Monodromy on the Central Hyperbolic Component of Polynomials with Just Two Distinct Critical Points

Hikaru YAZAWA

Gakushuin University

(Communicated by T. Kawasaki)

Abstract. For any given integers $d_0, d_1 \geq 1$, let \mathcal{F} be the family of polynomial maps f such that f has a fixed point at the origin, and moreover has just two distinct critical points 1 and $c_f \neq 1$ of multiplicies d_0 and d_1 , respectively. For the central hyperbolic component \mathcal{H} of \mathcal{F} , a monodromy map on \mathcal{H} is obtained by Branner-Hubbard deformations. We show that for any given λ with $0 < |\lambda| < 1$ and for any given integer $n \geq 1$, the monodromy map transitively acts on the family of all polynomial maps $f \in \mathcal{H}$ with $f'(0) = \lambda$ and $f^{\circ n}(c_f) = 1$.

1. Introduction

For a polynomial map of degree ≥ 2 on the complex plane, if the polynomial map has an attracting fixed point, then we obtain Branner-Hubbard deformations by wringing the standard complex structure on the attracting basin. In this paper, we consider Branner-Hubbard deformations of a polynomial map which has just two distinct critical points and an attracting fixed point at the origin with a non-zero multiplier.

For any given integers $d_0, d_1 \geq 1$, let \mathcal{F} be the family of polynomial maps f such that f has a fixed point at the origin, and moreover has just two distinct critical points 1 and $c_f \neq 1$ of multiplicies d_0 and d_1 , respectively. A *hyperbolic component* of \mathcal{F} is defined to be a connected component of the family of all polynomial maps $f \in \mathcal{F}$ such that both critical points are contained in the attracting basins of f. In particular, the *central hyperbolic component* \mathcal{H} of \mathcal{F} is defined to be the family of all polynomial maps $f \in \mathcal{F}$ such that f has an attracting fixed point at the origin whose immediate basin contains both critical points. Moreover, for any complex number λ with $|\lambda| < 1$, let \mathcal{H}_{λ} be the family of all polynomial maps $f \in \mathcal{H}$ with $f'(0) = \lambda$.

In the case of $0 < |\lambda| < 1$, the monodromy map on \mathcal{H}_{λ} is obtained by making use of the technique of Branner-Hubbard deformations. For any polynomial map $f \in \mathcal{H}_{\lambda}$, we obtain the Branner-Hubbard deformation f_s which has an attracting fixed point with multiplier $\lambda |\lambda|^{s-1}$ at the origin, where s = u + iv be a complex number with v > 0. In particular, for each

 $s(t) = 1 + 2\pi i t / \log |\lambda|$ with $t \in \mathbf{R}$, we have $\lambda |\lambda|^{s(t)-1} = e^{2\pi i t} \lambda$, and hence the Branner-Hubbard deformation $f_{s(t)}$ is called the *turning deformation*. Using this Branner-Hubbard deformation, we define the *monodromy map* $\mathcal{M}_{\lambda} : \mathcal{H}_{\lambda} \to \mathcal{H}_{\lambda}$ by $\mathcal{M}_{\lambda}(f) = f_{s(1)}$.

In this paper, we study the action of \mathcal{M}_{λ} on the family of all polynomial maps $f \in \mathcal{H}_{\lambda}$ with the critical orbit relation $f^{\circ n}(c_f) = 1$ for some integer $n \geq 1$. Our main result is as follows.

MAIN THEOREM. In the case of $0 < |\lambda| < 1$, for any given integer $n \ge 1$, the monodromy map \mathcal{M}_{λ} transitively acts on the family of all polynomial maps $f \in \mathcal{H}_{\lambda}$ with $f^{\circ n}(c_f) = 1$.

In §2–3, we prove this theorem. In §4, we give an immediate application of the pinching deformations of Haissinsky [4] to polynomial maps obtained by this theorem.

2. Preliminaries

We first state some of definitions and facts about the dynamics of polynomial maps. For proofs and further details, see Milnor [8].

