I ′(u) = 0, I (u) = c} is isolated in the
critical set of I , then there exists u ∈ Kc with Cm(I, u) �= 0.

Now we prove Proposition 1 which is the main tool for the proof of (i) and (ii) in Theo-
rem 3.

PROOF OF PROPOSITION 1. For every (a0, b0) ∈ R2 \ Σp, according to [5, Proposi-
tion 1.2.], if (a, b) is sufficiently close to (a0, b0), then C∗(I(a,b), 0) ∼= C∗(I(a0,b0), 0) holds.
Hence, it suffices to show that Cm(I(a,b), 0) �= 0 for (a, b) ∈ Qm \ Σp because Σp is closed.

Therefore, let (a, b) ∈ Qm \ Σp . Choose α, β satisfying λm < α < min{a, b} ≤
max{a, b} < β < λm+1 and R > 0. Define

S :=
{
u ∈ W

1,p

0 (Ω) ; Rp =
∫

Ω

|∇u|p dx < α

∫
Ω

|u|p dx

}
,

A :=
{
u ∈ W

1,p
0 (Ω) ;

∫
Ω

|∇u|p dx ≥ β

∫
Ω

|u|p dx

}
.

By Theorem 6, there exists some compact subset C of W
1,p
0 (Ω) such that (S ∪ C, S) links A

homologically in dimension m over Z2.
In the case of b ≤ a, we have for any u ∈ S

I(a,b)(u)= ∫
Ω |∇u|p dx − b

∫
Ω |u|p dx − (a − b)

∫
Ω u

p
+ dx

≤ (1 − b/α)Rp .

Similarly, if a ≤ b, then I(a,b)(u) ≤ (1 − a/α)Rp for any u ∈ S. Therefore supS I(a,b) ≤
(1 − min{a, b}/α)Rp < 0. On the other hand, for u ∈ A,

I(a,b)(u)≥ β
∫
Ω |u|p dx − a

∫
Ω u

p
+ dx − b

∫
Ω u

p
− dx

≥ (β − a)
∫
Ω u

p
+ dx + (β − b)

∫
Ω u

p
− dx ≥ 0 .

Thus infA I(a,b) = 0 and hence supS I(a,b) < infA I(a,b). Since C is compact and I(a,b) is

C1-class, maxC I(a,b) < +∞ and so supS∪C I(a,b) < +∞.
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It follows from Theorem 7 that Cm(I(a,b), 0) �= 0 because 0 is the only critical point of
I(a,b).

3. Proof of Theorem 3

Now we prove Theorem 3. Define X := W
1,p

0 (Ω) and

J (u) := 1

p

∫
Ω

|∇u|p dx −
∫

Ω

F(x, u) dx

for u ∈ X, where F(x, u) = ∫ u

0 f (x, s) ds. Then J is a functional of class C1, and critical
points of J are weak solutions of the equation (P). Moreover, it is well known that J satisfies
(PS) condition if (f ∞

1 ) with (a, b) �∈ Σp or (f ∞
2 ) holds (see [12], [9]). If there exists a

constant c such that J c := {u ∈ X ; J (u) ≤ c} contains no critical value of J , then we define
C∗(J,∞) := H∗(X, J c), which denotes the critical groups of J at infinity.

PROOF OF (I). Jiang [8] has shown that if (f ∞
2 ) holds, then Cq(J,∞) = 0 for any

q ∈ Z. Moreover, it follows from the homotopy invariance that Cq(I(a0,b0), 0) ∼= Cq(J, 0) for

any q ∈ Z under the assumption (f 0
1 ) with (a0, b0) �∈ Σp (see [8]).

By Proposition 1,

Cm(J,∞) = 0 �= Cm(I(a0,b0), 0) ∼= Cm(J, 0) .

Hence J must have a non-trivial critical point (cf. [1]).

PROOF OF (II). It is known that Cq(J, 0) = 0 for any q ∈ Z by the assumption

(f 0
2 ) (see [9]). By the homotopy invariance, it follows from (f ∞

1 ) with (a, b) �∈ Σp that
Cq(J,∞) ∼= Cq(I(a,b), 0) for any q ∈ Z (see [8]).

Therefore Cm(J, 0) �∼= Cm(J,∞) by Proposition 1. This yields that J has a non-trivial
critical point.

PROOF OF (III). Let

f±(x, u) :=
{
f (x, u) if ± u ≥ 0 ,

0 if ± u < 0 ,
F±(x, u) :=

∫ u

0
f±(x, s) ds

and

J±(u) := 1

p

∫
Ω

|∇u|p dx −
∫

Ω

F±(x, u) dx .

If (a, b) ∈ D2, then b < λ1 < a or a < λ1 < b holds. Thus, we treat each case.

