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Abstract. For any given integers d0, d1 ≥ 1, let F be the family of polynomial maps f such that f has a
fixed point at the origin, and moreover has just two distinct critical points 1 and cf �= 1 of multiplicies d0 and d1,

respectively. For the central hyperbolic component H of F , a monodromy map on H is obtained by Branner-Hubbard
deformations. We show that for any given λ with 0 < |λ| < 1 and for any given integer n ≥ 1, the monodromy map

transitively acts on the family of all polynomial maps f ∈ H with f ′(0) = λ and f ◦n(cf ) = 1.

1. Introduction

For a polynomial map of degree ≥ 2 on the complex plane, if the polynomial map has
an attracting fixed point, then we obtain Branner-Hubbard deformations by wringing the stan-
dard complex structure on the attracting basin. In this paper, we consider Branner-Hubbard
deformations of a polynomial map which has just two distinct critical points and an attracting
fixed point at the origin with a non-zero multiplier.

For any given integers d0, d1 ≥ 1, let F be the family of polynomial maps f such that
f has a fixed point at the origin, and moreover has just two distinct critical points 1 and
cf �= 1 of multiplicies d0 and d1, respectively. A hyperbolic component of F is defined
to be a connected component of the family of all polynomial maps f ∈ F such that both
critical points are contained in the attracting basins of f . In particular, the central hyperbolic
component H of F is defined to be the family of all polynomial maps f ∈ F such that f
has an attracting fixed point at the origin whose immediate basin contains both critical points.
Moreover, for any complex number λ with |λ| < 1, let Hλ be the family of all polynomial
maps f ∈ H with f ′(0) = λ.

In the case of 0 < |λ| < 1, the monodromy map on Hλ is obtained by making use of the
technique of Branner-Hubbard deformations. For any polynomial map f ∈ Hλ, we obtain the

Branner-Hubbard deformation fs which has an attracting fixed point with multiplier λ|λ|s−1

at the origin, where s = u + iv be a complex number with v > 0. In particular, for each

Received June 27, 2006; revised October 23, 2006



532 HIKARU YAZAWA

s(t) = 1 + 2πit/ log |λ| with t ∈ R, we have λ|λ|s(t)−1 = e2πitλ, and hence the Branner-
Hubbard deformation fs(t) is called the turning deformation. Using this Branner-Hubbard
deformation, we define the monodromy map Mλ : Hλ → Hλ by Mλ(f ) = fs(1).

In this paper, we study the action of Mλ on the family of all polynomial maps f ∈ Hλ

with the critical orbit relation f ◦n(cf ) = 1 for some integer n ≥ 1. Our main result is as
follows.

MAIN THEOREM. In the case of 0 < |λ| < 1, for any given integer n ≥ 1, the
monodromy map Mλ transitively acts on the family of all polynomial maps f ∈ Hλ with
f ◦n(cf ) = 1.

In §2–3, we prove this theorem. In §4, we give an immediate application of the pinching
deformations of Haissinsky [4] to polynomial maps obtained by this theorem.

2. Preliminaries

We first state some of definitions and facts about the dynamics of polynomial maps. For
proofs and further details, see Milnor [8].

Let f be a polynomial map of degree ≥ 2 having an attracting fixed point with multiplier
λ (|λ| < 1) at the origin. We denote by A(f, 0) the basin of attraction, i.e.,

A(f, 0) = {z ∈ C | f ◦k(z) → 0 (k → ∞)} .

A connected component of A(f, 0) is called the immediate attracting basin if the connected
component contains 0.

In the case of λ = 0, the dynamics of f on a neighborhood of 0 is understood by the

Böttcher theorem. The polynomial map f takes the form f (z) = adz
d + ad+1z

d+1 · · · , with
d ≥ 2 and ad �= 0. The Böttcher theorem asserts that there exists a conformal isomorphism
ϕ defined on a neighborhood of 0 satisfying ϕ(0) = 0 and ϕ ◦ f (z) = (ϕ(z))d for all z in
the neighborhood. This ϕ need not be extended throughout the attracting basin. However, the
function |ϕ(z)| is extended throughout the attracting basin.

