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Compact Quotients of Large Domains in a Complex Projective 3-space

Masahide KATO

Sophia University

Abstract. In a complex projective 3-space, we consider a domain with a projective line. If there is a compact
non-singular quotient of the domain and the quotient manifold admits a non-constant meromorphic function, then
the domain is dense in the projective 3-space and its complement is properly contained in a finite union of complex
hypersurfaces and a set with Hausdorff dimension not more than two. Further, if the complement admits a certain
fiber space structure, then it is either a disjoint union of two projective lines, a projective line, or an empty set.

Introduction

By a line, we shall mean a projective linear subspace of dimension 1 in a 3-dimensional

complex projective space P3. A domain Ω in a projective 3-space P3 is said to be large∗ if

Ω contains a line in P3. Let Γ be a holomorphic automorphism group of Ω . Suppose that
the action of Γ is fixed point free and properly discontinuous, and that the quotient space is
compact. In this situation, we say that X is a compact quotient of a large domain Ω by Γ

and indicated by X = Ω/Γ . Under the assumption that Ω is large, the automorphism group

Γ appears to be a subgroup of PGL(4) ([K2]). Put Λ = P3 \ Ω . We denote by a(M) the
algebraic dimension of a complex manifold M . In general, Λ may contain interior points
[K4]. In this note, we shall consider the case a(X) > 0. Without any assumptions on Λ, we
have

THEOREM A. If a(X) > 0, then Λ = P3 \Ω is contained in S ∪A, where S is a finite

union of complex hypersurfaces in P3, and A is a closed subset of P3 \ S with the Hausdorff
dimension d(A) not more than 2. In particular, Ω is dense in P3.

We say that Λ is of fibered type, if Λ satisfies the following condition:
(F) Λ coincides with the set

⋃
s∈I |�s |, where {�s}s∈I is a family of lines parametrized

by an index set I with an arbitrary cardinality such that |�s | ∩ |�t | = ∅ for any s �= t .

THEOREM B. Suppose that Λ is of fibered type. Then, if a(X) > 0, the cardinality of

I is at most 2, and X is biholomorphic to P3, a Blanchard manifold, or an L-Hopf manifold.
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Here, |�| indicates the support of a line �. For the definitions of Blanchard manifolds and
L-Hopf manifolds, see [K3]. See also notes added in proof.

Among compact quotients of large domains are most of flat twistor spaces. Note that
the condition (F ) is fulfilled for flat twistor spaces over conformally flat differentiable 4-

manifolds which are conformal quotients of domains in S4. The condition (F ) is preserved
by complex analytic connected sum operations (see, Proposition 5.1). Flat twistor spaces
with positive algebraic dimensions are already classified by Fujiki [F] as an application of his
theory on general twistor spaces. Since compact quotients of large domains, however, do not
always have flat twistor space structures, we take another approach to our study. We are rather
inclined to develop a higher dimensional analogue of Klein group theory.

Our main tool to study the set Λ is a deep result of S. Ivashkovich [I] on the extension of
meromorphic maps of Hartogs domains into complex manifolds with pluri-closed Hermitian
metrics (section 4). The index Hexn for complex manifolds introduced in [KO] is also useful.
Section 1 is for preliminaries. Theorem A will be proved in section 2. Theorem B will be
proved in section 3. On the existence of pluri-closed Hermitian metrics on the total space of
a family of compact complex surfaces will be discussed in section 4. In section 5, we verify
that the condition (F ) is fulfilled for complex analytic connected sums of flat twistor spaces.

1. Preliminaries

The envelope of holomorphy for an n-dimensional Hartogs domain over Cn is a polydisk,
which we call by the associated polydisk for the Hartogs domain. In [I], S. Ivashkovich proved
among other things the following, which is a key of this paper.

THEOREM 1.1 (Ivashkovich). Let X be a disk-convex complex manifold with a pluri-
closed Hermitian metric. Then every meromorphic map f of an n-dimensional Hartogs do-
main H into X extends meromorphically to ∆ \ A, where ∆ is the associated polydisk of H ,
and A is a closed subset of ∆ with the Hausdorff dimension not more that 2n− 4. Further, if
n = 2 and X is of dimension 2, then A is a set of isolated points in ∆.

In [KO], we have introduced an index Hexn of a complex manifold, which we call holo-
morphic extension index, to scale the extendability of holomorphic maps into the manifold.
See [KO] for the detail. Theorem 1.1 tells us, in particular, that Hexn(X) ≥ 4 holds for a
holomorphically convex complex manifold X with a pluri-closed Hermitian metric.

PROPOSITION 1.1. Let X be a complex manifold and D = ∪λDλ a finite union of non-
singular hypersurfaces Dλ ⊂ X. Assume that X \D and any component Dλ are n-probable
and that Hexn(X \D) > 2. Then X is n-probable and Hexn(X) ≥ minλ{Hexn(Dλ), 2} holds.

PROOF. See [KO, Proposition 4].

PROPOSITION 1.2. Let X be a complex manifold which is n-probable with Hexn(X) >

2. Let (Ω, π) be an étale domain over a Stein manifold M with dimC M = n. Then, for every
holomorphic map σ : Ω → X, the maximal domain Ωσ of definition for σ over M is a
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subdomain of Ω̃σ satisfying

d(Ω̃σ \Ωσ) ≤ 2n− Hexn(X) ,

where Ω̃σ is the envelope of holomorphy for Ωσ over M .

PROOF. See [KO, Theorem 2].

PROPOSITION 1.3. Let X and Y are n-probable complex manifolds and f : X → Y

a surjective holomorphic map. Let {Uα}α be any open covering of Y . Then we have the
following inequality

Hexn(X) ≥ inf
α
{Hexn(Y ), Hexn(f

−1(Uα))} .

PROOF. See [KO, Theorem 3].

LEMMA 1.1. Let X,Y be complex manifolds and f : X → Y a holomorphic un-
ramified even covering. If Y is n-probable with Hexn(Y ) > 2, then X is n-probable and
Hexn(X) = Hexn(Y ) holds.

PROOF. See [KO, Proposition 5(b)].

LEMMA 1.2. Let X be an n-probable complex manifolds with Hexn(X) > 2 and D

a pure dimensional analytic subset of codimension 1. Then X \ D is also n-probable and
Hexn(X \D) ≥ Hexn(X) holds.

PROOF. Any subdomain of an n-probable manifold is n-probable. Hence X \ D is n-
probable. Let σ : H → X \D be any holomorphic map of a Hartogs domain H . Since X is
n-probable, σ extends to a holomorphic map σ̂ : ∆ \ A→ X, where A is a closed subset of

the associated polydisk ∆ with d(A) ≤ 2n− Hexn(X) < 2n− 2. Put E = σ̂−1(D). Then E

is an analytic subset of ∆ \ A with pure codimension 1, provided that E �= ∅. E extends to

an analytic subset Ê of ∆. Hence Ê ∩ H �= ∅. This is absurd, since σ(H) ⊂ X \D. Hence
E = ∅ and consequently we have σ̂ (D \ A) ⊂ X \D. Therefore we obtain Hexn(X \D) =
2n− supσ d(Aσ ) ≥ Hexn(X).

