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Abstract. In this note we investigate the spectral gaps of the Schrodinger operator

d? > S
H=——5+ > (B8 =21l + Bod'(x —k — 22D) in LA(R),

[=—00

wherepy, B2 € R\ {0} andk /7 € Q. By G ; we denote thg-th gap of the spectrum d@f. We provide the
asymptotic expansion of the lengthGf; asj — oc.

1. Introduction

In this paper we discuss the spectrum of the Schrddinger operator which is formally
expressed as

d2 & .
-+ > (Bid'(x — 2ml) + B8’ (x —k —27D)) in L*R),

I=—00

H =

wherex € (0, 27) andB, B2 € R\ {0} are parameters, the symbBdtands for the derivative
with respect tor, ands (x) is the Diracs-function at the origin. The precise definition of this
operator is given through boundary conditions as follows. Let

Z1=2nZ, Zo={k}+2nZ, Z=27Z1UZo,

and

_(r A _
A1_<0 1) fori=1,2.

We define

(Hy)(x)=—y"(x), xeR\Z,
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DomH) = {y €eH?(R\ 2);

y(x +0) y(x—0)> }
=A for Z;, 1=12%.
<y’(x+0)) l(y/(x—0> rea
In order to formulate our main result, we recall basic spectral propertigsiaim [10].

The operatoH is self-adjoint. Let us consider the equations

—'(x)=iy(x), xeR\Z,

B 1
[0) - () (50) wrvemrmne
y'(x +0) 01/ \y(x-0)

where is a complex parameter. Byi(x, A) and y2(x, A) we denote the solutions of (1)
subject to the initial conditions

(1(+0,1),  ¥i(+0,) = (L, 0)
and
(2(+0,4),  y5(+0,4) = (0, 1),
respectively. We introduce the discriminant of the equations (1):
D(\) = y1(27 4+ 0, 1) + y5(27 + 0, A),

which is an entire function. Throughout this paper we use the following convention to simplify
expressions. A sentence which contains eithesr + means two sentences; one of which
corresponds to the upper sign, the other the lower sign. For exaaiple, bT means two
formulasa™ = b~ anda™ = b™. All the zeros ofD(-) = 2 are real, and they form an
increasing sequence which divergesttso. Forj e N = {1, 2, 3, ...}, we denote b)kf the

j-th zero of D(-) F 2 counted with multiplicity. Then we have '

)leF<kf§k§<k§§k§<~o<k§k_l§)$k<)f;k§k§k+l<~'
for +8182 < 0 (see Proposition 1(d), (e) of [10]). F&tB182 < 0, we define
_ T, )\f] if jisodd,
I [Af, A1 if jiseven

j+1

(Aj.c, AT ) if jiseven

{(Aja A% ) if jis odd,
j =
Jj+1

The spectrum oH is then given by

o(H) =] B;.
j=1
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The closed intervaB; is called thej-th band ofo (H), the open interval; ; the j-th gap.
The aim of this paper is to analyze the asymptotic behavig¢f, the length of thg -th
gap, asj — oo. Hereafter we impose the following assumptiorkon

(A.1) £_n , (m,n) e N2 and gcdm,n) = 1.
2r  n
We further assume that the prime period of the interactions js.2.,
(A.2) either (m,n) #(1,2) or p1# B2 holds.
Let
n
akzﬂk for k=1,2,....m—1, (2)
n
bp=———1 for 1=21,2,....n—m—1. 3
T , n—m )

Since gedgr, n)=1, we havelax ;= N (b}~ = 0. Let

C1<C2<: -+ <Cp-2 (4)

be the rearrangement of the elementsgaal' " U {5}/ =" 1. We setco = 0, ¢,—1 = n/2,
and

dy =cp —cp—1 for k=212,....,n—1.
Our main result is now stated as follows.