In the case of 0 < |λ| < 1, the dynamics of f on a neighborhood of 0 is understood by the
Kœnigs theorem. There exists a holomorphic map ϕ defined on A(f, 0) satisfying ϕ(0) = 0
and ϕ ◦ f (z) = λϕ(z) for all z ∈ A(f, 0). Moreover, ϕ is unique up to multiplication by
a non-zero constant. For a small radius r > 0, this holomorphic map ϕ has a holomorphic
inverse map ψ : Dr → A(f, 0) with ψ(0) = 0. In particular, there exists the largest radius
R such that ψ is well defined on DR . Note that ψ extends homeomorphically over ∂DR , and
the image ψ(∂DR) contains a critical point of f .

DEFINITION 1. For f as above, a critical point of f is said to be first in A(f, 0) if the
critical point is contained in ψ(∂DR).

For any polynomial map f ∈ Hλ with 0 < |λ| < 1, let ϕf be the holomorphic map
satisfying ϕf (0) = 0, ϕf (1) = 1, and ϕf ◦ f (z) = λϕf (z) for all z ∈ A(f, 0). Note that
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A(f, 0) contains both critical points 1 and cf . Hence for a radius r with 0 < r < 1, the
inverse map ψf of ϕf with ψf (0) = 0 can be defined on Dr . In particular, if f satisfies
f ◦n(cf ) = 1 for some integer n ≥ 1, then the critical point 1 is first in A(f, 0), and hence ψf
is well defined on D.

For the rest of this section, we will prove the following.

PROPOSITION 2. For any given integer n ≥ 1, there exists a polynomial map f ∈ H
which satisfies the inequality 0 < |f ′(0)| < 1 and the critical orbit relation f ◦n(cf ) = 1.

To prove Proposition 2, we consider the parameter space of polynomial maps fa,b with
two critical points a, b ∈ C.

Let fa,b(z) be the unique polynomial such that fa,b(0) = 0 and f ′
a,b(z) = d(z−a)d0(z−

b)d1 . Since f0,0(z) = zd0+d1+1, there exists a small ε > 0 such that for fa,b with |a|, |b| < ε,
the attracting basin A(fa,b, 0) contains both critical points a and b. For such a polynomial
fa,b, the polynomial ga,b(z) = fa,b(az)/a belongs to H if a �= 0 and if a �= b. To find a
polynomial fa,b with f ◦n

a,b(b) = a for some integer n ≥ 1, we introduce algebraic curves of

parameters (a, b) related to critical orbit relations.
For any positive integer n, let Fn(a, b) = f ◦n

a,b(b)− a, and let Sn be the set of all zeros

of Fn. Note that Sn has no isolated point. Since (0, 0) ∈ Sn, there exists a parameter (a, b)
such that the polynomial ga,b(z) = fa,b(az)/a belongs to H.

LEMMA 3. For any given integer n ≥ 1 and for any complex number b �= 0, if (0, b) ∈
Sn, then the immediate attracting basin of A(f0,b, 0) does not contain the critical point b.

PROOF. We use the Böttcher theorem for f0,b. Suppose that b ∈ C \ {0}. Then there
exists a holomorphic map ϕb on a neighborhood of the origin satisfying ϕb(0) = 0 and ϕb ◦
f0,b(z) = (ϕb(z))

d0 for all z in the neighborhood. Following Milnor [8], we extend the
function |ϕb| to a continuous function Gb which is well defined and satisfies Gb(f0,b(z)) =
(Gb(z))

d0 for all z ∈ A(f0,b, 0).
In the case of (0, b) ∈ Sn \ {(0, 0)}, since f ◦n

0,b(b) = 0, it follows from the equality above

that Gb(b) = 0. Hence for any real number r with 0 < r < 1, any connected component of
the set {z ∈ A(f0,b, 0)

∣∣ Gb(z) = r} is a Jordan curve. In particular, ϕb extends continuously
on such Jordan curves surrounding the origin. Hence ϕb is well defined on the immediate
basin of A(f0,b, 0), or equivalently the inverse map ψb of ϕb is well defined on D.