Let f be a polynomial map of degree ≥ 2 having an attracting fixed point with multiplier λ ($|\lambda| < 1$) at the origin. We denote by $\mathcal{A}(f, 0)$ the *basin of attraction*, i.e.,

$$\mathcal{A}(f,0) = \{ z \in \mathbb{C} \mid f^{\circ k}(z) \to 0 \ (k \to \infty) \}.$$

A connected component of $\mathcal{A}(f,0)$ is called the *immediate attracting basin* if the connected component contains 0.

In the case of $\lambda=0$, the dynamics of f on a neighborhood of 0 is understood by the Böttcher theorem. The polynomial map f takes the form $f(z)=a_dz^d+a_{d+1}z^{d+1}\cdots$, with $d\geq 2$ and $a_d\neq 0$. The Böttcher theorem asserts that there exists a conformal isomorphism φ defined on a neighborhood of 0 satisfying $\varphi(0)=0$ and $\varphi\circ f(z)=(\varphi(z))^d$ for all z in the neighborhood. This φ need not be extended throughout the attracting basin. However, the function $|\varphi(z)|$ is extended throughout the attracting basin.

In the case of $0 < |\lambda| < 1$, the dynamics of f on a neighborhood of 0 is understood by the Kænigs theorem. There exists a holomorphic map φ defined on $\mathcal{A}(f,0)$ satisfying $\varphi(0)=0$ and $\varphi \circ f(z)=\lambda \varphi(z)$ for all $z\in \mathcal{A}(f,0)$. Moreover, φ is unique up to multiplication by a non-zero constant. For a small radius r>0, this holomorphic map φ has a holomorphic inverse map $\psi: \mathbf{D}_r \to \mathcal{A}(f,0)$ with $\psi(0)=0$. In particular, there exists the largest radius R such that ψ is well defined on \mathbf{D}_R . Note that ψ extends homeomorphically over $\partial \mathbf{D}_R$, and the image $\psi(\partial \mathbf{D}_R)$ contains a critical point of f.

DEFINITION 1. For f as above, a critical point of f is said to be *first in* $\mathcal{A}(f,0)$ if the critical point is contained in $\psi(\partial \mathbf{D}_R)$.

For any polynomial map $f \in \mathcal{H}_{\lambda}$ with $0 < |\lambda| < 1$, let φ_f be the holomorphic map satisfying $\varphi_f(0) = 0$, $\varphi_f(1) = 1$, and $\varphi_f \circ f(z) = \lambda \varphi_f(z)$ for all $z \in \mathcal{A}(f, 0)$. Note that

 $\mathcal{A}(f,0)$ contains both critical points 1 and c_f . Hence for a radius r with 0 < r < 1, the inverse map ψ_f of φ_f with $\psi_f(0) = 0$ can be defined on \mathbf{D}_r . In particular, if f satisfies $f^{\circ n}(c_f) = 1$ for some integer $n \ge 1$, then the critical point 1 is first in $\mathcal{A}(f,0)$, and hence ψ_f is well defined on \mathbf{D} .

For the rest of this section, we will prove the following.

PROPOSITION 2. For any given integer $n \ge 1$, there exists a polynomial map $f \in \mathcal{H}$ which satisfies the inequality 0 < |f'(0)| < 1 and the critical orbit relation $f^{\circ n}(c_f) = 1$.

To prove Proposition 2, we consider the parameter space of polynomial maps $f_{a,b}$ with two critical points $a, b \in \mathbb{C}$.