THEOREM 1. Adopt the assumptions (A.1) and (A.2).
(i) Foreachk e {1,2,...,n— 1}, wehave

|Gjsrekl =ndij + O1) as j— oo,
(i) 1f B2 < O, then

4(B1+ B2)m

1 .
—,31,32K(Z7I—K) +O0(™ ) as j— 0.

|Gpjy1l =

(iii) 1f BoB2 > O, then

4/(B1+ B2)2w2 — 41 ok (21 — k)
B1Bok (2w — k)

The one-dimensional Schrddinger operators with periodic point interactions have been
investigated by numerous authors; we refer to [1], [3], [4], [6], [8], [10] and [2] for a thor-
ough review. Such an operator was first inspired by Kronig and Penney; they introduced the
operator

|Gnjr1] = +0(G™ as j— .

2 oo

d .
le_ﬁ_F’BZ(S(x—ZTL’I) in L%(R), BeR\{0}

[=—00
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and illustrated the graph of its discriminant. This operator is nowadays called the Kronig-
Penney Hamiltonian and is referred as the most fundamental model in the textbooks of solid-
state physics. This operator was generalized by Gesztesy, Holden and Kirsch [3], [4]; they
originated the operator

2 o0

d .
Lzz_ﬁq_ﬂzy(x—znl) in L%R), BeR\{0}

I=—00

and proved that the length of tlketh gap ofo (L2) is equal to

1k +01Q)
2

ask — oo. They also showed that the length of th¢h gap ofo (L1) admits the asymptotic
expansion
L ok

b/
ask — oo. In [7] Kappeler and Mohr obtained asymptotic estimates for the spectral gaps
of the Schrédinger operator whose potential is a complex-valued, periodic distribution in the
Sobolev space of order> —1. We note that our operatdéf is not included in such a class.
We stress that the asymptotic natures@ff) is completely different from that af (L>); our
Theorem 1 says that the length of thg (+ 1)-st gap ofo (H) converges ag — oo, while
the length of thej-th gap ofo (L) diverges to+oco asj — oo.

The rest of this paper is organized as follows. In section 2 we prove Theorem 1 for even
n. In Lemmas 2—-6 we locate rough positions of the gaps by using the Rouché theorem and
the intermediate value theorem. These ways are fundamental methods to find the positions of
gaps and are used in [5] and section 2.4 of [9]. Combining these lemmas with the Taylor series
expansion of the discriminant, we complete the proof of Theorem 1. Section 3 is devoted to
the demonstration of Theorem 1 for odgdwhich is a minor modification of that for even

2. Proof of Theorem 1 for evenn
By a straightforward calculation, we obtain
D(A) =2¢0S Zrv/A — (B1 + B2)V/A sin 21/ + B1B2A sinkv/A sin2r — k)V/h .

For the sake of definiteness, we fix the branch cut of the square root as the positive real axis.
We define

=1,
Dy (1) = D() — 2

= —4sirf ru — (BL+ P2 sin 2t + B1Bou? sinkpusin@r — i, (5)
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D_(n)=DO) +2
=4coSmp — (B1+ Bo)u Sin 2t + B1Bop? Sinkp sinr — k). (6)
Let us recall (A.1). In this section we suppose that
ne2N.

In the subsequent lemmas we locate the zerad,af). First we prove the following claim.

LEMMA 2. Thereexists jo € N such that the function @ (u) has exactly n zeros in
theinterval (nj/2+n/4, n(j +1)/2+ n/4) for all integers j > jo.

PROOF. We use the Rouché theorem:

Let £2 bearegionin C, I" theboundary of £2. If f and ¢ areanalyticon £2 and | f| < |g| on
I',then f + ¢g and ¢ have the same number of zerosinside 2.

Let j € N. We put

f(2) = —4sifrz — (1 + B2)zsin 2rz, (@)
2
9(2) =,31,32Z28in7m7rzsin 2<1— %)nz, (8)
nj n n(j+1) n nj n
.sz{zeC; 7+Z<ReZ<T+Z’ ||mZ|<7+Z}:

andI'; = 9£2; . We show the inequalityf(z)| < |g(z)| on I';. Notice that®, (z) =
f(z) + g(z). We have

f@)
g(2)

4sirt iz
B1B2z?sin2rzsin2(1— 2)nz

(BL+ B2)sin 2tz

PrpozsinZrzsin2(1— )z

<

. (9)