Thus f0,b satisfies ϕb ◦ f0,b ◦ ψb(w) = wd0 for all w ∈ D, and hence the immediate
basin does not contain the critical point b. �

Now we consider the section Sn ∩ ({0} × C).

LEMMA 4. (0, 0) is an isolated point of Sn ∩ ({0} × C).

PROOF. There exists a small ε > 0 such that if |z| < ε, then |f0,b(z)| < |z|. Suppose
that (0, b) ∈ Sn ∩ ({0} × C) and |b| < ε. Then by the inequality above, the immediate
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attracting basin of 0 for f0,b contains the critical point b. Thus it follows from Lemma 3 that
b = 0. �

Proposition 2 is proved immediately by Lemma 4 as follows.

PROOF OF PROPOSITION 2. For a radius r > 0, define I 2
r = {(a, b) ∈ C2| |a| <

r, |b| < r}. It follows from Lemma 4 that for a small radius r > 0, there exists a parameter
(a, b) ∈ (Sn ∩ I 2

r ) \ {(0, 0)} satisfying 0 < |f ′
a,b(0) | < 1 and |fa,b(z)| < |z| for all z with

|z| ≤ r . Then each inverse image of the circles |z| = r under f ◦k
a,b for all integer k ≥ 1 is

connected, and hence the attracting basin is also connected. Thus it follows that ga,b ∈ H and
g◦n
a,b(cg ) = 1. �

3. Proof of Main Theorem

In this section, for a polynomial map f ∈ H with f ′(0) = 0, we define the Branner-
Hubbard deformations of obtained by wringing the standard complex structure on A(f, 0),
and prove Main Theorem. For details of Branner-Hubbard deformations, see, for example,
[2], [3], [5], and [9].

Suppose that f is a polynomial map in H with the critical orbit relation f ◦n(cf ) = 1 for
some integer n ≥ 1. Note that f ′(0) �= 0, and f has the first critical point 1.

For any complex number s = u + iv with u > 0, we define the Branner-Hubbard
deformation fs as follows. Consider the complex structure obtained by the pull-back of the

standard complex structure σ0 on C. Let ls (z) = z |z|s−1, and let σs be the f -invariant almost
complex structure such that

σs =
{
σ0 on C \ A(f, 0) ,
(ls ◦ ϕf )∗σ0 on ψf (D) .

Using the Measurable Riemann Mapping Theorem, we have a unique quasiconformal map hs
satisfying hs(0) = 0, hs(1) = 1 and h∗

s σ0 = σs . We define fs = hs ◦f ◦h−1
s . Then it follows

from [9] that ϕfs = ls ◦ f ◦ h−1
s and f ′

s (0) = ls (f
′(0)). Since ls maps D onto itself, we have

the following:

PROPOSITION 5. For any integer n ≥ 1 and for any complex number λ with 0 < |λ| <
1, there exist polynomial maps f ∈ H with f ′(0) = λ and f ◦n(cf ) = 1.

Without loss of generality, we may suppose that λ = f ′(0) ∈ (0, 1). Then it follows
from λ ∈ (0, 1) that ψf can be extended to the univalent function

ψf,0 : C \ [1,∞) → A(f, 0) .

For example, consider the case of d = 3 and n = 1. Since ϕf (cf ) = λ−1 holds,

cf = lim
y↓0

ψf,0(λ
−1 + iy) or cf = lim

y↑0
ψf,0(λ

−1 + iy)
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FIGURE 1. The case of d = 3 and n = 1.

holds as in Figure 1.
The quasiconformal map hs(m) is a Dehn twist of a fundamental annulus in ψf (D).

