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Abstract. For any given integers dgy,d; > 1, let F be the family of polynomial maps f such that f has a
fixed point at the origin, and moreover has just two distinct critical points 1 and ¢y # 1 of multiplicies dy and dy,
respectively. For the central hyperbolic component H of ', a monodromy map on 7 is obtained by Branner-Hubbard
deformations. We show that for any given A with 0 < |A| < 1 and for any given integer n > 1, the monodromy map
transitively acts on the family of all polynomial maps f € H with f/(0) = A and f°"(c ) =1L

1. Introduction

For a polynomial map of degree > 2 on the complex plane, if the polynomial map has
an attracting fixed point, then we obtain Branner-Hubbard deformations by wringing the stan-
dard complex structure on the attracting basin. In this paper, we consider Branner-Hubbard
deformations of a polynomial map which has just two distinct critical points and an attracting
fixed point at the origin with a non-zero multiplier.

For any given integers dp, d; > 1, let F be the family of polynomial maps f such that
f has a fixed point at the origin, and moreover has just two distinct critical points 1 and
cr # 1 of multiplicies do and d, respectively. A hyperbolic component of F is defined
to be a connected component of the family of all polynomial maps f € F such that both
critical points are contained in the attracting basins of f. In particular, the central hyperbolic
component 'H of F is defined to be the family of all polynomial maps f € F such that f
has an attracting fixed point at the origin whose immediate basin contains both critical points.
Moreover, for any complex number A with |A| < 1, let H; be the family of all polynomial
maps f € H with f/(0) = A.

In the case of 0 < |A| < 1, the monodromy map on H,, is obtained by making use of the
technique of Branner-Hubbard deformations. For any polynomial map f € H;, we obtain the
Branner-Hubbard deformation f; which has an attracting fixed point with multiplier A|A|* !
at the origin, where s = u + iv be a complex number with v > 0. In particular, for each
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s(t) = 1+ 2mit/log|x| with t € R, we have A|A|*®~1 = ¢27i) and hence the Branner-
Hubbard deformation fi ) is called the turning deformation. Using this Branner-Hubbard
deformation, we define the monodromy map M : 'Hy — Hjy by My (f) = fsq)-

In this paper, we study the action of M on the family of all polynomial maps f € Hj
with the critical orbit relation f°"(cy) = 1 for some integer n > 1. Our main result is as
follows.

MAIN THEOREM. In the case of 0 < |A| < 1, for any given integer n > 1, the
monodromy map M, transitively acts on the family of all polynomial maps f € H; with

fcp) =1
In §2-3, we prove this theorem. In §4, we give an immediate application of the pinching
deformations of Haissinsky [4] to polynomial maps obtained by this theorem.

2. Preliminaries

We first state some of definitions and facts about the dynamics of polynomial maps. For
proofs and further details, see Milnor [8].

Let f be a polynomial map of degree > 2 having an attracting fixed point with multiplier
A (JA] < 1) at the origin. We denote by A( f, 0) the basin of attraction, i.e.,

A(f,0) ={z € C| f*(2) > 0 (k > 00)}.

A connected component of A( f, 0) is called the immediate attracting basin if the connected
component contains 0.

In the case of A = 0, the dynamics of f on a neighborhood of 0 is understood by the
Béttcher theorem. The polynomial map f takes the form f(z) = agz? + ag41z¢t" - -, with
d > 2 and ag # 0. The Bottcher theorem asserts that there exists a conformal isomorphism
¢ defined on a neighborhood of 0 satisfying ¢(0) = 0 and ¢ o f(z) = (¢(2))¢ for all z in
the neighborhood. This ¢ need not be extended throughout the attracting basin. However, the
function |¢p(z)]| is extended throughout the attracting basin.

Inthe case of 0 < |A| < 1, the dynamics of f on a neighborhood of 0 is understood by the
Keenigs theorem. There exists a holomorphic map ¢ defined on A( f, 0) satisfying ¢(0) = 0
and ¢ o f(2) = Ap(z) for all z € A(f,0). Moreover, ¢ is unique up to multiplication by
a non-zero constant. For a small radius » > 0, this holomorphic map ¢ has a holomorphic
inverse map ¢ : D, — A(f, 0) with ¥ (0) = 0. In particular, there exists the largest radius
R such that ¢ is well defined on Dg. Note that i extends homeomorphically over dDg, and
the image ¥ (0Dg) contains a critical point of f.