Fora e Randz = o + it witho, 7 € R, the equality
. 1
|sinaz|? = 2 (€®T — 2coS 0 4 e %7 (10)

holds.
First, we consider the vertical sides Bf. Leto = nj/2 + n/4. It follows byn € 2N
and gcdgz, n)=1thatm € 2N — 1. By (10) we have

2m 2

sin—mz
n

2
sin 2<1— ﬂ)n’g =
n

1

— Z(e%nr +e—%nr)2’

%(62(17%)7” + 672(17%)711')2 )
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Using the Schwarz inequality, we get

. 2m
SIN—mz

1
sin 2(1— ﬂ>ﬂz‘ > (T 47T,
n n 4

It follows from (10) that

1
| sinmz|? §Z(em +e T2, (11)
H 1 TT —TT\2
| sin2rz| §§(e +e "H)“. (12)
Hence
f(@) - 4 2(B1+ B2)
9() | T | B1B2(nj/2+ n/4)? B1B2(nj/2+n/4) |
So, there existg; € N such that
f (@) nj n nj n
—_— 1 C: Rez=—=+—, |l - 4+ -
g(z)< on {ze ; Rez 2+4,Imz|§2+4}

for all integersj > j1. The same is true on the other vertical sidd pf
Next we discuss the horizontal sides/of. Lett = +(nj/2+ n/4). By (10) we get

. 2m 1 2m 2m 2
sin— > Z(ew Tt _ = mIThe
n T = 4(e e )
2
sin2(1- 7 )nz| = (20l 20 i)y
n =4 ,
and hence
i 2m i 1 m m
SiIn—amz||SIn 2(1— ﬂ)]‘[z > _ezﬂf\(l_ e*4;7‘[\1’|)(1_ 674(177)77‘1").
n n 4
Since
i 2 -1 onpr —27|t]\2
|sinmz|® < 2° A+e )2,
i 1 27| —2r|t|\2
|sin2rz| < SeT (147,
we get
A N (i 2|ﬁ1+/32|)
9@ | 7 B1Bal(1— e 4T (1 — g4 mIe) \ 72 < )
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So, there existg, € N such that

@

nj
9(2) 2

+

<1 on {ZEC;

foranyj > j». Thus

f@)
9(2)
foranyj > jo:=max i, j2}. Using the Rouché theorem, we infer thdt) and 1 (z) + ¢(z)
admit the same number of zeros inside for j > jo.
Finally, we count the number of the zerosgt) inside£2;. Note that all the zeros of
sin((2m/n)mz) in £2; are

n 1 2p+1
— | + = , =0, 1,...m—-1,
2m<m(]+2>+ > ) p m

while those of si2(1 — m/n)xz) in §2; are

n o1 2q+1 _ o
2(n—m)((n_m)(]+§>+ 5 ), g=0,1....n—-m—1.

Therefore, the functiog(z) admits exactly: zeros inside?; for j > jo, and so doe® ().
Since the zeros ob () in £2; are real, we conclude thdt, (1) possesses exactyzeros
inside the intervalnj/2 + n/4, n(j + 1)/2+ n/4) foranyj > jo. In a similar fashion, we
infer that®_ (1) has exactly: zeros in the intervalnj/2 4+ n/4, n(j + 1)/2 4 n/4) for all
Jj=Jo O

<1 on Tj

We sharpen the above lemma in the following Lemmas 3-5.

LEMMA 3. Thereexists j3 € N such that the function @ (1) hasa unique zero in the
interval (nj/2+4+n/4+ (1 —1)/2, nj/2+n/4+1/2)for j > jsandl =1,2,...,n/2 —
1,n/2+2,...,n. Furthermore, the function @, () admits exactly two zeros in the interval
n(Gj+1/2-1/2, n(j +1)/24+1/2) for j > ja.