Let $f_{a,b}(z)$ be the unique polynomial such that $f_{a,b}(0) = 0$ and $f'_{a,b}(z) = d(z-a)^{d_0}(z-b)^{d_1}$. Since $f_{0,0}(z) = z^{d_0+d_1+1}$, there exists a small $\varepsilon > 0$ such that for $f_{a,b}$ with $|a|, |b| < \varepsilon$, the attracting basin $\mathcal{A}(f_{a,b},0)$ contains both critical points a and b. For such a polynomial $f_{a,b}$, the polynomial $g_{a,b}(z) = f_{a,b}(az)/a$ belongs to \mathcal{H} if $a \neq 0$ and if $a \neq b$. To find a polynomial $f_{a,b}$ with $f_{a,b}^{on}(b) = a$ for some integer $n \geq 1$, we introduce algebraic curves of parameters (a,b) related to critical orbit relations.

For any positive integer n, let $F_n(a,b) = f_{a,b}^{\circ n}(b) - a$, and let S_n be the set of all zeros of F_n . Note that S_n has no isolated point. Since $(0,0) \in S_n$, there exists a parameter (a,b) such that the polynomial $g_{a,b}(z) = f_{a,b}(az)/a$ belongs to \mathcal{H} .

LEMMA 3. For any given integer $n \ge 1$ and for any complex number $b \ne 0$, if $(0, b) \in S_n$, then the immediate attracting basin of $A(f_{0,b}, 0)$ does not contain the critical point b.

PROOF. We use the Böttcher theorem for $f_{0,b}$. Suppose that $b \in \mathbb{C} \setminus \{0\}$. Then there exists a holomorphic map φ_b on a neighborhood of the origin satisfying $\varphi_b(0) = 0$ and $\varphi_b \circ f_{0,b}(z) = (\varphi_b(z))^{d_0}$ for all z in the neighborhood. Following Milnor [8], we extend the function $|\varphi_b|$ to a continuous function G_b which is well defined and satisfies $G_b(f_{0,b}(z)) = (G_b(z))^{d_0}$ for all $z \in \mathcal{A}(f_{0,b}, 0)$.

In the case of $(0, b) \in S_n \setminus \{(0, 0)\}$, since $f_{0,b}^{\circ n}(b) = 0$, it follows from the equality above that $G_b(b) = 0$. Hence for any real number r with 0 < r < 1, any connected component of the set $\{z \in \mathcal{A}(f_{0,b},0) \mid G_b(z) = r\}$ is a Jordan curve. In particular, φ_b extends continuously on such Jordan curves surrounding the origin. Hence φ_b is well defined on the immediate basin of $\mathcal{A}(f_{0,b},0)$, or equivalently the inverse map ψ_b of φ_b is well defined on \mathbf{D} .

Thus $f_{0,b}$ satisfies $\varphi_b \circ f_{0,b} \circ \psi_b(w) = w^{d_0}$ for all $w \in \mathbf{D}$, and hence the immediate basin does not contain the critical point b.

Now we consider the section $S_n \cap (\{0\} \times \mathbb{C})$.

LEMMA 4. (0,0) is an isolated point of $S_n \cap (\{0\} \times \mathbb{C})$.

PROOF. There exists a small $\varepsilon > 0$ such that if $|z| < \varepsilon$, then $|f_{0,b}(z)| < |z|$. Suppose that $(0,b) \in \mathcal{S}_n \cap (\{0\} \times \mathbb{C})$ and $|b| < \varepsilon$. Then by the inequality above, the immediate

attracting basin of 0 for $f_{0,b}$ contains the critical point b. Thus it follows from Lemma 3 that b=0.

Proposition 2 is proved immediately by Lemma 4 as follows.

PROOF OF PROPOSITION 2. For a radius r>0, define $I_r^2=\{(a,b)\in \mathbb{C}^2|\,|a|< r,\,|b|< r\}$. It follows from Lemma 4 that for a small radius r>0, there exists a parameter $(a,b)\in (\mathcal{S}_n\cap I_r^2)\setminus \{(0,0)\}$ satisfying $0<|f'_{a,b}(0)|<1$ and $|f_{a,b}(z)|<|z|$ for all z with $|z|\leq r$. Then each inverse image of the circles |z|=r under $f_{a,b}^{\circ k}$ for all integer $k\geq 1$ is connected, and hence the attracting basin is also connected. Thus it follows that $g_{a,b}\in \mathcal{H}$ and $g_{a,b}^{\circ n}(c_g)=1$.