DEFINITION 1. For f as above, a critical point of f is said to be first in A(f, 0) if the
critical point is contained in ¥ (dDg).

For any polynomial map f € H; with 0 < |A| < 1, let ¢y be the holomorphic map
satisfying ¢ (0) = 0, ¢¢(1) = 1, and ¢y o f(2) = A@s(z) for all z € A(f,0). Note that
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A(f,0) contains both critical points 1 and c¢y. Hence for a radius r with 0 < r < 1, the
inverse map ¥y of ¢ with ¥ ¢(0) = 0 can be defined on D,. In particular, if f satisfies
f°"(cy) =1 for some integer n > 1, then the critical point 1 is first in A(f, 0), and hence ¥ ¢
is well defined on D.

For the rest of this section, we will prove the following.

PROPOSITION 2. For any given integer n > 1, there exists a polynomial map f € 'H
which satisfies the inequality 0 < | f(0)| < 1 and the critical orbit relation f"(cy) = 1.

To prove Proposition 2, we consider the parameter space of polynomial maps f,; , with
two critical points a, b € C.

Let f, »(z) be the unique polynomial such that f, ,(0) = 0 and fa’,b(z) =d(z—a)¥(z—
b)h. Since fo.0(z) = 20T+ there exists a small ¢ > 0 such that for f, ; with |a|, |b| < &,
the attracting basin A( f, p, 0) contains both critical points @ and b. For such a polynomial
fa.p, the polynomial g, 5(z) = fu.p(az)/a belongs to H if a # 0 and if a # b. To find a
polynomial f, , with f", (b) = a for some integer n > 1, we introduce algebraic curves of
parameters (a, b) related to critical orbit relations.

For any positive integer n, let Fy,(a, b) = f;)’}) (b) — a, and let S, be the set of all zeros
of F,. Note that S, has no isolated point. Since (0, 0) € S,, there exists a parameter (a, b)
such that the polynomial g, 5(z) = f4.»(az)/a belongs to H.

LEMMA 3. Forany given integer n > 1 and for any complex number b # 0, if (0, b) €
Sy, then the immediate attracting basin of A(fo.p, 0) does not contain the critical point b.

PROOF. We use the Bottcher theorem for fp . Suppose that b € C\ {0}. Then there
exists a holomorphic map ¢, on a neighborhood of the origin satisfying ¢;(0) = 0 and ¢} o
Jor(2) = ((pb(z))”l0 for all z in the neighborhood. Following Milnor [8], we extend the
function |¢p| to a continuous function G, which is well defined and satisfies G (fo,5(z)) =
(Gp(2))% forall z € A(fop, 0).

In the case of (0, b) € S, \ {(0, 0)}, since 37, (b) = 0, it follows from the equality above
that G, (b) = 0. Hence for any real number » with 0 < r < 1, any connected component of
the set {z € A(fo.»,0) | Gp(z) = r}is aJordan curve. In particular, ¢, extends continuously
on such Jordan curves surrounding the origin. Hence ¢ is well defined on the immediate
basin of A( fo.», 0), or equivalently the inverse map v, of ¢}, is well defined on D.

Thus fy , satisfies ¢, o fo.p o Yp(w) = w for all w € D, and hence the immediate
basin does not contain the critical point b. a

Now we consider the section S,, N ({0} x C).
LEMMA 4. (0,0) is an isolated point of S;, N ({0} x C).

PROOF. There exists a small ¢ > 0 such that if |z| < ¢, then | fo.5(2)| < |z|. Suppose
that (0,b) € S, N ({0} x C) and |b| < e. Then by the inequality above, the immediate
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attracting basin of 0 for fp 5 contains the critical point b. Thus it follows from Lemma 3 that
b=0. O

Proposition 2 is proved immediately by Lemma 4 as follows.