THEOREM 1.2. Let X be a complex manifold of dimension 3 and S = {t ∈ C : |t| <
1}. Suppose that X is n-probable and that there is a proper holomorphic surjective map
f : X → S with connected fibers which is of maximal rank everywhere. Then Hexn(X) ≥ 4
holds.

PROOF. This will be proved in section 4.

Note that Ω/Γ is always n-probable, since any holomorphic map of a Hartogs domain

into Ω/Γ lifts to Ω and extends to a meromorphic map of the associated polydisk into P3.

PROPOSITION 1.4. If a(Ω/Γ ) > 0, then Hexn(Ω/Γ ) ≥ 2.

PROOF. Put X = Ω/Γ . Let µ : X∗ → X be a blowing-up of X such that there is a
holomorphic map f : X∗ → C onto a compact non-singular curve C with connected fibers.
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There is a finite subset A of C such that X∗ \f−1(A) is of maximal rank everywhere and that

every irreducible component of f−1(A) is non-singular. We have Hexn(X
∗ \f−1(A)) ≥ 4 by

Theorem 1.2. By Theorem 1.1, we know that Hexn ≥ 4 for any compact complex surfaces.
Hence we have Hexn(X

∗) ≥ 2 by Proposition 1.1. Hence so is X.

2. Proof of Theorem A

A non-constant meromorphic function f defines a meromorphic map X · · · → P1. Since

Ω is large, π∗f extends to a Γ -invariant rational function F on P3. Thus we have a commu-
tative diagram of meromorphic maps

Ω
i−→ P3

| ...

π ↓ ↓ F

X
f· · · → P1 ,

where i is the natural inclusion, and π is the canonical projection. We eliminates the base

locus of F by successive blowing-ups of P3 to obtain a non-singular 3-manifold M and a

bimeromorphic holomorphic map u : M → P3. Then u∗F : M → P1 is holomorphic.
Consider the Stein factorization of u∗F , and we obtain a ramified covering v : C → P1 with
the commutative diagram

M
F̃−→ C

u ↓ ↓ v

P3 F· · · → P1 ,

(1)

where C � P1 and F̃ is a surjective holomorphic map. Each element of Γ induces a bimero-
morphic map of M and a biholomorphic map of C. Since the group of automorphisms γ of
C induced by Γ which satisfy v ◦ γ = v is finite, we can choose a normal subgroup Γ1 of Γ

with a finite index such that each element g ∈ Γ1 induces the identity on C. Thus replacing
X = Ω/Γ with X1 = Ω/Γ1, we can assume that the hypersurfaces

St = {z ∈ P3 : F(z) = t}, t ∈ P1,

are irreducible and non-singular outside the base locus B except for a finite number of St ’s,
t = a1, · · · , as . Suppose that s > 0 and consider a rational function h(t) which has poles
exactly on the set {a1, · · · , as}. Put

S =
s⋃

j=1

Saj , D =
s⋃

j=1

Daj , Dt = π(St ∩Ω) .(2)

LEMMA 2.1. Hexn(X \D) ≥ 4.
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PROOF. Let µ : X∗ → X be a modification of X with the centers contained in π(Ω ∩
B). Let E∗ be the exceptional divisor on X∗ and D∗ be the proper transform of D. The map
f defines a smooth family

f ∗ : X∗ \D∗ → P1 \ {a1, · · · , as}
of compact surfaces. Therefore by Theorem 1.2, we have

Hexn(X
∗ \D∗) ≥ 4 .(3)

Since B is contained in D, the map

µ : X∗ \ (D∗ ∪ E∗)→ X \D

is biholomorphic. By Lemma 1.2, we have

4 ≤ Hexn(X
∗ \D∗) ≤ Hexn(X

∗ \ (D∗ ∪ E∗)) = Hexn(X \D) .

Let [z0 : z1 : z2 : z3] be a system of homogeneous coordinates on P3. Put

U = {[z0 : z1 : z2 : z3] ∈ P3 : |z0|2 + |z1|2 < |z2|2 + |z3|2} ,

H0 = {[z0 : z1 : z2 : z3] ∈ P3 : z0 = 0} , H1 = {[z0 : z1 : z2 : z3] ∈ P3 : z1 = 0} ,

L0 = {[z0 : z1 : z2 : z3] ∈ P3 : z0 = z1 = 0} .
Let L be a line contained in Ω . Displacing L slightly if necessary, we can assume that there
are a neighborhood UL and a biholomorphic map τ : U → UL such that π|UL is an open
embedding and that τ (L0) = L. Let � = π(L). We can further assume that � intersects each

Daj (j = 1, · · · , s) transversely. Note that � intersects Dt for any t ∈ P1. Note also that τ

extends to an element of PGL(4) ([K2, Lemma 3.2]). Consider the holomorphic map defined
by

σ = π ◦ τ : U → Ω/Γ .

Then we see that

U \Hν � {(x1, x2, x3) ∈ C3 : 1+ |x1|2 < |x2|2 + |x3|2}, ν = 0, 1 .

The τ−1(Saj ) \ Hν are biholomorphic to (possibly singular, reducible) affine surfaces in C3.

For each k ∈ N, we consider the following subdomains in C3:

G1(k) =
{
(x1, x2, x3) ∈ C3 : |x1| < k , |x2| <

√
k2 + 3

2
, |x3| <

√
k2 + 3

2

}
,

G2(k) =
{
(x1, x2, x3) ∈ C3 : |x1| < k , |x2| <

√
k2 + 2

2
, |x3| <

√
k2 + 2

2

}
,
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W(k) = G1(k) \ [G2(k)], U(k) = {(x1, x2, x3) ∈ C3 : |x1| < k} .
Since τ−1(S) coincides with the set of poles of the rational function (F ◦ τ )∗h, we see by a
theorem of Dloussky [D], that the envelope of holomorphy for the étale domain W(k)\τ−1(S)

over C3 is G1(k) \ τ−1(S). Since π|Ω\S : Ω \ S → X \D is an unramified even covering, we
have

Hex3(Ω \ S) ≥ Hex3(X \D) ≥ 4(4)

by Lemmas 1.1 and 2.1 for n = 3. Hence, by Proposition 1.2, we see that there is a closed
subset Aν(k) ⊂ G1(k) \ S with d(Aν(k)) ≤ 2 such that

τ|U(k)\Hν : U(k) \Hν → Ω \ S

extends holomorphically to

τν(k) : P3 \ (Hν ∪ Aν(k) ∪ T )→ Ω \ S ,

where T is a hypersurface in P3 containing τ−1(S) as an open subset. Letting k → ∞, we
see that τ (k) extends to

τν : P3 \ (Hν ∪ Aν ∪ T )→ Ω \ S ,

where Aν = ⋃
k Aν(k). Thus we see that Ω contains τν(P3 \ (Hν ∪ Aν ∪ T )), and therefore

Λ = P3 \ Ω ⊂ τ (A0 ∪ A1 ∪ T ). Here, by the uniqueness of the extension of holomorphic
maps, we have Aν(k + 1) ∩ U(k) ⊂ Aν(k). Hence d(Aν) ≤ 2 holds, and hence we have
d(A0 ∪ A1) ≤ 2. Thus Theorem A is proved.