3. Proof of Main Theorem

In this section, for a polynomial map $f \in \mathcal{H}$ with f'(0) = 0, we define the Branner-Hubbard deformations of obtained by wringing the standard complex structure on $\mathcal{A}(f, 0)$, and prove Main Theorem. For details of Branner-Hubbard deformations, see, for example, [2], [3], [5], and [9].

Suppose that f is a polynomial map in \mathcal{H} with the critical orbit relation $f^{\circ n}(c_f) = 1$ for some integer $n \geq 1$. Note that $f'(0) \neq 0$, and f has the first critical point 1.

For any complex number s = u + iv with u > 0, we define the Branner-Hubbard deformation f_s as follows. Consider the complex structure obtained by the pull-back of the standard complex structure σ_0 on \mathbb{C} . Let $l_s(z) = z |z|^{s-1}$, and let σ_s be the f-invariant almost complex structure such that

$$\sigma_s = \begin{cases} \sigma_0 & \text{on } \mathbf{C} \setminus \mathcal{A}(f,0), \\ (l_s \circ \varphi_f)^* \sigma_0 & \text{on } \psi_f(\mathbf{D}). \end{cases}$$

Using the Measurable Riemann Mapping Theorem, we have a unique quasiconformal map h_s satisfying $h_s(0) = 0$, $h_s(1) = 1$ and $h_s^* \sigma_0 = \sigma_s$. We define $f_s = h_s \circ f \circ h_s^{-1}$. Then it follows from [9] that $\varphi_{f_s} = l_s \circ f \circ h_s^{-1}$ and $f_s'(0) = l_s(f'(0))$. Since l_s maps **D** onto itself, we have the following:

PROPOSITION 5. For any integer $n \ge 1$ and for any complex number λ with $0 < |\lambda| < 1$, there exist polynomial maps $f \in \mathcal{H}$ with $f'(0) = \lambda$ and $f^{\circ n}(c_f) = 1$.

Without loss of generality, we may suppose that $\lambda = f'(0) \in (0, 1)$. Then it follows from $\lambda \in (0, 1)$ that ψ_f can be extended to the univalent function

$$\psi_{f,0}: \mathbb{C} \setminus [1,\infty) \to \mathcal{A}(f,0)$$
.

For example, consider the case of d=3 and n=1. Since $\varphi_f(c_f)=\lambda^{-1}$ holds,

$$c_f = \lim_{y \downarrow 0} \psi_{f,0}(\lambda^{-1} + iy) \text{ or } c_f = \lim_{y \uparrow 0} \psi_{f,0}(\lambda^{-1} + iy)$$

FIGURE 1. The case of d = 3 and n = 1.

holds as in Figure 1.

The quasiconformal map $h_{s(m)}$ is a Dehn twist of a fundamental annulus in $\psi_f(\mathbf{D})$. Consider the inverse image of $\hat{U}_{f,m} = l_{s(m)}^{-1}(\mathbf{C} \setminus [1,\infty))$ under φ_f . The inverse map ψ_f of φ_f is extended to the univalent map $\psi_{f,m}$ from $\hat{U}_{f,m}$ into $\mathcal{A}(f,0)$. Let $U_{f,m} = \psi_{f,m}(\hat{U}_{f,m})$. Note that $h_{s(m)}(U_{f,m}) = \psi_{f_{s(m)},0}(\mathbf{C} \setminus [1,\infty))$. Thus, if $c_f = \lim_{y \downarrow 0} \psi_{f,0}(\lambda^{-1} + iy)$ holds, then $c_{f_{s(1)}} = h_{s(1)}(c_f) = \lim_{y \uparrow 0} \psi_{f_{s(1)},0}(\lambda^{-1} + iy)$ holds as in Figure 2.