Consider the inverse image of Ûf,m = l−1
s(m)(C \ [1,∞)) under ϕf . The inverse map ψf of

ϕf is extended to the univalent map ψf,m from Ûf,m into A(f, 0). Let Uf,m = ψf,m(Ûf,m).

Note that hs(m)(Uf,m) = ψfs(m),0(C \ [1,∞)). Thus, if cf = limy↓0ψf,0(λ
−1 + iy) holds,

then cfs(1) = hs(1)(cf ) = limy↑0ψfs(1),0(λ
−1 + iy) holds as in Figure 2.

Again, suppose that d ≥ 3 and n ≥ 1 are any given integers. To prove Main Theorem,
considering the behavior of hs(m) on A(f, 0) for each integerm ≥ 1, we describe a dynamical
location of cfs(m) on A(fs(m), 0).

LEMMA 6. For f as above, suppose that cf �= limy↓0ψf,0(λ
−1 + iy). Then there

exists an integer m ≥ 1 such that cfs(m) = limy↓0ψfs(m),0(λ
−n + iy).

PROOF. For any real number r > 0, let Df (0; r) be the connected component of 0 in

{z ∈ A(f, 0)
∣∣ |ϕf (z)| < r}. We denote by O−

f (1) the set of all points z such that f ◦k(z) = 1

for some integer k ≥ 1. Since f ◦n(cf ) = 1, we obtain ∂Df (0; λ−k) ∩ O−
f (1) �= ∅ for all

k ≥ 1. For a small ε > 0, consider the ring domain Df (0; λ + ε) \ Df (0; λ − ε). Since
the preimage of this ring domain under f ◦n contains cf , the preimage is simply connected.

Hence, the preimage of the circle |z| = λ−n under ϕf is just one connected curve. Thus

∂Df (0; λ−n) contains cf as in Figure 3.

To prove this lemma, we study the process of the Dehn twist on Df (0; λ−n).
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FIGURE 2. The case of d = 3 and n = 1.

FIGURE 3. This figure shows the curve |ϕf (z)| = λ−n containing cf .

First we label each point of ∂Df (0; λ−k) ∩ O−
f (1) for all k ≥ 1. Recall that f has a

critical point 1 with multiplicity d0, in other words f takes the form

f (w) = f (1)+ ad0(w − 1)d0 + · · · ,
where d0 ≥ 2 and ad0 �= 0. Since f restricted to Df (0; λ−j ) \ {1} is d0-to-one for any given

integer j ≥ 1, the boundary ∂Df (0; λ−j ) contains just dj0 points of O−
f (1). Now we define

z(j, 0) = lim
y↓0

ψf,0(λ
−j + iy) ,

and moreover, we denote by z(j, k) the k-th point of O−
f (1) ∩ ∂Df (0; λ−j ) from z(j, 0)

along the curve ∂Df (0; λ−k) counterclockwise. For example, if d = 3 and n = 1, then

O−
f (1) ∩ ∂Df (0; λ−1) consists of just two points z(1, 0) and z(1, 1) as in Figure 5.

Next, for any angle θ ∈ (0, 1), consider the curve

Cm(θ) = {ψf,m ◦ l−1
m (re2πiθ ) | r > 0} ,

which passes through a subarc of ∂Df (0; λ−j )∩Uf,m. To describe such subarcs, we introduce

the order relation ≺j in ∂Df (0; λ−j ) ∩ O−
f (1) as follows. For the positive orientation of
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FIGURE 4. The case of d = 3 and n = 2.

FIGURE 5. The case of d = 3 and n = 2.

∂Df (0; λ−j ) with respect to Df (0; λ−j ), let γj : [0, 1) → ∂Df (0; λ−j ) be an orientation

preserving homeomorphism such that γj (0) = z(j, 0). For any points z,w ∈ ∂Df (0; λ−j )
with z �= w, we say that z ≺j w if γ−1

j (z) < γ−1
j (w). As in Figure 6, let A(j, k) be the open

subarc of ∂Df (0; λ−j ) which consists of all z ∈ ∂Df (0; λ−j ) satisfying

z(j, k mod dj0 ) ≺j z ≺j z(j, k + 1 mod dj0 ) .