For the measure of Λ outside the algebraic set S ⊂ P3, we have a little more information.

LEMMA 2.2. For t ∈ P1 \ {a1, · · · , s}, the restricted projection

πt = π |St : St ∩Ω → Dt

does not extend holomorphically across any point of St ∩Λ.

PROOF. Take any point x ∈ St∩Λ. Note that x is a boundary point of St∩Ω in St , since
St ∩ Λ has no interior point in St by Theorem A. Suppose that πt extends holomorphically
to an open connected neighborhood W of x in St . Denote by π̂t the extended holomorphic
map. Put y = π̂t (x) ∈ Dt . Since πt : St ∩ Ω → Dt is a Galois unramified covering, there

is a relatively compact subdomain ∆ around y in Dt and a relatively compact subdomain ∆̃

in St ∩Ω such that π−1
t (∆) = ⋃

g∈Γ g(∆̃), where the right-hand side is a disjoint union of

relatively compact connected component of π−1
t (∆). Since π̂t is continuous, we can assume

that π̂t (W) ⊂ ∆. Hence πt(W ∩Ω) = π̂t (W ∩Ω) ⊂ ∆. Since the Hausdorff dimension of
W ∩Λ is not more than 2, W ∩Ω is connected. Therefore W ∩Ω is contained in a connected
component of π−1

t (∆). Since each connected component of π−1
t (∆) is relatively compact in

St ∩Ω , we see that the closure [W ∩Ω] is compact in St ∩Ω . Hence, for any sequence {xν}ν ,
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ν = 1, 2, · · · , of points in W ∩Ω which converges to x ∈ Λ, we can choose a subsequence
of {xν}ν which converges to an interior point of St ∩Ω , which is absurd.

LEMMA 2.3. For any t ∈ P1 \ E, the Hausdorff dimension d((St \ B) ∩ Λ) is equal

to zero, where E is a subset of P1 with the Lebesgue measure zero, and B is the set of inde-

terminate of F : P3 · · · → P1.

PROOF. In view of the diagram (1), since u is biholomorphic outside u−1(B), it is

enough to show that the Hausdorff dimension of u−1((St \ B) ∩ Λ) is equal to zero for
t ∈ C \E′, where E′ is a subset of C with Lebesgue measure zero. Since B ⊂ S, we have by
(4) that

d((M \ u−1(S)) ∩ u−1(Λ)) = d((P3 \ S) ∩Λ) = d(Λ \ S) ≤ 2 .

We consider the continuous map

F̃ ′ : u−1(Λ \ B)→ C ,

which is the restriction of F̃ : M → C. Then, by a lemma of Federer (see [S, Lemma 2.7]),
we have, for any k ∈ N, there is a set Ek ⊂ C with Lebesgue measure zero such that

d(u−1((St \ B) ∩Λ)) <
1

k
for any t ∈ C \ Ek .

Hence, letting E′ = ∪∞k=1Ek , we have the lemma.

PROPOSITION 2.1. There is a set E ⊂ P1 with Lebesgue measure zero such that, for
any t ∈ P1 \ E, (St \ B) ∩Λ is a set of isolated points in St \ B.

PROOF. Replacing E of Lemma 2.3 by E ∪ {a1, . . . , as} we take any t ∈ P1 \ E.
Then St \ B is a non-singular Stein surface. By Lemma 2.3, the envelope of holomorphy for
(St \B)∩Ω over St \B is St \B. Hence, by Theorem 1.1, πt extends to a holomorphic map
of St \ (B ∪ A) to Dt , where A is a set of isolated points in St \ B. Since (St \ B) ∩Λ ⊂ A

by Lemma 2.2, we see that (St \B)∩Λ is a set of isolated points in St \B. Thus we have the
proposition.

3. Proof of Theorem B

Step 1. Suppose that Λ contains uncountably many distinct lines. Since Λ is of fibered
type, there is a natural injection

ι : I ↪→ Gr(4, 2) .

We identify the index set I with its image ι(I ). Then there is a projection ι̃ : Λ → I ⊂
Gr(4, 2) defined by Λ � z �→ � ∈ Gr(4, 2), where z ∈ �. It is easy to see that ι̃ is a continuous
map and that I is a closed subset in Gr(4, 2), since Λ is compact. Put

I ′ = {s ∈ I : �s ⊂ S} , I ′′ = {s ∈ I : �s �⊂ S} ,
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where S is the hypersurface defined by (2). Consider the algebraic subset

B = {� ∈ Gr(4, 2) : � ⊂ S} .
By Proposition 2.1, I ′′ is a countable set. Let B0 by any irreducible component of B with
I ′ ∩ B0 uncountable. Obviously we have dimB0 ≥ 1. Let Z0 be the tautological fiber space
of lines over B0 and ε : Z0→ S be the evaluation map. Since dim Z0 = dimB0+1 and since
2 ≤ dim ε(Z0) ≤ dim S = 2, we see that ε is surjective to an irreducible component S0 of S.

If dimB0 = 2, then dim ε−1(x) ≥ 1 for any point x ∈ S0. This implies that on a non-singular
model of S0, B0 defines an algebraic family L whose any two members intersect properly.
On the other hand, however, L contains members, say C1, C2, which correspond to lines in
Λ′. Since Λ is of fibered type, C1 and C2 do not intersect each other. This is a contradiction.

Therefore we have dimB0 = 1 and that ε(Z0) is a hypersurface in P3.
Step 2. Now we can assume that B0 is Γ -invariant, by replacing Γ with its subgroup

of finite index. Let St , t ∈ P1 \ E, be an irreducible hypersurface in P3 of Proposition 2.1
such that St is non-singular outside the base locus B. Put

Λ′ =
⋃
s∈I ′
|�s | , Λ′′ =

⋃
s∈I ′′
|�s | .

Then we have Λ = Λ′ ∪Λ′′ and Λ′ ⊂ S. Let ν : S̃t → St be the normalization of St . Note
that

ν|S̃t\ν−1(B)
: S̃t \ ν−1(B)→ St \ B

is biholomorphic and that Γ acts also on S̃t as an automorphism group. Put ν̃ = π ◦ ν. Since

St ∩ (B ∪Λ) = St ∩ (B ∪Λ′′) and since d(S̃t ∩ ν−1(B ∪Λ′′)) ≤ 2 < 5, the map

ν̃t := ν̃|S̃t\ν−1(Λ) : S̃t \ ν−1(Λ)→ Dt

does not extend holomorphically across any boundary point of S̃t ∩ ν−1(Λ) by the similar

argument to the proof of Lemma 2.2. On the other hand, we note that S̃t \ ν−1(B) is a

non-singular Stein surface and that the envelope of holomorphy for S̃t \ ν−1(B ∪ Λ) over

S̃t \ ν−1(B) is S̃t \ ν−1(B) itself. By Theorem 1.1, ν̃t extends holomorphically outside of a

set A of isolated points in S̃t \ ν−1(B), and hence

ν−1(Λ) ⊂ A ∪ ν−1(B) .