Again, suppose that $d \geq 3$ and $n \geq 1$ are any given integers. To prove Main Theorem, considering the behavior of $h_{s(m)}$ on $\mathcal{A}(f,0)$ for each integer $m \geq 1$, we describe a dynamical location of $c_{f_{s(m)}}$ on $\mathcal{A}(f_{s(m)},0)$.

LEMMA 6. For f as above, suppose that $c_f \neq \lim_{y \downarrow 0} \psi_{f,0}(\lambda^{-1} + iy)$. Then there exists an integer $m \geq 1$ such that $c_{f_s(m)} = \lim_{y \downarrow 0} \psi_{f_s(m),0}(\lambda^{-n} + iy)$.

PROOF. For any real number r>0, let $D_f(0;r)$ be the connected component of 0 in $\{z\in \mathcal{A}(f,0)\ \big|\ |\varphi_f(z)|< r\}$. We denote by $O_f^-(1)$ the set of all points z such that $f^{\circ k}(z)=1$ for some integer $k\geq 1$. Since $f^{\circ n}(c_f)=1$, we obtain $\partial D_f(0;\lambda^{-k})\cap O_f^-(1)\neq\emptyset$ for all $k\geq 1$. For a small $\varepsilon>0$, consider the ring domain $D_f(0;\lambda+\varepsilon)\setminus D_f(0;\lambda-\varepsilon)$. Since the preimage of this ring domain under $f^{\circ n}$ contains c_f , the preimage is simply connected. Hence, the preimage of the circle $|z|=\lambda^{-n}$ under φ_f is just one connected curve. Thus $\partial D_f(0;\lambda^{-n})$ contains c_f as in Figure 3.

To prove this lemma, we study the process of the Dehn twist on $D_f(0; \lambda^{-n})$.

FIGURE 2. The case of d = 3 and n = 1.

FIGURE 3. This figure shows the curve $|\varphi_f(z)| = \lambda^{-n}$ containing c_f .

First we label each point of $\partial D_f(0; \lambda^{-k}) \cap O_f^-(1)$ for all $k \geq 1$. Recall that f has a critical point 1 with multiplicity d_0 , in other words f takes the form

$$f(w) = f(1) + a_{d_0}(w-1)^{d_0} + \cdots,$$

where $d_0 \ge 2$ and $a_{d_0} \ne 0$. Since f restricted to $D_f(0; \lambda^{-j}) \setminus \{1\}$ is d_0 -to-one for any given integer $j \ge 1$, the boundary $\partial D_f(0; \lambda^{-j})$ contains just d_0^j points of $O_f^-(1)$. Now we define

$$z(j, 0) = \lim_{y \downarrow 0} \psi_{f,0}(\lambda^{-j} + iy),$$

and moreover, we denote by z(j,k) the k-th point of $O_f^-(1) \cap \partial D_f(0;\lambda^{-j})$ from z(j,0) along the curve $\partial D_f(0;\lambda^{-k})$ counterclockwise. For example, if d=3 and n=1, then $O_f^-(1) \cap \partial D_f(0;\lambda^{-1})$ consists of just two points z(1,0) and z(1,1) as in Figure 5.

Next, for any angle $\theta \in (0, 1)$, consider the curve

$$C_m(\theta) = \{ \psi_{f,m} \circ l_m^{-1}(re^{2\pi i\theta}) \mid r > 0 \},$$

which passes through a subarc of $\partial D_f(0; \lambda^{-j}) \cap U_{f,m}$. To describe such subarcs, we introduce the order relation \prec_j in $\partial D_f(0; \lambda^{-j}) \cap O_f^-(1)$ as follows. For the positive orientation of

FIGURE 4. The case of d = 3 and n = 2.

FIGURE 5. The case of d = 3 and n = 2.