THE CASE OF b < λ1 < a. It is easily seen that J− is bounded below and coercive.
Therefore there exists a global minimum point w of J−. From Lemma 2.2. in [5], w is a
critical point and a local minimum point of J . Hence

Cq(J,w) ∼= Cq(J−, w) = δq,0G for any q ∈ Z . (6)
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Moreover, it follows from (f 0
1 ) with (a0, b0) ∈ D4\Σp that J−(w) = minX J− < 0 = J−(0),

and so w �= 0.
We assume that J has no critical points other than 0 and w. Because w is a critical point

of J−, w is a negative function and J−(w) = J (w). Let c := J (w) = J−(w) < J−(0) = 0.
Then, for ε > 0 sufficiently small with c + ε < 0,




Hq(X, J c+ε) ∼= Cq(J, 0) for any q ∈ Z ,

Hq(J c+ε, J c−ε) ∼= Cq(J,w) = δq,0G for any q ∈ Z ,

and Hq(X, J c−ε) ∼= Cq(J,∞) ∼= Cq(I(a,b), 0) = 0 for any q ∈ Z .

(7)

Set Bn(A,B) := rank Hn(A,B) and P(t,A,B) := ∑∞
n=0 Bn(A,B)tn. It follows from the

exact sequence for (X, J c+ε, J c−ε) that for t ≥ 0

P(t,X, J c+ε) + P(t, J c+ε, J c−ε) = P(t,X, J c−ε) + (1 + t)Q(t) ,

where Q(t) = ∑∞
n=0 Rn+1t

n, Rn := rank ∂n∗ and

∂n∗ : Hn(X, J c+ε) → Hn−1(J
c+ε, J c−ε)

denotes the boundary homomorphism (see [10]). From (7), we obtain

1 + P(t,X, J c+ε) = (1 + t)Q(t) . (8)

Taking t = 0 in the equation (8), we have Q(0) = 1 because P(0,X, J c+ε) = 0. Moreover,
taking t = −1 in the equation (8), we have also P(−1,X, J c+ε) = −1, and so there exists
some number q0 ≥ 2 such that Cq0(J, 0) �= 0 because Cq(J, 0) ∼= Cq(I(a0,b0), 0) = 0 for
q = 0, 1. It yields that there exists some n0 ≥ 1 such that Rn0+1 �= 0. Indeed, if Rn+1 = 0
for all n ≥ 1, then for t ≥ 0,

1 + (
rankCq0(J, 0)

)
tq0 ≤ 1 + P(t,X, J c+ε) = (1 + t)R1 .

This shows a contradiction.
Now from Rn0+1 �= 0,

0 �= Hn0(J
c+ε, J c−ε) ∼= Cn0(J,w) .

It contradicts to (6). Thus J has a critical point other than 0 and w.

THE CASE OF a < λ1 < b. It is easily seen that J+ is bounded below and coercive.
By using J+ instead of J−, we can prove that J has at least two non-trivial critical points,
similarly as in the case of b < λ1 < a.

APPENDIX. Following Perera [11], let (X,A), A ⊂ X, be a pair of closed symmetric
subsets of a Banach space. C(X,A) denotes the singular chain complex with Z2 coefficients,
and T
 the chain map of C(X,A) induced by the antipodal map T : x �→ −x. We say that
a q-chain c is symmetric if T
(c) = c, which holds if and only if c = c′ + T
(c

′) for some
q-chain c′. The symmetric q-chains form a subgroup Cq(X,A; T ) of Cq(X,A). Then the
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boundary operator ∂p maps Cq(X,A; T ) into Cq−1(X,A; T ), hence these subgroups form a
subcomplex C(X,A; T ).

Define homomorphisms ν : Zq(X; T ) → Z2 inductively in q by

ν(z) =
{

In (c) for q = 0 ,

ν(∂c) for q ≥ 1 ,

if z = c+T
(c), where the index In (c) of a 0-chain c = ∑
i niσi is defined by In (c) = ∑

i ni

(mod 2).
Then we can define the homomorphism

ν∗ : Hq(X; T ) → Z2 by ν∗([z]) = ν(z) ,

and the Yang index of X by

iY (X) = inf{l ≥ −1 ; ν∗ Hl+1(X; T ) = 0 }
taking inf ∅ = ∞.

Now we consider the spectrum of −∆p. The eigenvalues of

{−∆pu = λ|u|p−2u in Ω ,

u = 0 on ∂Ω ,
(9)

are critical values of the following C1 functional

I (u) =
∫

Ω

|∇u|p dx , for u ∈ S := { u ∈ X ;
∫

Ω

|u|p dx = 1 } ,

which satisfies the (PS) condition.
Let A be the class of closed symmetric subsets of S, and set

Fl := { A ∈ A ; iY (A) ≥ l − 1 } ,

λl := inf
A∈Fl

sup
u∈A

I (u) .

Then λl is an eigenvalues of (9) and {λl} satisfies 0 < λ1 < λ2 ≤ · · · ≤ λl ≤ · · · , and
λl ↗ +∞ as l → ∞ ([12, Proposition 3.1.]).
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