Step 3. We claim that, if B1 is an irreducible component of B such that B1 �⊂ Λ, then

B1 ∩Λ is a countable set. To verify this claim, we consider the open set V in ν−1(B1 \Λ) =
ν−1(B1 ∩ Ω) and a point b̃ ∈ ∂V ⊂ ν−1(B1). We assume that b̃ is not only a non-singular

point of S̃t but a non-singular point of ν−1(B). Let W ⊂ S̃t be a polydisk centered at b̃

with a system of local coordinates (u, v) such that W = {(u, v) ∈ C2 : |u| < 1, |v| < 1} and

ν−1(B)∩W = {v = 0}. Since (S̃t \ν−1(B))∩ν−1(Λ) is a set of isolated points in S̃t \ν−1(B),
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there are positive numbers ε, δ such that {(u, v) ∈ W : |u| < δ, |v| = ε} ∩ Λ = ∅ holds,

where b̃ = (0, 0). Choosing a constant a with |a| small, we can assume that the 1-dimensional
disk {(a, v) ∈ W : |u| < δ |v| ≤ ε} ∩Λ = ∅. Thus the polydisk W ′ = {(u, v) ∈ W : |u| <
δ, |v| < ε} is the envelope of holomorphy for a Hartogs domain contained in S̃t \ ν−1(Λ)

over W . Then by Theorem 1.1, W ′ ∩ ν−1(Λ) is a set of isolated points. Therefore every

boundary point of V is discrete provided that S̃t and ν−1(B) are smooth there. This implies
that B1 ∩Λ is a countable set. Thus our claim is verified. Since any two distinct lines in Λ′
intersect B at distinct points, and since Λ′ contains uncountably many lines, we conclude that
there is an irreducible component of B which is contained in Λ.

Step 4. Put

B ′ = {b ∈ B : �b ⊂ S ∩Λ} ,
where �b is a line in Λ passing through the point b. Then B ′ is a closed subset of B. From step
3, it follows that B ′ contains an irreducible component of B and that the complement B \ B ′
is countable. Therefore, there is a non-degenerate holomorphic map from the irreducible
component of B to an irreducible component, say B0, of B. By step 1 and the definition of
B ′, we see that the hypersurface ε(Z0) is contained in S ∩ Λ. This is absurd however, since
Ω = P3 \Λ ⊂ P3 \ ε(Z0) and Ω contains lines. Thus we conclude that Λ contains at most
countably many distinct lines.

Step 5. Then by a theorem of Hopf on the cardinality of ends, we see that the cardinal-

ity of I is at most 2. Hence X is either P3, a Blanchard manifold, or an L-Hopf manifold by
[K3]. Thus Theorem B is proved.

4. Holomorphic extension index of a family of surfaces

In this section, we shall prove Theorem 1.2. Let X be a complex manifold of dimension 3
and U = {t ∈ C : |t| < 1}. Suppose that there is a proper holomorphic surjection f : X→ U

with connected fibers and that f is of maximal rank everywhere. Put Xt = f−1(t), t ∈ U .
Let bj denote the j -th Betti number of the manifold X0. Put Uε = {t ∈ C : |t| < ε}.

4.1. Families of Kähler surfaces. A C∞ differential form ω on a complex manifold

is said to be pluri-closed if ∂∂̄ω = 0 holds. A Hermitian metric on a complex manifold
is called a pluri-closed Hermitian metric or pluri-Kähler metric, if the associated Hermitian
form is pluriclosed, and the form is called a pluri-closed Hermitian metric form or pluri-
Kähler form.

Then we have the following.

PROPOSITION 4.1. Let f : X → U be a complex analytic family of compact Kähler

surfaces. Then f−1(Uε) admits a pluri-closed Hermitian metric for some ε > 0.

PROOF. It is known that a compact complex surface is of Kähler if and only if b1 is
even. Suppose that b1 is even. Let Φ : X→ X0×∆ be a diffeomorphism, and ρ : X0×∆→
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X0 be the projection to the first component. Let ω0 be a Kähler metric on X0. Let ω̃0 be the
(1, 1)-component of the d-closed form (ρ ◦Φ)∗ω0. Then ω̃0 + ids ∧ ds̄ gives a pluri-closed
Hermitian metric on a neighborhood of X0. Thus the proposition follows.

PROPOSITION 4.2. Let f : X → U be a smooth family of compact Kähler surfaces.
If X is n-probable, then Hexn(X) ≥ 4.

PROOF. By Propositions 4.1 and 1.3, this follows immediately from Theorem 1.1.

4.2. Families of surfaces with odd b1 > 1. First consider the case where X0 is
minimal, i.e, free from the exceptional curves of the first kind. In this case, there is ε > 0
such that the Xt ’s are minimal for all t ∈ Uε. Thus we can assume that every member Xt is
minimal from the beginning. Main part of the argument in the following is the relative variant
of [K1, Section 7(B)].

PROPOSITION 4.3. We can choose ε > 0 and N ∈ N so that there is a proper finite
holomorphic map

Φ : f−1(Uε)→ ((CN \ {O})× Uε)/〈α〉 ,

where α is a holomorphic automorphism of (CN \ {O})× Uε of the form

α : (z1, · · · zN , t) �→ (α(t)z1, · · · , α(t)zN , t)

satisfying |α(t)| < 1 for t ∈ Uε .

PROOF. The direct image sheaf R0f∗Ω1
X/∆ is free on ∆, since the rank of the coherent

sheaf is constant given by b1 = 2 dim H 0(Xt ,Ω
1
Xt

) + 1. Put g = rank R0f∗Ω1
X/∆. Since

every holomorphic 1-form on compact surfaces are d-closed, we have the relative Albanese
map

Ψ : X→ (Cg ×∆)/G, G � Z2g .

By [U, Proposition 9.19], Albanese maps of surfaces with odd b1 > 1 have non-singular
images, connected fibers, and multiple elliptic curves as singular fibers. Therefore Ψ also has
the same properties. Put M = Ψ (X) and Ct = Ψ (Xt). Letting µ : M → ∆ be the projection
to the 2nd component, we have a commutative diagram

X
Ψ→ M

f ↘ ↓ µ

∆ ,

where f = µ◦Ψ and Ct = µ−1(t), t ∈ ∆. The genus of Ct is equal to g . Let σ : Uε → M be

a section of µ|Mε for some ε > 0, where Mε = µ−1(Uε). Put Xε = f−1(Uε) and consider
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the following commutative diagram,

→ H 1(Xε,OXε )
e→ H 1(Xε,O∗Xε

)
c1→ H 2(Xε, Z) →

j ↑ ↑ ‖
→ H 1(Xε, f

−1(OUε))
i→ H 1(Xε, f

−1(O∗Uε
)) → H 2(Xε, Z) → .