PROOF OF PROPOSITION 2. For a radius » > 0, define I = {(a,b) € C?||a| <
r, |b| < r}. It follows from Lemma 4 that for a small radius » > 0, there exists a parameter
(a,b) € (Sp N Irz) \ {(0, 0)} satistying O < | f/ ,(0)| < 1 and | fo,5(2)| < |z| for all z with
|z] < r. Then each inverse image of the circles |z] = r under fa",@ for all integer k > 1 is

connected, and hence the attracting basin is also connected. Thus it follows that g, , € H and
g;,”b(cg) =1. ]

3. Proof of Main Theorem

In this section, for a polynomial map f € H with f/(0) = 0, we define the Branner-
Hubbard deformations of obtained by wringing the standard complex structure on A(f, 0),
and prove Main Theorem. For details of Branner-Hubbard deformations, see, for example,
(2], [3], [5], and [9].

Suppose that f is a polynomial map in H with the critical orbit relation f°"(cs) = 1 for
some integer n > 1. Note that f/(0) # 0, and f has the first critical point 1.

For any complex number s = u + iv with u > 0, we define the Branner-Hubbard
deformation f; as follows. Consider the complex structure obtained by the pull-back of the
standard complex structure og on C. Let [;(z) = z |z|° —1 and let oy be the f-invariant almost
complex structure such that

_{00 on C\ A(f.0).
" towpton o D).

Using the Measurable Riemann Mapping Theorem, we have a unique quasiconformal map /7
satisfying 25(0) = 0, hs(1) = 1 and hjog = o,. We define f; = hyo fo hs_l. Then it follows
from [9] that ¢, =[;0 f o h;l and f/(0) = [;(f7(0)). Since /; maps D onto itself, we have
the following:

PROPOSITION 5. Forany integer n > 1 and for any complex number A with 0 < |A| <
1, there exist polynomial maps f € H with f'(0) = A and f"(cy) = 1.

Without loss of generality, we may suppose that A = f/(0) € (0, 1). Then it follows
from A € (0, 1) that vy can be extended to the univalent function

Yro:C\[l,00) = A(f,0).

For example, consider the case of d =3 and n = 1. Since ¢f(cy) = A~ ! holds,

cr=limyro™" +iy)orcy =limy o™ +iy)
0 ’ y10
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¢ = lim oA+ dy)
y10
FIGURE 1. Thecaseofd =3 andn = 1.

holds as in Figure 1.
The quasiconformal map hg(y) is a Dehn twist of a fundamental annulus in v/ ¢ (D).

Consider the inverse image of 0fm = ZS_(rln)(C \ [1, 00)) under ¢ 7. The inverse map vy of

@ is extended to the univalent map 7, from (}fm into A(f,0). Let Uy, = wf,m(l}f,m).
Note that Ay (U fm) = I/ffs(m),o(c \ [1, 00)). Thus, if ¢y = limy o wf)()()n_l + iy) holds,
then ¢y, ,, = hs)(cy) = limypo 1//(,%(])_,0()\_1 + iy) holds as in Figure 2.

Again, suppose that d > 3 and n > 1 are any given integers. To prove Main Theorem,
considering the behavior of /4,y on A(f, 0) for each integer m > 1, we describe a dynamical
location of c,,,, on A(fsm), 0).

LEMMA 6. For f as above, suppose that cy # limy o 1/ff,o()ﬁl + iy). Then there
exists an integer m > 1 such that cy,,, = limy 0 ¥ 5, 0A™" + iy).

PROOF. For any real number r > 0, let D7 (0; r) be the connected component of 0 in
{z € A(S, 0) ‘ lor(z)| < r}. We denote by 0;(1) the set of all points z such that f°%(z) = 1
for some integer k > 1. Since f°"(cy) = 1, we obtain d D7 (0; A 5N O;(l) # () for all
k > 1. For a small ¢ > 0, consider the ring domain D7(0; A + &) \ Dy(0; A — ¢). Since
the preimage of this ring domain under f°" contains c s, the preimage is simply connected.
Hence, the preimage of the circle [z] = A" under ¢ is just one connected curve. Thus
90D (0; A7") contains c s as in Figure 3.

To prove this lemma, we study the process of the Dehn twist on D s (0; A™").
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FIGURE 2. The case ofd =3 andn = 1.

FIGURE 3. This figure shows the curve |¢ ¢ (z)| = A~ containing cf.