 $\partial D_f(0;\lambda^{-j})$ with respect to $D_f(0;\lambda^{-j})$, let $\gamma_j:[0,1)\to\partial D_f(0;\lambda^{-j})$ be an orientation preserving homeomorphism such that $\gamma_j(0)=z(j,0)$. For any points $z,w\in\partial D_f(0;\lambda^{-j})$ with $z\neq w$, we say that $z\prec_j w$ if $\gamma_j^{-1}(z)<\gamma_j^{-1}(w)$. As in Figure 6, let A(j,k) be the open subarc of $\partial D_f(0;\lambda^{-j})$ which consists of all $z\in\partial D_f(0;\lambda^{-j})$ satisfying

$$z(j, k \mod d_0^j) \prec_j z \prec_j z(j, k+1 \mod d_0^j)$$
.

It follows from straightforward computation that $C_m(\theta)$ passes through

$$A(1, m)$$
,
 $A(2, m + d_0 m) = A(2, m(d_0 + 1))$,
 $A(3, m + d_0 m(d_0 + 1)) = A(3, m(d_0^2 + d_0 + 1))$,
...,
and $A\left(n, m + d_0 m \sum_{k=0}^{n-2} d_0^k\right) = A\left(n, m \sum_{k=0}^{n-1} d_0^k\right)$.

FIGURE 6. The case of d = 3 and n = 2.

Now suppose that $z(n, k_0) = c_f$, where k_0 is some integer with $1 \le k_0 \le d_0 - 1$. Then c_f and $z(n, k_0 + 1 \mod d_0^n)$ are the end-points of $A(n, k_0)$. Let $M = (d_0 - 1)(-k_0 + d_0^n)$. Since $M \sum_{k=0}^{n-1} d_0^k \equiv k_0 \pmod{d_0^n}$, it follows that $C_M(\theta)$ passes through $A(n, k_0)$. Thus c_f is contained in the curve

$$\left\{\lim_{\theta\to+0}\psi_{f,M}\circ l_M^{-1}(re^{2\pi i\theta})\,\middle|\, r>0\right\},\,$$

and hence we have $c_{f_{s(M)}} = \lim_{y \downarrow 0} \psi_{f_{s(M)},0}(\lambda^{-n} + iy)$.

PROOF OF MAIN THEOREM. For each λ with $0 < |\lambda| < 1$, consider the family of all polynomial maps $f \in \mathcal{H}_{\lambda}$ such that $f^{\circ n}(c_f) = 1$. Then by Proposition 2, we obtain $\mathcal{H}_{\lambda} \neq \emptyset$. In the case of $\lambda \in (0,1)$, as in Lemma 6, we obtain $M_{\lambda}(f) \neq f$, i.e., $f_{s(1)} \neq f$. Moreover, it follows from Lemma 6 that the action of M_{λ} on \mathcal{H}_{λ} is transitive. Now for any given complex number $\mu \in \mathbf{D}$, any polynomial map $g \in \mathcal{H}_{\mu}$ is quasiconformally conjugate to a polynomial map $f \in \mathcal{H}_{\lambda}$. Thus we obtain Main Theorem.

4. Parabolic fixed points whose basin contains two distinct critical points

For a polynomial map $f_0 \in \mathcal{H}_{\lambda}$ with $\lambda \in (0, 1)$, we use the technique of the Haissinsky pinching deformations. The limit polynomial f_{∞} of the Haissinsky pinching deformations of f_0 has a parabolic fixed point which attract two distinct critical points of f_{∞} . In this section, we classify such parabolic fixed points into four types, and moreover, for f_0 obtained by Lemma 6, we consider the type of the parabolic fixed point of the limit polynomial f_{∞} .

For a parabolic fixed point α , we define the *parabolic basin* to be the union of all Fatou component U such that the orbit of each point of U converges to α . Suppose that f has a parabolic fixed point α whose basin contains just two distinct critical points. A Fatou component of f is *critical* if the Fatou component contains at least one critical point. We denote by c_0 a

critical point in the immediate parabolic basin, and denote by c_1 another critical point. Let U_k be the Fatou component which contains c_k , where k = 0, 1. Then there are four possibilities as follows.