(5)

Here f−1(OUε) and f−1(O∗Uε
) are the set theoretic inverse of germs. The homomorphism j

is the map induced by the natural inclusion. Since R2f∗OX is free with rank = pg , we have

(R1f∗OX)t � H 1(Xt ,OXt ) � Cb1 for any t ∈ ∆. Since we know that

0→ H 0(S, dOS)→ H 1(S, C)→ H 1(S,OS)→ 0

is exact on any compact surface S, we see that

R1f∗(f−1(OUε )) � R1f∗C⊗C OUε → R1f∗OXε

is surjective. Therefore

0→ H 0(Xε,OXε/f
−1(OUε))→ H 1(Xε, f

−1(OUε))→ H 1(Xε,OXε )→ 0(6)

is exact.

LEMMA 4.1. The pull-back Ψ ∗F ∈ H 1(Xε,O∗Xε
) of any line bundle F ∈

H 1(Mε,O∗Mε
) has a representative in H 1(Xε, f

−1(O∗Uε
)).

PROOF. Since

f ∗ : H 2(Mε, C)→ H 2(Xε, C)

is a zero-map, we see that c1(Ψ
∗F⊗m) = 0 for some m ∈ N. Then, by (5) and (6), there is

an element η ∈ H 1(Xε, f
−1(OUε)) such that e ◦ j (η) = Ψ ∗F . Hence i(η) is the desired

element.

Take a section σ : Uε → Mε and regard the image D = σ(Uε) as an effective divisor on
Mε. By Lemma 4.1, the pull-back Ψ ∗([D]⊗m) of the m-th multiple of the line bundle [D] is
flat on each Xt . Let

ρ : H1(Xε, Z)→ Γ (Xε, f
−1(O∗Uε

)) = Γ (Uε,O∗Uε
)

be the associated group representation. Choose m ∈ N such that ρ(H1(Xε, Z)tor) = {1}.
Let {γ0, γ1, · · · , γ2g} be a Betti basis of H1(Xε, Z) such that the f∗(γj ) form a Betti basis of

H1(Mε, Z) and f∗(γ0) = 0. We consider the line bundle ξ ∈ H 1(Mε,µ
−1(O∗Uε

)) associated

with the representation τ defined by

τ (f∗γj ) = ρ(γj ), j = 1, · · · , 2g .

Then F = Ψ ∗([D]⊗m⊗ξ−1) ∈ H 1(Xε, f
−1(O∗Uε

)) is the line bundle of which the associated

representation ρ1 : H1(Xε, Z)→ Γ (Uε,O∗Uε
) is given by

ρ1(γ0) = ρ(γ0), ρ1(γj ) = 1, j = 1, · · · , 2g .
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Put α = ρ1(γ0) ∈ Γ (Uε,O∗Uε
). Then the image of the group representation ρ1 is an infinite

cyclic group in Γ (Uε,O∗Uε
) generated by α. Note that α = α(t) is a holomorphic function on

Uε and we have |α(t)| �= 1 for any t ∈ Uε . Here we can assume that |α(t)| < 1 for any t ∈ ∆,

replacing α with α−1 if necessary. Fix m to be a sufficiently large number. Then, since

dim Γ (Xt , F|Xt ) = dim Γ (Ct , ([D]⊗m ⊗ ξ−1)|Ct ) = 2− 2g +m = 3− b1 +m

is independent of t , R0f∗F is free on Uε. Put N = 3 − b1 + m. Let G be the cyclic group
generated by a holomorphic automorphism of (CN \ {O})× Uε of the form

α : (z1, · · · zN , t) �→ (α(t)z1, · · · , α(t)zN , t) .

Let {ϕ1, · · · , ϕN } be the set of generators of (R0f∗F)0. Then the map

Φ : x �→ (ϕ1(x), · · · , ϕN(x)), x ∈ Xε

defines the desired holomorphic map for a sufficiently small ε > 0.

REMARK 4.1. By the construction above, we have the following commutative dia-
gram,

Xε
Φ−→ ((CN \ {O})× Uε)/〈α〉

f ↓ ↓ �

Uε
p←− PN−1 × Uε,

where � is the natural projection, and p is the projection to the 2nd component. If m ≥
2g + 1 = b1, Φ induces a holomorphic embedding Mε ↪→ PN−1 × Uε.

PROPOSITION 4.4. There is a Stein space Z of dimension 3 and an analytic subset
C ⊂ Z of dimension 1 such that Z \ C is non-singular, and is an infinite cyclic unramified
covering of Xε. In particular, Xε is n-probable.

PROOF. Let X̃ε the infinite unramified covering corresponding to the kernel of

Ψ∗ : π1(Xε)→ π1(((CN \ {O})× Uε)/〈α〉) .

Put Wε = q−1(Ψ (Xε)), where q : (CN \{O})×Uε → ((CN \{O})×Uε)/〈α〉 is the canonical
projection. Then Ψ lifts to

Ψ̃ : X̃ε → Wε ,

a finite branched covering. Note that we can extend Wε by attaching 1-dimensional subset

C = {O}×Uε to a closed analytic subvariety Ŵε in CN ×Uε . Therefore, by the continuation

theorem of Grauert-Remmert, X̃ε also can be extended to a complex analytic space Zε which

is proper over Ŵε . Hence Zε is a Stein space. Since the deck transformation of X̃ε which
corresponds to α acts on Zε as a contracting automorphism on each fiber of � and fixes each

point on C, we see that Zε \ X̃ε is a 1-dimensional analytic set biholomorphic to C. Thus the
proposition is proved.
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PROPOSITION 4.5. Let f : X → U be a smooth family of compact non-Kähler sur-
faces with odd b1 > 1. Suppose that X is n-probable. If every member of the family is
minimal, then Hexn(X) = ∞, otherwise Hexn(X) = 4.

PROOF. Suppose that every member is minimal. Then by Propositions 4.4 and 4.3, this

follows from Proposition 1.3, since the image manifold Φ(f −1(Uε)) is a family of elliptic
bundle over a curve of positive genus, and hence

Hexn(f
−1(Uε)) = +∞ .

Since the exceptional curves of the first kind constitute a complex analytic family of submani-
folds over Uε, we can blow down such curves simultaneously to obtain another smooth family
of compact surfaces with the same b1. By a finite steps of blowing-downs, we obtain a family
of minimal surfaces. Thus in this case we have Hexn(X) = 4.

4.3. Families of surfaces with b1 = 1. The aim of this subsection is to prove that
Proposition 4.5 holds true also in the case b1 = 1, by showing the existence of a pluri-closed
Hermitian metric. It is known by Gauduchon [G] that every compact complex surface admits
a pluri-closed Hermitian metric form. Therefore what have to do is to check the existence of
such forms on a neighborhood of each member of the smooth family.