First we label each point of 9D 7 (0; AN O;(l) for all k > 1. Recall that f has a
critical point 1 with multiplicity do, in other words f takes the form
fw) = f(D) +ag -+,
where dyp > 2 and aq, # 0. Since f restricted to D 7 (0; ) \ {1} is dp-to-one for any given
integer j > 1, the boundary 9 D #(0; A77) contains just d({ points of 0;(1). Now we define

2(j,0) = limy ro(A ™7 +iy),
yi0 -

and moreover, we denote by z(j, k) the k-th point of Of_-(l) N 9D f(0; 2~7) from z(j, 0)
along the curve 9D ¢ (0; A‘k) counterclockwise. For example, if d = 3 and n = 1, then
O/_.(l) NaD(0; 2~1) consists of just two points z(1, 0) and z(1, 1) as in Figure 5.

Next, for any angle 6 € (0, 1), consider the curve

Cn(0) = {Ypm ol re*™ ) |r > 0},

which passes through a subarc of D 7 (0; A~HnuU f.m- To describe such subarcs, we introduce
the order relation <; in 9.D ¢ (0; A Hn O;(l) as follows. For the positive orientation of
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ODg(

FIGURE 4. Thecaseofd =3 andn = 2.

FIGURE 5. Thecaseof d =3 and n = 2.

0D (05 2~4) with respect to D ¢ (0; 279, let vj : [0,1) — aD(0; 2.~7) be an orientation
preserving homeomorphism such that y;(0) = z(j, 0). For any points z, w € 9D #(0; 2=
with z # w, we say that z <; w if yj_l (2) < yj_l (w). As in Figure 6, let A(J, k) be the open
subarc of d.D ¢ (0; A~7) which consists of all z € 0D (05 2= satisfying

z2(j, k modd('{) <jz<jz(j,k+1mod d({)'
It follows from straightforward computation that C,, (0) passes through
A(l,m),
A2, m+dom) = A2, m(dp + 1)),
AB,m+dom(dy + 1)) = AB,m(d} +do + 1)),

. ey

n—2 n—1

and A(n,m —i—domZd(])‘) = A<n,m Zdé‘) .
k=0

k=0
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wf,l o 1171

FIGURE 6. The case ofd =3 and n = 2.

Now suppose that z(n, ko) = c, where ko is some integer with 1 < ko < dp — 1. Then
cy and z(n, ko + 1 mod dy) are the end-points of A(n, ko). Let M = (do — 1)(—ko + djy).

Since M ZZ;& d(l)‘ = ko (mod d}), it follows that Cy (0) passes through A(n, ko). Thus cs
is contained in the curve
r > O} ,

and hence we have ¢y, ,,, = limy 0 ¥ 7). 027" + iy). o

- 1, 27if
{egTowf’M oly (re™™)

PROOF OF MAIN THEOREM. For each A with 0 < |A| < 1, consider the family of all
polynomial maps f € ‘H; such that f°"(cy) = 1. Then by Proposition 2, we obtain H; # @.
In the case of A € (0, 1), as in Lemma 6, we obtain M, (f) # f,i.e., fsa) # f. Moreover, it
follows from Lemma 6 that the action of M on H,, is transitive. Now for any given complex
number u € D, any polynomial map g € H,, is quasiconformally conjugate to a polynomial
map f € H,. Thus we obtain Main Theorem. o

4. Parabolic fixed points whose basin contains two distinct critical points

For a polynomial map fy € H; with A € (0, 1), we use the technique of the Haissinsky
pinching deformations. The limit polynomial f of the Haissinsky pinching deformations of
Jo has a parabolic fixed point which attract two distinct critical points of f. In this section,
we classify such parabolic fixed points into four types, and moreover, for fy obtained by
Lemma 6, we consider the type of the parabolic fixed point of the limit polynomial f.

For a parabolic fixed point «, we define the parabolic basin to be the union of all Fatou
component U such that the orbit of each point of U converges to «. Suppose that f has a par-
abolic fixed point @ whose basin contains just two distinct critical points. A Fatou component
of f is critical if the Fatou component contains at least one critical point. We denote by cg a
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critical point in the immediate parabolic basin, and denote by ¢ another critical point. Let Uy
be the Fatou component which contains ¢k, where k = 0, 1. Then there are four possibilities
as follows.

CASE 1: The critical Fatou components are adjacent, i.e., Uy = U].