It follows from straightforward computation that Cm(θ) passes through

A(1,m) ,

A(2,m+ d0m) = A(2,m(d0 + 1)) ,

A(3,m+ d0m(d0 + 1)) = A(3,m(d2
0 + d0 + 1)) ,

. . . ,

and A

(
n,m+ d0m

n−2∑
k=0

dk0

)
= A

(
n,m

n−1∑
k=0

dk0

)
.
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FIGURE 6. The case of d = 3 and n = 2.

Now suppose that z(n, k0) = cf , where k0 is some integer with 1 ≤ k0 ≤ d0 − 1. Then
cf and z(n, k0 + 1 mod dn0 ) are the end-points of A(n, k0). Let M = (d0 − 1)(−k0 + dn0 ).

Since M
∑n−1
k=0 d

k
0 ≡ k0 (mod dn0 ), it follows that CM(θ) passes through A(n, k0). Thus cf

is contained in the curve {
lim
θ→+0

ψf,M ◦ l−1
M (re2πiθ )

∣∣∣∣ r > 0

}
,

and hence we have cfs(M) = limy↓0ψfs(M),0(λ
−n + iy). �

PROOF OF MAIN THEOREM. For each λ with 0 < |λ| < 1, consider the family of all
polynomial maps f ∈ Hλ such that f ◦n(cf ) = 1. Then by Proposition 2, we obtain Hλ �= ∅.
In the case of λ ∈ (0, 1), as in Lemma 6, we obtainMλ(f ) �= f , i.e., fs(1) �= f . Moreover, it
follows from Lemma 6 that the action of Mλ on Hλ is transitive. Now for any given complex
number µ ∈ D, any polynomial map g ∈ Hµ is quasiconformally conjugate to a polynomial
map f ∈ Hλ. Thus we obtain Main Theorem. �

4. Parabolic fixed points whose basin contains two distinct critical points

For a polynomial map f0 ∈ Hλ with λ ∈ (0, 1), we use the technique of the Haissinsky
pinching deformations. The limit polynomial f∞ of the Haissinsky pinching deformations of
f0 has a parabolic fixed point which attract two distinct critical points of f∞. In this section,
we classify such parabolic fixed points into four types, and moreover, for f0 obtained by
Lemma 6, we consider the type of the parabolic fixed point of the limit polynomial f∞.

For a parabolic fixed point α, we define the parabolic basin to be the union of all Fatou
component U such that the orbit of each point of U converges to α. Suppose that f has a par-
abolic fixed point α whose basin contains just two distinct critical points. A Fatou component
of f is critical if the Fatou component contains at least one critical point. We denote by c0 a
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critical point in the immediate parabolic basin, and denote by c1 another critical point. Let Uk
be the Fatou component which contains ck , where k = 0, 1. Then there are four possibilities
as follows.

CASE 1: The critical Fatou components are adjacent, i.e., U0 = U1.
CASE 2: The critical Fatou components are bitransitive. That is, the Fatou components

satisfy that U0 ∩ U1 = ∅, and moreover, there exist the smallest positive integers p, q ≥ 0
satisfying f ◦p(U0) = U1 and f ◦q(U1) = U0.

CASE 3: The immediate parabolic basin capturesU1. That is, the immediate parabolic
basin does not contain U1, and hence contains f ◦k(U1) for some integer k ≥ 1.

CASE 4: There are two disjoint cycles in the immediate parabolic basin. That is, the
immediate parabolic basin contains U0 and U1 which satisfy f ◦n(U0)∩f ◦m(U1) = ∅ for any
integers n,m ≥ 0.

DEFINITION 7. For any parabolic fixed point whose basin contains just two distinct
critical points, we will say that the type is adjacent, bitransitive, capturing, or disjoint if its
critical Fatou components satisfy the Case 1, 2, 3, or 4, respectively.

Now suppose that the critical orbit relation f ◦n
0 (cf0) = 1 holds for an integer n ≥ 1.