We shall begin the argument in a little more general setting.

PROPOSITION 4.6. On a complex manifold Y , we have the following exact sequence
of sheaves:

0 −→ OY /iR
α1−→ RY ⊕Ω1

Y

α2−→ A1,0
Y

α3−→ HY −→ 0 ,(7)

where

iR= the constant sheaf of the pure imaginary number on Y ,

OY = the sheaf of germs of holomorphic functions on Y ,

RY = the sheaf of germs of real-valued C∞ functions on Y ,

Ω1
Y = the sheaf of germs of holomorphic 1-forms on Y ,

Ap,q
Y = the sheaf of germs of C∞ (p, q)-forms on Y ,

HY = Im(A1,0
Y

α3−→ A1,1
Y ) ,

and the sheaf homomorphisms are defined by

α1(ϕ) = (ϕ + ϕ̄,−dϕ) , α2(ϕ, θ) = ∂ϕ + θ , α3(η) = ∂η̄ + ∂̄η .

PROOF. (1) It is clear that α1 is injective. (2) Proof of Im α1 ⊂ Ker α2. Take
ϕ ∈ OY . Then α2 ◦ α1(ϕ) = α2(ϕ+ ϕ̄,−dϕ) = ∂(ϕ+ ϕ̄)− dϕ = ∂ϕ− ∂ϕ = 0. (3) Proof
of Ker α2 ⊂ Im α1. Take any germ (ϕ, θ) ∈ Ker α2. Since ∂ϕ + θ = 0, there is an element
h ∈ OY such that θ = −dh. Therefore ∂(ϕ−h) = 0. Hence there is an element g ∈ OY such
that ϕ = h + ḡ . Since ϕ is real, g − h is a certain real constant function. Therefore we can
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replace h with a suitable element of OY so that the equality ϕ = h + h̄ holds. The h defines
a desired class [h] ∈ OY /iR. (4) The implication Im α2 ⊂ Ker α3 is clear. (5) Proof of
Ker α3 ⊂ Im α2. Fix any point y ∈ Y and any germ η ∈ Ker α3 in the stalk over y. We put
ω = i∂η̄. Since ω = ω̄ and ∂ω = 0, we see that ω is a C∞ (1, 1)-form with dω = 0. Hence
there is a C∞ real-valued function u such that ω = i∂∂̄u. Put θ = η − ∂u. Then the germ

(u, θ) ∈ RY ⊕Ω1
Y has the image η by the sheaf homomorphism α2. (6) Surjectivity of α3

is obvious by definition.

Let X be a complex manifold of dimension n + 1 and ∆ = {t ∈ C : |t| < 1}. Let
f : X→ ∆ be a proper surjective holomorphic map which is of maximal rank everywhere on

X. Then Xt = f−1(t) (t ∈ ∆) is a non-singular compact complex manifolds of dimension n.

Assume that the central fiber X0 = f−1(0) satisfies the following three conditions:

H 2(X0,OX0) = 0 ,(8)

H 3(X0,OX0) = 0 ,(9)

H 2(X0,Ω
1
X0

) = 0 .(10)

Let ι : X0 → X be the inclusion map. By Proposition 4.6, we have the following
commutative diagram of sheaves on X:

0 → OX/iR → RX ⊕Ω1
X → GX → 0

↓ ↓ ↓
0 → OX0/iR → RX0 ⊕Ω1

X0
→ GX0 → 0 ,

(11)

and

0 → GX → A1,0
X → HX → 0

↓ ↓ ↓
0 → GX0 → A1,0

X0
→ HX0 → 0 ,

(12)

where

GX = coker{OX/iR
α1→ RX ⊕Ω1

X} , GX0 = coker{OX0/iR
α1→ RX0 ⊕Ω1

X0
} .

LEMMA 4.2. The natural map Rqf∗Ω1
X → Rqf∗Ω1

X0
is surjective for q = 1 and

injective for q = 2.

PROOF. Consider the exact sequences of sheaves

0→ f ∗Ω1
∆→ Ω1

X → Ω1
X/∆→ 0 ,(13)

0→ f ∗(m)Ω1
X/∆→ Ω1

X/∆→ Ω1
X0
→ 0 ,(14)



COMPACT QUOTIENTS OF LARGE DOMAINS 223

where m is the maximal ideal of the stalk O∆0 at 0 ∈ ∆. The natural map Rqf∗Ω1
X →

Rqf∗Ω1
X0

is the composition of the natural maps

Rqf∗Ω1
X

uq→ Rqf∗Ω1
X/∆

vq→ Rqf∗Ω1
X0

.

Since

R2f∗f ∗(Ω1
∆) = R2f∗OX ⊗O∆

Ω1
∆ = 0

by the assumption (8), u1 is surjective and u2 is injective by (13). Since

R2f∗Ω1
X0
= H 2(X0,Ω

1
X0

) = 0

by the assumption (10), we have

R2f∗Ω1
X/∆ = 0

by (14) and Nakayama’s Lemma. Hence v1 is surjective and v2 is injective by (14). Thus we
have the lemma.

LEMMA 4.3. ι∗ : R2f∗OX/iR→ R2f∗OX0/iR is an isomorphism.

PROOF. By the assumption (9) and by the exact sequences

0→ iR→ OX → OX/iR→ 0 , 0→ iR→ OX0 → OX0/iR→ 0 ,

we have the isomorphisms

R2f∗(OX/iR) � R3f∗iR � R2f∗(OX0/iR) .

LEMMA 4.4. R1f∗GX → R1f∗GX0 is surjective.

PROOF. Since

R1f∗RX = R1f∗RX0 = 0 ,

we have by (11) the diagram

→ R1f∗Ω1
X → R1f∗GX → R2f∗(OX/iR) → R2f∗Ω1

X →
i0 ↓ i1 ↓ i2 ↓ ↓

→ R1f∗Ω1
X0
→ R1f∗GX0 → R2f∗(OX0/iR) → R2f∗Ω1

X0
→ ,

where the low sequences are exact. Then by Lemmas 4.2, 4.3, we have the lemma.

LEMMA 4.5. R0f∗HX → R0f∗HX0 is surjective.

PROOF. By (12), we have the diagram,

→ R0f∗A1,0
X → R0f∗HX → R1f∗GX → R1f∗A1,0

X →
j0 ↓ j1 ↓ j2 ↓ ↓

→ R0f∗A1,0
X0
→ R0f∗HX0 → R1f∗GX0 → R1f∗A1,0

X0
→ ,
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where the low sequences are exact. Since

R1f∗A1,0
X = R1f∗A1,0

X0
= R1f∗(A1,0

X (−X0)) = 0 ,

we have the lemma by Lemma 4.4.

PROPOSITION 4.7. Let f : X→ U be a smooth family of compact complex manifolds

of dimension n. Suppose that the central fiber X0 = f−1(0) admits a pluri-closed Hermitian
metric form and satisfies

H 2(X0,OX0) = H 3(X0,OX0) = H 2(X0,Ω
1
X0

) = 0 .