PrROOF Notice thatn — m € 2N — 1. First, we discuss the case wh@g, < 0 and
n e 212N — 1) with o« € N. Letj > jo. We fixk € {1, 3,5, ...,n — 1}. We have

. . 2
nj n k-1 nj n k-1 (k—Dm
o |l =4+-+—|=- L4+ ) cof——7 >0 13
+<2+4+ > ) mm<2+4+ 5 —n =0, (13)

. . 2
nj n  k\ nj n k km
@+(7+Z+§)——4+,31/32(7+2+5) 005277T<0. (24)
On (13) the equality holds if and onlyAf= n/2 + 1. By the intermediate value theorem, we
claim that the functio®_ (1) has atleast one zeroinj /2+n/44+(—1)/2, nj/2+n/4+1/2)
fort=212,...,n/2—-1n/2+2,...,n.
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Next, we investigate the number of the zerogof(w) inside(n(j +1)/2—1/2, n(j +
1)/2+ 1/2). By a simple calculation, we have

<p+(”(j2+1)> -0, (15)
a>'+<”(j—2+1)) — _(Bu+ BTn(i + D). (16)

So, for a sufficiently small positive numberwe get

¢+<L2+1)—8)>0 if B1+ B2>0,

i+ 1
q>+<”(1—2+) +s) >0 if B+ p2<O.
Combining these with (14) and the intermediate value theorem, we se@ihal) has at
least two zeros insidé:(j + 1)/2 — 1/2, n(j + 1)/2 + 1/2). Using Lemma 2 and the
above discussion, we obtain the assertion of Lemma 3 in the case whe&re< 0 and

n € 22t1(2N — 1) with « € N. Likewise, we get the conclusion of Lemma 3 in the other
cases. a

LEMMA 4. Letj > joand B1B82 < 0. Then, the function @_ (1) has exactly one root
intheinterval (nj/2+n/4+ (1 —1)/2, nj/2+n/4+1/2)forl =1,2,...,2n.

PROOF. Note that: — m ¢ 2N. First, we consider the case wheres 2*T1(2N — 1)
with @ € N. We fixk € {1,3,5,...,n — 1}. Since

. . 2
nj n k-1 nj n [—1 (k—1m
o (M KT (M 2 e R o,
(2+4+ 2) ,31,32(2-1-4—1- > co —n >

nj n k nj n k 2 km
P | =+-+=)= Z4+-42) cof—x <0
<2+4+2> ’3”32<2+4+2> n e S

we claim by the intermediate value theorem that the functbor{it) has at least one zero
inside(nj/2+n/4+ (1 —1)/2, nj/2+n/4+1/2)fori =1,2,...,n. Combining this with
Lemma 2, we get the assertion of Lemma 4 in the case wherg*+1(2N — 1) with o € N.

In a similar way, we get the conclusion of Lemma 4 in the case wher@(2N — 1). m|

LEMMA 5. Let 8182 > 0. Then, there exists j4 € N such that the function @_ (u) has
a unique zero in theinterval (nj/2+n/4+ (I —1)/2, nj/2+n/4+1/2) for j > js and
1=212,...,n/2—1,n/2+2,...,n. Moreover, the function ®@_ (1) possesses exactly two
zerosintheinterval (n(j +1)/2—1/2, n(j +1)/2+ 1/2) for j > ja.

PrROOF. Recall thatr —m ¢ 2N. We discuss the case wheres 2°t1(2N — 1) with
a € N. Letj > jo. We fixk € {1,3,5,...,n/2—1,n/2+3,...,n — 1}. Since there exists
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Jja € N such that

. . 2
nj n k-1 nj n k-1 (k —1Dm
o |\ =—+-+—)=4- -+ -4+ — - - 0
(2 y 2) ,31,32(2 2 > co — <0,

nj n k nj n k 2 km
¢_<7+Z+E> 2131132<7+2+5> COSZTJT >0
for j > ja, we infer by the intermediate value theorem that the funchar{i) has at least
onezeroinnj/24+n/4+(1—-1)/2, nj/2+n/4+1/2)forl =1,2,...,n/2—1,n/2+3,...,n
andj > jg.