Following [4], we define the pinching curves on A(f0, 0) as follows.
First, we define straight lines. Let p, q ≥ 1 be any integers with 0 < p/q < 1. We

define the lattice Λ by

Λ = {−N logλ+ 2iMπ
∣∣ (N,M) ∈ N × Z} ,

and take the vector τ = q logλ − 2ipπ . Moreover, let Ly = {tτ + yi
∣∣ t ∈ R}, and let L be

the union of all Ly with Ly ∩Λ �= ∅.

Next, we define an f -invariant set of curves on A(f0, 0). Let V̂0 be a connected com-

ponent of the complement C \ exp(L) whose boundary ∂V̂0 contains ϕf0(cf0). The inverse

map ψf0 of ϕf0 can be extended to the univalent map Ψf0 from V̂0 to V0 = Ψf0(V̂0). Let γ̂0

be a curve such that each connected component of the inverse image under the exponential
function is parallel to Ly , and let γ0 = Ψf (γ̂0). The union S = ⋃∞

k=0 f
−k(γ0) is called the

support of the pinching.
It follows from [4] that there exists a sequence of quasiconformal deformations such that

the limit function is a polynomial map with a parabolic fixed point at the origin as follows.
There exists a sequence of quasiconformal maps (ht )t≥0 satisfying the following properties:

1. the limit function h∞ is locally quasiconformal on C \ S;
2. ht (0) = 0, ht (1) = 1 and ht (∞) = ∞;

3. ht (resp. ft = ht ◦ f ◦ h−1
t ) converges uniformly on Ĉ to a locally quasiconformal

map h∞ (resp. a limit polynomial f∞ );
4. moreover, h∞(f ◦k(γ0)) = 0 for any integer k ≥ 1.
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FIGURE 7. The pinching curves.

The pinching deformation is defined to be the sequence (ft = ht ◦ f0 ◦ h−1
t )t≥0. The limit

function f∞ is a polynomial map with a parabolic fixed point at the origin, and f0 is semi-
conjugate to f∞ by h∞, i.e., h∞ ◦ f0 = f∞ ◦h∞. The critical points of f∞ is 1 and h∞(cf0).
It follows from the equality f ◦n∞ (h∞(cf0)) = 1 that the immediate parabolic basin of 0 for
f∞ contains 1.

Combining the pinching deformations and Main Theorem, we obtain the following.

COROLLARY 8. For any given integer n ≥ 1, there exists a polynomial map P in
∂H having a parabolic fixed point with the bitransitive type such that P ◦n(U1) = U0 and
P ◦k(U1) ∩ U0 = ∅ for all integer k with 0 ≤ k < n, where U0 and U1 are the critical Fatou
components such that 1 ∈ U0 and cP ∈ U1.

PROOF. By Main Theorem for any given integer n ≥ 1, we obtain the polynomial map

f0 ∈ Hλ with λ ∈ (0, 1) such that f satisfies f ◦n
0 (cf0) = 1 and cf0 = limy↓0ψf0,0(λ

−1 + iy).
Note that 1 is the first critical point of f0 in A(f0, 0).

We define a pinching curves separating two critical points. Let p ≥ 1 and q ≥ n be any
integers such that p/q is an irreducible fraction with 0 < p/q < 1. Define γ0, V0 and S as

above. Let Ĉ be any smooth open arc with end-points 0 and λ−n satisfying Ĉ ∩ [1,∞) = ∅
and Ĉ ⊂ V̂0. Then the smooth curve C = ψf0,0(Ĉ) has end-points 0 and cf0 , and hence
we obtain cf0 ∈ ∂V0 as in Figure 7. Thus the cycle of connected components A(f0, 0) \ S
contains both critical points. Let ft = ht ◦ f0 ◦ h−1

t be the Haissinsky pinching deformation
of f0 defined by the support S. Since the image of this cycle under h∞ is contained in the
immediate parabolic basin of 0 for f∞, we obtain Corollary 8. �
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