Then f−1(Uε) admits a pluri-closed Hermitian metric form for some ε > 0.

PROOF. The pluri-closed Hermitian metric form on X0 defines an element ω ∈
R0f∗HX0 . Then by Lemma 4.5, there is a pluri-closed Hermitian form ω̃ on f −1(Uε) for
some ε > 0 such that ω̃|X0 = ω. Then ω̃+ idt ∧ dt̄ would be a pluri-closed Hermitian metric

form on f−1(Uε1) for some 0 < ε1 < ε.

Now we go back to the original situation. Let X be a complex manifold of dimension 3
and ∆ = {t ∈ C : |t| < 1}. Let f : X → ∆ be a proper surjective holomorphic map which

is of maximal rank everywhere on X. Then each Xt = f−1(t) (t ∈ ∆) is a non-singular
compact complex surface.

PROPOSITION 4.8. Let f : X → U be a smooth family of compact complex surfaces
with b1 = 1. Then f−1(Uε) admits a pluri-closed Hermitian metric form for some ε > 0.

PROOF. Since dim Xt = 2, we have always H 3(Xt ,OXt ) = 0. Since b1 = 1, we have

also H 2(X0,OX0) = 0 and H 2(X0,Ω
1
X0

) = H 0(X0,Ω
1
X0

) = 0. Further by a theorem of

Gauduchon [G], there is an element ω ∈ R0f∗HX0 which defines a pluri-closed Hermitian
metric form on X0. Hence the proposition follows from Proposition 4.7.

PROPOSITION 4.9. Let f : X → U be a smooth family of compact complex surfaces
with b1 = 1. If X is n-probable, then Hexn(X) ≥ 4 holds.

PROOF. By Propositions 4.8 and 1.3, this follows immediately from Theorem 1.1.

PROOF OF THEOREM 1.2. Combine Propositions 4.2, 4.5 and 4.9.

5. On the structure of Λ

If X = Ω/Γ is a flat twistor space over a conformally flat differentiable 4-manifold, it is

clear that P3 \Ω is of fibered type. The complex analytic connected sum of flat twistor spaces
is no longer a flat twistor space. We can show, however, the following.

PROPOSITION 5.1. Suppose that X1 = Ω1/Γ1 and X2 = Ω2/Γ2 are compact quo-

tients of large domains in P3. If both Λ1 and Λ2 are of fibered type, then the complex analytic
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connected sum X1#X2 is also a compact quotient of a large domain Ω in P3 such that the

complement P3 \Ω is of fibered type.

We recall the argument of Maskit [M] (see also [K5]). Fix a system of homogeneous

coordinates z = [z0 : z1 : z2 : z3] on P3 and we consider the real hypersurface

Σ = {z ∈ P3 : |z0|2 + |z1|2 = |z2|2 + |z3|2} .
Fix 0 < ε < 1 and define

W = {z ∈ P3 : ε(|z0|2 + |z1|2) < |z2|2 + |z3|2 < ε−1(|z0|2 + |z1|2)} ,
W1 = {z ∈ P3 : |z0|2 + |z1|2 < ε−1(|z2|2 + |z3|2)} ,
W ′1 = {z ∈ P3 : |z0|2 + |z1|2 < |z2|2 + |z3|2} ,
W2 = {z ∈ P3 : |z2|2 + |z3|2 < ε−1(|z0|2 + |z1|2) ,

W ′2 = {z ∈ P3 : |z2|2 + |z3|2 < |z0|2 + |z1|2}.} .
We prepare also a copy U of W1. Suppose that there are open holomorphic embeddings
jν : Wν → Xν . Then the complex analytic connected sum X1#X2 = Sum(X1,X2, j1, j2,Σ)

of X1 and X2 is the union X
�
1 ∪ X

�
2, X

�
ν = Xν \ jν(Wν \W), where j1(x) ∈ j1(W), x ∈ W ,

is identified with j2(x) ∈ j2(W). Let ǰν : Wν → Ων ⊂ P3 be a lift of jν . Then ǰν extends to

an element of PGL(4) by [K2, Lemma 3.2]. Put W̌ν = ǰν (Wν) and Σ̌ν = ǰν (Σ). Let Fν be

a fundamental region for Γν on Ων which contains W̌ν . Here we can assume that the Fν are

compact simplicial complexes embedded in Ων , by considering triangulation of Xν . By ǰ−1
ν ,

we regard Fν as a subset in P3 which contains Wν , and Σ̌ν as Σ . Put F = (F1\W ′1)∪(F2\W ′2)
and Ω = ⋃

g∈Γ g(F ), where Γ is the subgroup of PGL(4) generated by ǰ−1
ν Γν ǰν , ν = 1, 2.

Then we see that X1#X2 is a compact quotient of Ω by Γ . Here Γ is given by the free product

(ǰ−1
1 Γ1ǰ1) ∗ (ǰ−1

2 Γ2ǰ2). In the following, we write Γν instead of ǰ−1
ν Γν ǰν for short. We put

Λ = P3 \Ω .
For a group G, we indicate the set G \ {1} by G∗. Every element of Γ ∗ can be written in

the normal form

g = gn ◦ · · · ◦ g1 ,(15)

where either g2i ∈ Γ ∗1 , g2i+1 ∈ Γ ∗2 , or g2i ∈ Γ ∗2 , g2i+1 ∈ Γ ∗1 . The number of factors n in the
right hand side of (15) is determined by the element g . We call n the length of g , and denote
the length by |g|. We set |1| = 0. Furthermore, writing g in the normal form (15), we say that
g is positive (g > 0) if g1 ∈ Γ ∗1 , and negative (g < 0) if g1 ∈ Γ ∗2 .

We decompose Γ into the sets of positive elements, negative elements and the identity
element, and write

Γ = {1} +
∑
n,µ

pn µ +
∑
n,µ

qn µ ,(16)
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where |pn µ| = |qn µ| = n, pn µ > 0, and qn µ < 0. For n > 0, we set

Tn =
⋃
µ

pn µ(W1) ∪
⋃
µ

qn µ(W2) ,(17)

and T0 = W1 ∪W2.

LEMMA 5.1. For n ≥ 1, Tn−1 ⊃ Tn holds.

PROOF. Let x ∈ Tn be any element. Suppose x ∈ pn µ(W1) for some pn µ > 0. We
write pnµ = gn ◦ · · · ◦ g1 in the normal form, where g1 ∈ Γ ∗1 . Since g1(W1) ⊂ W2, we have

pn µ(W1) ⊂ gn ◦ · · · ◦ g2(W2) .

Since |gn ◦ · · · ◦ g2| = n−1 and gn ◦ · · · ◦ g2 is negative, we conclude x ∈ Tn−1. We can settle
the case x ∈ qn µ(W2) for some qn µ < 0 in the same manner.

LEMMA 5.2. For any g ∈ Γ with |g| ≤ n, n ≥ 1, g(Tn) ⊂ Tn−|g | holds.