CASE 1: The critical Fatou components are adjacent, i.e., $U_0 = U_1$.

CASE 2: The critical Fatou components are bitransitive. That is, the Fatou components satisfy that $U_0 \cap U_1 = \emptyset$, and moreover, there exist the smallest positive integers $p, q \ge 0$ satisfying $f^{\circ p}(U_0) = U_1$ and $f^{\circ q}(U_1) = U_0$.

CASE 3: The immediate parabolic basin captures U_1 . That is, the immediate parabolic basin does not contain U_1 , and hence contains $f^{\circ k}(U_1)$ for some integer $k \ge 1$.

CASE 4: There are two disjoint cycles in the immediate parabolic basin. That is, the immediate parabolic basin contains U_0 and U_1 which satisfy $f^{\circ n}(U_0) \cap f^{\circ m}(U_1) = \emptyset$ for any integers $n, m \ge 0$.

DEFINITION 7. For any parabolic fixed point whose basin contains just two distinct critical points, we will say that the type is *adjacent*, *bitransitive*, *capturing*, or *disjoint* if its critical Fatou components satisfy the Case 1, 2, 3, or 4, respectively.

Now suppose that the critical orbit relation $f_0^{\circ n}(c_{f_0}) = 1$ holds for an integer $n \ge 1$. Following [4], we define the pinching curves on $\mathcal{A}(f_0, 0)$ as follows.

First, we define straight lines. Let $p, q \ge 1$ be any integers with 0 < p/q < 1. We define the lattice Λ by

$$\Lambda = \{-N \log \lambda + 2iM\pi \mid (N, M) \in \mathbb{N} \times \mathbb{Z}\},\$$

and take the vector $\tau = q \log \lambda - 2ip\pi$. Moreover, let $L_y = \{t\tau + yi \mid t \in \mathbf{R}\}$, and let L be the union of all L_y with $L_y \cap \Lambda \neq \emptyset$.

Next, we define an f-invariant set of curves on $\mathcal{A}(f_0,0)$. Let \hat{V}_0 be a connected component of the complement $\mathbb{C} \setminus \exp(L)$ whose boundary $\partial \hat{V}_0$ contains $\varphi_{f_0}(c_{f_0})$. The inverse map ψ_{f_0} of φ_{f_0} can be extended to the univalent map ψ_{f_0} from \hat{V}_0 to $V_0 = \psi_{f_0}(\hat{V}_0)$. Let $\hat{\gamma}_0$ be a curve such that each connected component of the inverse image under the exponential function is parallel to L_y , and let $\gamma_0 = \psi_f(\hat{\gamma}_0)$. The union $S = \bigcup_{k=0}^{\infty} f^{-k}(\gamma_0)$ is called the *support* of the pinching.

It follows from [4] that there exists a sequence of quasiconformal deformations such that the limit function is a polynomial map with a parabolic fixed point at the origin as follows. There exists a sequence of quasiconformal maps $(h_t)_{t\geq 0}$ satisfying the following properties:

- 1. the limit function h_{∞} is locally quasiconformal on $\mathbb{C} \setminus S$;
- 2. $h_t(0) = 0, h_t(1) = 1 \text{ and } h_t(\infty) = \infty;$
- 3. h_t (resp. $f_t = h_t \circ f \circ h_t^{-1}$) converges uniformly on $\widehat{\mathbf{C}}$ to a locally quasiconformal map h_{∞} (resp. a limit polynomial f_{∞});
- 4. moreover, $h_{\infty}(f^{\circ k}(\overline{\gamma_0})) = 0$ for any integer $k \ge 1$.

FIGURE 7. The pinching curves.

The *pinching deformation* is defined to be the sequence $(f_t = h_t \circ f_0 \circ h_t^{-1})_{t \geq 0}$. The limit function f_∞ is a polynomial map with a parabolic fixed point at the origin, and f_0 is semi-conjugate to f_∞ by h_∞ , i.e., $h_\infty \circ f_0 = f_\infty \circ h_\infty$. The critical points of f_∞ is 1 and $h_\infty(c_{f_0})$. It follows from the equality $f_\infty^{\circ n}(h_\infty(c_{f_0})) = 1$ that the immediate parabolic basin of 0 for f_∞ contains 1.