Next, we discuss the number of the zerostof(w) inside(n(j + 1)/2 — 1/2, n(j +
1)/2+ 1/2). By a simple calculation, we have

q§<n(j+1))=4, a7
2

i +1
qb’(n(]; )> = —(BL+ p2)mn(j +1).

Moreover, we obtain

¢<n<12+1> - 3) -4

2
and
nj+1 1
q>_< 5 +§>>4 (18)

for sufficiently largej. First we discuss the case whee+ 82 > 0. Letag < ap be the first

two zeros ofd_ (u) inside (n(j + 1)/2, oo). Combining (17),@’ (n(j + 1)/2) < 0, and
Proposition 1(d) of [10], we havé_(u) < 4 foru € [n(j + 1)/2, a2]. This together with
(18) yields thatp_(u) has at least two zeros in the intervalj + 1)/2, n(j +1)/2+ 1/2).

In a similar fashion we claim thap_ () admits at least two zeros inside(j + 1)/2 —

1/2, n(j + 1)/2) for B1 + B2 < 0. Using Lemma 2 and the above discussion, we obtain the
assertion of Lemma 5 for € 2*t1(2N — 1) with @ € N. In a similar manner, we conclude
the assertion of Lemma 5 in the case where 2(2N — 1). a

We further need the following implication.

LEMMA 6. Thereexists js5 € N suchthat thefunction D(-) 2 hasexactly (nj +n/2+
1) zerosin theinterval ( — oo, (nj/2+ n/4)?) for j > js.

PROOF. First, we prove the assertion fér(x) — 2. We recall (7) and (8). Let > jo.
We put

F) = f(Vx) = —4sirfav/a — (Br+ B2)vVAsin 27/%
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G(\) = g(VA) = B1f2rsin 27mm/isin 2(1 — %)nﬁ

. 2 2 . 2
Im A
Aj:{xec; |Rek|<(%+%) —ﬁ, ||mx|<2<%+%>},
oA+
nj n nj n
= C; Rez=—+—-, 0<Imz<—=—+ -4,
S1 z€C; z 2+4 < z_2+4}

nj n nj n
So=1ze€C; |Rezl < =+4+—-, Imz=—=+4+ -1,
2 =12 | z|_2+4 z 2+4}

nj n nj n

S3=1z€C; Rez=—<7+z), OSImZ§7+Z}'
We show the inequalityF (1)| < |G(1)| ondA;. The functionz = N mapsadA; to
S1 U 82 U 83, bijectively. In Lemma 2 we have proved that(z)| < |g(z)| on the two lines
Imz = nj/2+n/4 and Rez = nj/2 + n/4. Sincef(z) andg(z) are odd functions of,
we obtain| f(z)| < |g(z)| onS1 U S2 U S3. Hence, we getF(A)| < |G(A)| ondA;. Itthen
follows that the functiong (1) — 2 andG (1) have the same number of zeros insitlg

Next, we count the number of the zeros@fA) inside A ;. Notice that all the zeros of

sin((2m/n)w+/A) in A; are

2
(2) . p=01....mj+m—1)/2,
2m

while those of sit2(1 — m/n)+/A) in A; are
2
(L> L g=0, 1....(n—m)j+mn—m—1)/2.
2(n — m)

We note that 0 is a double zeroG{1). Hence the functio® (1) —2 has exactlyfj+n/2+1)
zeros insided ;. Combining this with the fact

lim |D()| = +o0,
A——00

we claim thatD(1) — 2 has exactlynj +n/2+ 1) zeros in the interval—oo, (nj/2+n/4)%)
for sufficiently largej € N. Likewise, we infer thatD(1) + 2 has exactlynj + n/2 + 1)
zeros inside the interval-oo, (nj/2 + n/4)?) for sufficiently largej € N. |

We are now ready to prove Theorem 1. First, we show the statement (ii).

