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Two-bridge links with strong triviality

Ichiro TORISU

Naruto University of Education

(Communicated by K. Taniyama)

Abstract. In this article, we study strong triviality of two-bridge links. We prove that every (non-trivial)
two-bridge link can not be strongly n-trivial for n ≥ 1.

1. Introduction

A knot K in S3 is called strongly n-trivial if there exist n + 1 crossings contained in a
diagram of K such that the result of any 0 < m ≤ n+1 crossing changes on these crossings is
the trivial knot (Figure 1). Note that by definition, the unknotting number of strongly n-trivial
knots is one. Recently, Askitas–Kalfagianni and Howards–Luecke have started the study of
strongly n-trivial knots by using 3-manifold topology. See [1], [3]. In the previous paper [7],
the author determined strong triviality of two-bridge knots, that is, only the trivial knot, the
trefoil knot and the figure-eight knot have both two-bridge and strongly n-trivial diagrams for
n ≥ 1.

In the current paper, we continue to study strong triviality for links. Especially, we prove
that every (non-trivial) two-bridge link can not be strongly n-trivial for n ≥ 1.

FIGURE 1. Strongly 1-trivial knots.
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FIGURE 2. A Brunnian Suzuki graph and a strongly 2-trivial link.

2. Main result

DEFINITION 2.1. Let n be a non-negative integer. A k-component link L in S3 is
strongly n-trivial if there exist n+ 1 crossings contained in a diagram of L such that the result
of any 0 < m ≤ n + 1 crossing changes on these crossings is the k-component trivial link.

We remark that for a strongly n-trivial k-component link L, any crossing change in Def-
inition 2.1 must be done on one component of L and the linking number of any 2-component
in L is zero. Moreover Vassiliev invariants for L of orders ≤ n coincide with that for the
k-component trivial link. As in [1], [3], we can construct strongly n-trivial knots for any n via
“Brunnian Suzuki graphs” as follows. A Brunnian Suzuki graph G consists of one circle C

and edges E such that if we remove any non-empty subset of E from G, the resulting graph
is trivial. By creating hooks along E as indicated in Figure 2, we have a strongly n-trivial
knot K , where n = �|E| − 1 (�| · | denotes the cardinality). Take a disk D such that (i) ∂D

surrounds the ends of one edge in E, (ii) D does not intersect other edges in E, (iii) ∂D is
sufficiently close to C, as indicated by a bold circle in Figure 2. Then we have a strongly
n-trivial 2-component link K ∪ ∂D.

Let S(α, β) be a two-bridge link whose two-fold branched cover is the lens space
L(α, β), where α is an even integer and β is an integer coprime to α. Note that S(α, β)

is a 2-component link and S(0, 1) is the trivial link.
Our theorem is then the following.

THEOREM 2.2. If a two-bridge link S(α, β) is non-trivial, then S(α, β) can not be
strongly n-trivial for every n ≥ 1.

REMARK 2.3. (i) Two-bridge links with unlinking number one was determined by
Kohn in [4]. He proved that a two-bridge link S(α, β) has unlinking number one if and only if

α = 2r2 and β = 2rs ± 1 for some coprime integers r and s. Actually, the proof of Theorem
2.2 is simiar to that of Theorem 1 in [4].
(ii) After writing this paper, the author was informed that Tsutsumi have proved that strongly
n-trivial links are boundary links [8]. So Theorem 2.2 is also obtained from his theorem.
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FIGURE 3.

3. Proof of Theorem 2.2

Since strongly n-trivial link is obviously strongly m-trivial for all m ≤ n, it is sufficient
to show that if S(α, β) is strongly 1-trivial, then S(α, β) is the 2-component trivial link. As in
[4], [7], we will prove Theorem 2.2 via Dehn surgery techniques.

Let N(k) be a regular neighbourhood of a knot k in a closed orientable 3-manifold M ,
with µ a meridian for N(k) and let E(k) = M − intN(k) be the exterior of k in M . Now let
k(γ ) denote the manifold obtained by attaching a solid torus V to E(k) so that a curve of slope
γ on ∂E(k) bounds a disk in V , where γ indicates the isotopy class of an essential simple

closed curve on ∂E(k). For a knot k in S3, a slope γ is represented by an element m
n

∈ Q∪{ 1
0 },

where γ = mµk + nλk in H1(∂E(k), Z), (µk, λk) is a preferred meridian-longitude pair of
k and m,n are coprime integers. We shall say that k(γ ) is the result of γ -Dehn surgery on k.
Dehn surgery on a 2-component link k ∪ k′ is also defined in the same way and denoted by
k ∪ k′(γ, γ ′) for slopes γ and γ ′ of k and k′, respectively. For two slopes γ and δ in ∂E(k),
let ∆(γ, δ) be their minimal geometric intersection number.

The next well-known lemma was first observed by Montesinos in [5].