CASE 2: The critical Fatou components are bitransitive. That is, the Fatou components
satisfy that Up N U1 = ¢, and moreover, there exist the smallest positive integers p, g > 0
satisfying f°P(Up) = U} and f°9(U;) = Uy.

CASE 3: Theimmediate parabolic basin captures U. That is, the immediate parabolic
basin does not contain U1, and hence contains f ok (Uy) for some integer k > 1.

CASE 4: There are two disjoint cycles in the immediate parabolic basin. That is, the
immediate parabolic basin contains Uy and U; which satisfy f°"*(Up) N f°™(U;) = @ for any
integers n, m > 0.

DEFINITION 7. For any parabolic fixed point whose basin contains just two distinct
critical points, we will say that the type is adjacent, bitransitive, capturing, or disjoint if its
critical Fatou components satisfy the Case 1, 2, 3, or 4, respectively.

Now suppose that the critical orbit relation f"(cf,) = 1 holds for an integer n > 1.

Following [4], we define the pinching curves on A( fp, 0) as follows.
First, we define straight lines. Let p,g > 1 be any integers with 0 < p/q < 1. We
define the lattice A by

A={—Nlogh+2iMn|(N,M) e Nx1Z},

and take the vector T = g log A — 2ipm. Moreover, let L, = {tt + yi | t € R}, and let L be
the union of all L, with L, N A # .

Next, we define an f-invariant set of curves on A( fp, 0). Let \70 be a connected com-
ponent of the complement C \ exp(L) whose boundary 3V contains ¢f,(cf)- The inverse

map v s, of ¢ 7, can be extended to the univalent map ¥y, from \70 to Vo = lI/fU(Vo). Let g
be a curve such that each connected component of the inverse image under the exponential
function is parallel to Ly, and let yp = ¥ (yp). The union § = U;?io f’k(yo) is called the
support of the pinching.

It follows from [4] that there exists a sequence of quasiconformal deformations such that
the limit function is a polynomial map with a parabolic fixed point at the origin as follows.
There exists a sequence of quasiconformal maps (/;);>¢ satisfying the following properties:

1. the limit function &« is locally quasiconformal on C \ S;

2. h;(0)=0,h;(1) =1 and h;(c0) = 00;

3. hy(resp. ff =hso foh, ! ) converges uniformly on Ctoa locally quasiconformal

map hoo (resp. a limit polynomial foo );

4. moreover, hoo (f ok (v0)) = O for any integer k > 1.
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FIGURE 7. The pinching curves.

The pinching deformation is defined to be the sequence (f; = h; o fo o hfl )i=0. The limit
function f is a polynomial map with a parabolic fixed point at the origin, and fj is semi-
conjugate to foo by hico, 1.€., Moo © fo = foo 0 heo. The critical points of foo is 1 and heo(c ).
It follows from the equality /' (hoo(cf,)) = 1 that the immediate parabolic basin of O for
foo contains 1.

Combining the pinching deformations and Main Theorem, we obtain the following.

COROLLARY 8. For any given integer n > 1, there exists a polynomial map P in
OH having a parabolic fixed point with the bitransitive type such that P°"(U;) = Uy and
Pok(Ul) N Uy = @ for all integer k with 0 < k < n, where Uy and U are the critical Fatou
components such that 1 € Up and cp € Uj.

PROOF. By Main Theorem for any given integer n > 1, we obtain the polynomial map
fo € H; with & € (0, 1) such that f satisfies f;"(cs,) = 1 and ¢y = limy o 1//f0,0()»_1 +iy).
Note that 1 is the first critical point of fp in A(fp, 0).

We define a pinching curves separating two critical points. Let p > 1 and g > n be any
integers such that p/q is an irreducible fraction with 0 < p/q < 1. Define yy, Vo and S as
above. Let C be any smooth open arc with end-points 0 and A™" satisfying CNI[l,o0) =0
and C C \70. Then the smooth curve C = fo,O(é) has end-points 0 and c,, and hence
we obtain ¢y € 9V as in Figure 7. Thus the cycle of connected components A(fy, 0) \ S
contains both critical points. Let f; = h; o foo h, ! be the Haissinsky pinching deformation
of fy defined by the support S. Since the image of this cycle under s, is contained in the
immediate parabolic basin of 0 for f.,, we obtain Corollary 8. O
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