PROOF OFTHEOREM1(ii). Letus discuss the case whete+ 82 > 0. By the proof of
Lemma 3 we observe that the two zerosof (w) in the interval(n(j + 1)/2 — 1/2, n(j +
1)/2 + 1/2) are written in the form

L n(G+1 __n(G+dH
Kp=—7>% > H =77 T
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with 0 < ri < 1/2. By Lemmas 3 and 6 we have
Gnjrnal = (W)Z = (u7)? (19)
=n(j +Dry — )%
Let us show that

r;—>0 as j — . (20)

Seeking a contradiction, we assume the}T}?ozl does not tend to zero. Then there would
exist a subsequend¢ (/)};°, of {j}‘;":1 and a numbes$ € (0, 1/2) such that < i for all
[ € N. Then we have

. 2m _ . . 2m .om
sin—umr;, = min| sin—mx4, sin—x | >0,
n Jjd) n n

sin 2<1— ﬂ)nr._l > min(sin 2<1— ﬂ)ms, sin ﬂn) > 0.
n Jjd) n n

SincecDJr(;LjT(l)) = 0, we arrive at

<n(j(l) +1 - (B1+ B2) sin 2nr; >2
VWS - : i _
2 70 2B1B2 sin ZTmnrj(l) sin 2(1— %)nrj(l)
4sirfwr

Jjd)
= . — - (21)
B1B2sin %nrj(l) sin2(1— 2)xrs

( (BL+ B2)sin2rr) )2

2B1B2siN Ly SN 2AL— B)mry )

Hence the left-hand side of (21) tendsitec as! — oo, while the right-hand side of (21) is
bounded. Because we have founcoatradiction, we obtain,” — 0 asj — oo.

Next we analyze more precisely the asymptotic behaviorg.‘ ofisj — oo. Recall (15)
and (16). Since

i1
qsi(n(Jer )> — 872 — A(BL+ Bo)m + 2B1Bom(n — mw2(j + )2,

supp (@Y ()| < +o0,
1<p

we have by the Taylor theorem

n(j—i—l))

‘¢+(ll«) + (B1+ B)mn(j + 1)(#— >
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D\ 2
+ {47r2 +2(B1+ B2)7 — B1fam(n — m)w?(j + 1)2} (H - n(J—ZJr)) ‘
. 3
<CU+D3|u— n(j2+ el #2

forue (n(j+1)/2—-1/2,n(j +1)/241/2) and;j € N, whereC is a constant independent
of u andj. Becaused (M;) =0, we have

— (Br+ B)mn(j + 1) + {4n242(B1 + Po)m — Prfam(n — m)m?(j + D?}r; | (23)
< C(+ D20
Sincer; — 0asj — oo, there existgs € N such that
. 2, — 1 2 2. 2
C(j+1)707) = 5(47% + 21+ Po)w = Prpom(n — m)w*(j + 1)°)

for j > je. Inserting this into (23), we get

. 2081+ pon( + 1
I T A + 2(B1+ B2) — BrBom(n —m)w(j + 1)?°

Thus, there exist€g > 0 such that
O<r; <CoG+D7* (24)

forall j > js. By substituting (24) for (23), we get
(BL+ B2n(j +1) — CCE
4 4 2(B1 + B2) — PrBem(n —m)m (j + 1)?

S (B1+ B2)n(j + 1) + CC§
T T An 4+ 2(B1+ B2) — Brfem(n —m)w(j + 12

Hence we obtain

. _ —(B1+ B2n? 1
n(]—i—l)rj_m—i-O(] )

asj — oo. Therefore we conclude by (19) that

—(B1+ B2)n?
B1Bam(n — m)m
asj — oo. Thus we have proved the statement (ii) far+ 82 > 0. In a similar manner, we
obtain (ii) for 81 + B2 < 0. It follows by Theorem 2 of [10] thaiG,,; 11| = O forall j € N,
providedB; + B2 = 0. Hence, (i) also holds fg81 + 8> = 0. a

IGn(j++1l = +03G™h

The proof of the statement (iii) is slightly complicated than that of (ii).
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PROOF OFTHEOREM1 (iii). Suppose thais; + 2 > 0. It follows by the proof
of Lemma 5 that, forj > ja, the function ®_(u) admits exactly two zeros inside
(n(j + 1)/2,n(j + 1)/2 + 1/2), which we denote by, < 7;". Using Lemmas 4 and 6,
we obtain

G411l = (7% = (7).