LEMMA 3.1. Let K and K ′ be knots in S3 and let MK and MK ′ be the two-fold

branched covering spaces of S3 along K and K ′, respectively. Suppose the result of a cross-
ing change on K is K ′. Then MK ′ is obtained by γ -Dehn surgery on some knot k in MK , with
∆(γ,µ) = 2.

PROOF. We regard the crossing change as a replacement of sufficiently small 2-string

trivial tangles (B, t) ↪→ (S3,K) and (B, t ′) ↪→ (S3,K ′). Then the two-fold branched cover-
ing spaces of the tangles along the 2-strings are solid tori V and V ′, respectively. Therefore
MK ′ equals the result of some γ -Dehn surgery on a knot in MK . Let D and D′ be essential
meridian disks for (B, t) and (B, t ′), respectively (see Figure 3). Then in MK , the preimages
of each component of ∂D and ∂D′ essentially intersects each other at 2 points on ∂V = ∂V ′.
Hence we have ∆(γ,µ) = 2. �

A torus knot in a lens space is a knot isotopic onto a Heegaard torus of the lens space.
For the proof of Theorem 2.2, we need the following theorem essentially obtained in [6].
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THEOREM 3.2. Let kT be a torus knot in S2 × S1. Suppose that kT (γ ) is homeomor-

phic to S2 × S1 for some slope γ with ∆(γ,µ) = 2. Then kT is the trivial knot, that is, kT

bounds a disk in S2 × S1.

PROOF. We use the notation in [6, p. 1568] and suppose that kT is a“(m, n)-torus knot”

Cm,n in L(0, 1) = S2 × S1, where m and n are coprime integers. In this case, remark that
Cm,n is trivial if and only if n = 0. Then by [6, Lemma 7], if kT (γ ) is a lens space, then

kT (γ ) is orientation preserving homeomorphic to L(−2n2, 2bn2 + 2mn ± 1) for some b. (In
[6, p. 1568], r = 0, s = 1, a = −1, d = 2). Therefore by our assumption, n must be zero.
This completes the proof. �

The next easy lemma depends on a specific property of S2 × S1.

LEMMA 3.3. A torus knot in S2 ×S1 represents the trivial element in the fundamental

group of S2 × S1, which is isomorphic to Z, if and only if it is the trivial knot.

PROPOSITION 3.4. If a two-bridge link S(α, β) is strongly 1-trivial, then there is a 2-

component link k1 ∪ k2 in S2 × S1 such that k1(γ1) and k2(γ2) are homeomorphic to S2 × S1

and k1 ∪ k2(γ1, γ2) is homeomorphic to L(α, β), where each slope γi satisfies ∆(γi, µ) = 2.

Moreover each ki is the trivial knot in the original S2×S1 and a torus knot in kj (γj ) = S2×S1

(i �= j).

PROOF. By definition, there are two crossings in a diagram of S(α, β) such that both
each crossing change and simultaneous crossing changes yield the 2-component trivial link.

The two-fold cover of the 2-component trivial link in S3 is S2 × S1. Therefore by Lemma 3.1

and its proof, there exists a 2-component link k1 ∪ k2 in S2 × S1 such that k1(γ1) = k2(γ2) =
S2 × S1 and k1 ∪ k2(γ1, γ2) = L(α, β), where ∆(γi, µ) = 2 (i = 1, 2). Moreover, since
∆(γi, µ) = 2, by Culler–Gordon–Luecke–Shalen’s cyclic surgery theorem in [2], the exterior
spaces E(k1) and E(k2) are Seifert fibred manifolds, respectively. But as in [6, Lemma 4] this

implies k1 and k2 are fibers for some Seifert fibrations of both S2 ×S1 and L(α, β). Moreover,
it is well-known that any fiber for a Seifert fibration of a lens space is isotopic to some torus
knot (for example, see [6]). By Theorem 3.2, it follows that k1 and k2 are trivial in the original

S2 × S1, respectively. This completes the proof of Proposition 3.4. �

We are ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. Suppose a two-bridge link S(α, β) is strongly 1-trivial.

Then there is a 2-component link k1 ∪ k2 in S2 × S1 which satisfies the properties in the

statement of Proposition 3.4. Since k2 is trivial, k1 in k2(γ2) = S2 × S1 may be considered as
a full-twisted k1 along some disk spanned by k2 in the original S2 × S1. Therefore notice that
the full-twisted k1 is also homotopic to zero. By our assumption and Lemma 3.3, we conclude

that the full-twisted k1 is the trivial knot in S2 × S1. It is well-known that Dehn surgery on

the trivial knot in S2 ×S1 is either a non-trivial connected sums of two lens spaces or S2 ×S1
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itself. Hence it follows that k1 ∪ k2(γ1, γ2) = L(α, β) is equal to S2 × S1. So we have α = 0

and β = 1 and S(α, β) = S(0, 1) is the 2-component trivial link in S3.
This completes the proof of Theorem 2.2.
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