Combining the pinching deformations and Main Theorem, we obtain the following.

COROLLARY 8. For any given integer $n \ge 1$, there exists a polynomial map P in $\partial \mathcal{H}$ having a parabolic fixed point with the bitransitive type such that $P^{\circ n}(U_1) = U_0$ and $P^{\circ k}(U_1) \cap U_0 = \emptyset$ for all integer k with $0 \le k < n$, where U_0 and U_1 are the critical Fatou components such that $1 \in U_0$ and $c_P \in U_1$.

PROOF. By Main Theorem for any given integer $n \ge 1$, we obtain the polynomial map $f_0 \in \mathcal{H}_{\lambda}$ with $\lambda \in (0, 1)$ such that f satisfies $f_0^{\circ n}(c_{f_0}) = 1$ and $c_{f_0} = \lim_{y \downarrow 0} \psi_{f_0,0}(\lambda^{-1} + iy)$. Note that 1 is the first critical point of f_0 in $\mathcal{A}(f_0, 0)$.

We define a pinching curves separating two critical points. Let $p \ge 1$ and $q \ge n$ be any integers such that p/q is an irreducible fraction with 0 < p/q < 1. Define γ_0 , V_0 and S as above. Let \hat{C} be any smooth open arc with end-points 0 and λ^{-n} satisfying $\hat{C} \cap [1, \infty) = \emptyset$ and $\hat{C} \subset \hat{V}_0$. Then the smooth curve $C = \psi_{f_0,0}(\hat{C})$ has end-points 0 and c_{f_0} , and hence we obtain $c_{f_0} \in \partial V_0$ as in Figure 7. Thus the cycle of connected components $\mathcal{A}(f_0,0) \setminus S$ contains both critical points. Let $f_t = h_t \circ f_0 \circ h_t^{-1}$ be the Haissinsky pinching deformation of f_0 defined by the support S. Since the image of this cycle under h_∞ is contained in the immediate parabolic basin of 0 for f_∞ , we obtain Corollary 8.

ACKNOWLEDGEMENT. The author expresses his thanks to the referee for helpful comments for improving the paper.

References

- A. F. BEARDON, Iteration of rational functions, Complex analytic dynamical systems, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.
- [2] B. BRANNER and J. H. HUBBARD, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143–206.
- [3] B. BRANNER and J. H. HUBBARD, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), no. 3-4, 229-325.
- [4] P. HAISSINSKY, Pincement de polynômes, Comment. Math. Helv. 77 (2002), no. 1, 1–23.
- [5] Y. KOMORI and SH. NAKANE, Landing property of stretching rays for real cubic polynomials, Conform. Geom. Dyn. 8 (2004), 87–114.
- [6] O. LEHTO and K. VIRTANEN, Quasiconformal mappings in the plane, Second edition, Springer-Verlag, New York-Heidelberg, 1973.
- [7] J. MILNOR, Remarks on iterated cubic maps, Experiment. Math. 1 (1992), no. 1, 5–24.
- [8] J. MILNOR, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 2000.
- [9] C. PETERSEN and TAN LEI, Branner-Hubbard motions and attracting dynamics, *Dynamics on the Riemann sphere*, A Bodil Branner Festschrift (ed. P. HJORTH and C. PETERSEN), EMS., 2006, 45–70.
- [10] C. PETERSEN and TAN LEI, The central hyperbolic component of cubic polynomials, prepublication de l'Universite de Cergy-Pontoise.
- [11] TAN. LEI, On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. (4) **35** (2002), no. 3, 353–370

Present Address:
Department of Mathematics,
Gakushuin University,
Mejiro, Toshima-ku, Tokyo, 171–8588 Japan.