Puts; = 7" —n(j +1)/2. We have O< s; < 57 < 1/2. Asin the proof of (20), we have
sf—)O as j —> . (25)

Sinceq)_(rf) = 0, we have by (22)

| — 4+ (BL+ B2)mn(j + Ds;

+ {472 + 21 + Bo)m — Brpam(n — m)m?(j + D)P}(s7)?] (26)

< CU+ D61

Becauseyji — 0asj — oo, there existg7 € N such that

CG+D%; < %{ — 4x% = 2(B1+ B2 + PBom(n — m)m?(j + 1))

for j > j7. This together with (26) implies that

1
E{ — 4% = 2(B1+ B2 + BrBam(n — m)m(j + D} (s7)?

— (BL+ B2wn(j + Dsy +4 <0,
S{ = an = 2B+ oy + fafomin — myr?(j + 1) 5E)

— (B1+ B2mn(j + Dsi +4>0.

By the former inequality we have
O<s;y <Ci(i+D77,
where(1 is a constant independent pf Then we infer by (26) that
| =4+ (Bi+ Bmn(j + D}
+ {4+ 2(B1 + B2 — BiBam(n — m)w(j + D?}(s7)?]

cc3
j+1

(27)

Put

B (B1+ B2)mn(j + 1)
2(472 + 2(B1 + B2)m — PrBam(n —m)m?(j +1)?)

Vi =
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Then we claim by (22) that

® (n(j +D ) _ —(B1+ B2)%n® + 16B12m(n — m)
L2 v 2B1B2m(n — m)

asj — oo. Notice that(8; + B2)2 > 48182 > 0, where the equality holds if and only if
B1 = B2. So we get

nG+1) | 2(n — 2m)?
(p_< 2 +y])§_m(n—m)

The first term of the right-hand side of (28) is equal to O if and onlyifn) = (1, 2). Hence
we claim by @.2) that

+03G™h

+oG™h. (28)

q§<”(j +1
2

+ J/j) <0
for sufficiently largej. Combining this with (17) and (18), we get

s, <Vj< s;.r. (29)

We denote byxli_j < a}i the zeros of

) 2 2. 2).2 CCS
4— (Br+ B)mn(j + Dx — {47+ 2(B1+ B2)m — Brfom(n —m)m“(j + D }x* + Tr1
Using (27) and (29), we obtain
a <5y s, ag;<s) <ag;
Therefore we get
2 + 27242 _ 16 _ 2
n(j + D5t = Bt B ny/(By + Bo)Pn%n? — 16p1pam(n —m)x? | q,

2B1B2m(n — m)m?
asj — oo. Hence we conclude that

ny/ (B1 + B2)2m2n? — 1661 Bom(n — m)m2
B1Bom(n — m)7t2

asj — oo, which proves the statement (iii) fghh + 82 > 0. Likewise, we get (iii) for
B1+ B2 <0. O

Finally, we show the statement (i).

|Gagjrn+al = +03™

PROOF OFTHEOREM1 (i). We show that the zeros @b (1)/u? are asymptotically
equal to that of sir u sin(2r — ). We put

- 1 . . . 4
Py (p) = — Py () = B1B2sinkp Sin(2r — k) — Pt o sin2rpu — — Slnznu,
2 2 Jz
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W, (u) = Sinkpsin(2r — k) .

We see that the zeros @, () in the interval(nj /2, n(j + 1)/2) are

nj n
—+—k (k=12 ... -1
2+2m ( ,2,...,m—=1)
and
nj n
—+—— (=12 ....n—m-—1).
2 T om—m ¢ n—m=1)

We recall (2), (3) and (4). Now, we prove that there exists a conétantO andj; € N such
that &, (1) has a unique zero in the intervij/2 + cx — C/j, nj/2 + cx + C/j) for all
j>jrandk=1,2,...,n— 2.

First, we consider the neighborhoodgf/2+ ax fork = 1, 2, ..., m — 1. By the Taylor
theorem, we get

. nj n 3
sink 7+—k+n =kn+ O(nl”),

2m
sin2r — K)(% + %k + n) — (=1’ sin2r — K)%k +oanD

asn — 0, where the error terms are uniform with respect t N. Notice that

and

Sinzyr,u,‘ - 4
u? |7 n?(j —17?

sin 27'[/1,‘ - 2
iz “n(j-1
for u > n(j — 1)/2. Thus we obtain

- (nj n
q§+<—]+—k+n>

2 2m
=ﬂmxmﬂwxw%(e4ﬂﬂmh~«5%k+owm)+001) (30)

— (=1)/ 1 Bokcn sin(2r — K)ik Tom®+o0(Y,

asn — 0andj — oo, where the first error term in (30) is uniform with respectjte N
and the last error term in (30) is uniform with respectjt& (—1, 1). Hence, there exists
a constanC; > 0 andj7 € N such that®, (1) has a unique zero in the intervalj/2 +

ar — C1/j, nj/2 + ax + C1/j) forall j > j;. In the exactly same way, we claim that
there exists a constad; > 0 andjg € N such that<15+(u) admits a unigue zero inside
(nj/2+b;—C2/j, nj/2+ b+ Co/j)forall j > jgsandl =1,2,...,n—m — 1. Hence the
zeros ofd, () in (nj/2+ d1/2, n(j +1)/2 — d,_1/2) are written in the form

pl="3+a+0G™h. k=Ll2..n-2.
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This together with (20), (25) and Lemmas 3, 6 implies that

|Gnjrarail = (037 = (g _1)°
=nj(cx — cx-1) + O(1)
asj > oofork=1,2,...,n/2—-1.
Next we denote the zeros éf_ in the interval(nj/2 — 1/2, nj/2+ 1/2) by gj‘ < g;r.
As in the proof of Theorem 1 (iii), we ha\,‘lefE —nj/2| - 0asj — oo. Combining this
with the above arguments, we obtain
|Gnjt2+2x| = nj(cax+1 — cx) + O(D)

asj > oofork=0,1,...,n/2— 1. Hence, we have the statement (i). a

3. Proof of Theorem 1 for odd n

We give the proof of Theorem 1 for odd with omitting details, since it is a minor
modification of that for even; we need the following claim instead of Lemma 2.

LEMMA 7. Ifnisodd, thenthefunction @4 () admitsexactly 2n zerosin theinterval
(nj/2+1/2, n(j +2)/2+ 1/2) for sufficiently large ;.

PrRoOF. Forj € N, we put

nj 1
Vj:{ZGC, ReZ=7+§}

Recall (5)—(8). Let us prove thaf (z)| < |g(z)| on V; for sufficiently largej. Letz =
nj/2+4+1/2+it,t € R. By (10) we have

2

. 2m 1 n 2m n
sin—mz| = _(64;7”| —2cos—m + e_ﬁnfl)
n 4 n
1 2m
= —(1—005—71) >0,
2 n
2 1 5
sin 2<1 — ﬂ)ﬂz = —(e4(l%)nlf _ 2Cos_m7r + 64(1%)7["[)
n 4 n
1 2m
> —(l—cos—n) > 0.
2 n

1 4m

< Zew il

2m
’2 CoOS—r
n
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and
m 1 aa-m
2cosd 1 - = )| < ZeAA-Tmll
n -2
then we get
2
sin z—mnz > }e%mﬂlf\
n 8
2
sin2(1— 2 )rz| > Zed@ Dl
n -8
and hence
(€77 4 e77T)? 4027l

< =
2 - =1
IsinZrz||sin2(1— 2)rz| ~— ge2rll

n
So, we obtain

(enlmz +efnlm z)2
supsup —om N m <00,
jENZEVj |Sln77l’Z||Sln2(l— 7) 7TZ|

and thus

f(@

— <

9(2)
for sufficiently large; in view of (9), (11) and (12). By this estimate and the arguments
employed in the proof of Lemma 2, we get the conclusion of Lemma 7. a

Using Lemma 7 and mimicking the methods in the previous section after Lemma 2, we
get the assertion of Theorem 1 for oad
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