PROOF. Take any x ∈ Tn. We write g = gk ◦ · · · ◦ g1 in the normal form, k = |g|. Then

we see easily that g(x) ∈⋃n+k
l=n−k Tl . Since {Tn} is a descending sequence by Lemma 5.1, we

have g(x) ∈ Tn−k .

We set

T =
⋂
n≥1

Tn .

As a corollary to Lemma 5.2, we have immediately

LEMMA 5.3. For any g ∈ Γ , g(T ) ⊂ T holds and hence T is Γ -invariant.

LEMMA 5.4. For any g ∈ Γ , Tn ∩ g(F ) = ∅ holds for n ≥ |g| + 1.

PROOF. It is clear by the definition that T1 ∩ F = ∅. Since {Tn} is a descending
sequence by Lemma 5.1, we have

Tn ∩ F = ∅(18)

for n ≥ 1. We shall prove the lemma by induction on k = |g|. The lemma holds for k = 0 by
(18). Suppose that k ≥ 1. Put g = gk ◦ h, |h| = k − 1, gk ∈ Γ ∗ν , where ν = 1 or 2. Then we
have

Tn ∩ g(F )= Tn ∩ gk ◦ h(F )

= gk(g−1
k (Tn) ∩ h(F )) .(19)

For n ≥ 1, we have

g−1
k (Tn)⊂ Tn−1

by Lemma 5.1. By the induction assumption, we have

Tn−1 ∩ h(F ) = ∅ .
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Hence by (19), we have

Tn ∩ g(F )= gk(g−1
k (Tn) ∩ h(F ))

⊂ gk(Tn−1 ∩ h(F ))

=∅ .

LEMMA 5.5. T ⊂ Λ.

PROOF. We shall prove the lemma by contradiction. Suppose there were a point x ∈ T

which were contained in Ω = P3 \Λ. Let K be a compact neighborhood of x in Ω . By the
definition of T and the fact that {Tn} is a descending sequence,

x ∈ K ∩ Tn for all n ≥ 1 .(20)

Since K and F are compact, and since F is a fundamental region, there is a finite number of
elements g1, g2, · · · , gr ∈ Γ such that

K ⊂
r⋃

j=1

gj (F )

and

K ∩ g(F ) = ∅ for all g ∈ Γ \ {g1, g2, · · · , gr } .
Hence, by (20),

r⋃
j=1

gj (F ) ∩ Tn ⊃ K ∩ Tn ⊃ {x} �= ∅

for all n ≥ 1. On the other hand, by Lemma 5.4, we have Tn ∩ gj (F ) = ∅ for all integers n

with

n ≥ maxj=1,···,r{|gj | + 1} .
Thus we have a contradiction for such n.

We set

Sn = P3 \ Tn , S =
⋃
n

Sn .

Then we have

LEMMA 5.6. Λ = (Λ ∩ S) ∪ T .

PROOF. Since P3 = S ∪ T , the lemma follows immediately from Lemma 5.5.

Following three lemmas follow immediately from Lemmas 5.1, 5.2 and 5.3.

LEMMA 5.7. For n ≥ 1, Sn−1 ⊂ Sn.
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LEMMA 5.8. For any g ∈ Γ and n ≥ 1, g(Sn) ⊃ Sn−|g | holds.

LEMMA 5.9. For any g ∈ Γ , g(S) ⊂ S holds and hence S is Γ -invariant.

Put

L =
⋃
g∈Γ

g(Λ1) ∪
⋃
h∈Γ

h(Λ2) .(21)

It is easy to verify the following.

LEMMA 5.10. If x ∈ P3 \ L, then

g(x) ∈ Ω1 ∩Ω2 for all g ∈ Γ .(22)

LEMMA 5.11. S ⊂ Ω ∪ L.

PROOF. Take x ∈ S ∩ (P3 \ L). It is enough to show that x ∈ Ω . Since x ∈ S and
{Sn}n is ascending, there is an integer n0 such that x ∈ Sn0 \ Sn0−1. Then x ∈ Tn0−1 =
P3 \ Sn0−1. Therefore either there is a point w1 ∈ W1 and an element pn0−1 µ > 0 in Γ

with x = pn0−1 µ(w1), or there is a point w2 ∈ W2 and an element qn0−1 µ < 0 in Γ with
x = qn0−1 µ(w2). Suppose the former case holds; the proof of the latter case is similar. If
w1 ∈ T1, then there is a point v2 ∈ W2 and q ∈ Γ ∗2 such that w1 = q(v2). Hence we have
x = pn0−1 µ ◦ q(v2). Since pn0−1 µ ◦ q is negative and has length n0, we see that x ∈ Tn0 . But
this contradicts x ∈ Sn0 . Hence w1 /∈ T1, i.e., w1 ∈ S1. Namely, for every element x ∈ Sn

with n > 1, there is an element g ∈ Γ such that g(x) ∈ S1. On the other hand, by the choice
of x and by Lemma 5.10, we also have g(x) ∈ Ω1 ∩Ω2. If g(x) ∈ W2, then g(x) /∈ W1 \W .
Since g(x) ∈ Ω1, g1 ◦ g(x) ∈ F1 holds for some g1 ∈ Γ1. Suppose that g1 ◦ g(x) ∈ W1 \W .

Then we have g1 �= 1 and g(x) = g−1
1 (g1 ◦ g(x)) ∈ g−1

1 (W1 \ W) ⊂ T1. This contradicts

g(x) ∈ S1. Therefore g1 ◦ g(x) ∈ (F1 \W ′1) ∪W ⊂ F . Hence x ∈ Ω . The remaining case
g(x) ∈ W1 can be settled similarly.

LEMMA 5.12. L ⊂ Λ.

PROOF. Since Λ is Γ -invariant, it is enough to show that Ω ⊂ Ων . We consider the
case ν = 1. The proof works also for ν = 2. Recall that Ω = ⋃

g∈Γ g(F ) and Ω1 =⋃
g∈Γ1

g(F1). Then Ω ⊂ Ω1 follows immediately from the following

SUBLEMMA 5.1. Let g be an element of Γ and put k = |g|. If g is positive, then
g(F ) ⊂ F2 ∩Ω1 for odd k, and g(F ) ⊂ F1 for even k. If g is negative, then g(F ) ⊂ F1 for
odd k, and g(F ) ⊂ F2 ∩Ω1 for even k.

PROOF. Consider the case g positive. We shall prove the sublemma by induction on k.
If k = 1, then g ∈ Γ ∗1 . Hence g(F ) ⊂ g(F1) ⊂ F2 ∩Ω1. If k = 2, then g = g2 ◦ g1 for some
g1 ∈ Γ ∗1 and g2 ∈ Γ ∗2 . Hence

g(F ) ⊂ g2 ◦ g1(F1) ⊂ g2(F2 ∩Ω1) ⊂ g2(F2) ⊂ F1 .
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Suppose that k ≥ 3. Write g as g = gk ◦ h, h = gk−1 ◦ · · · ◦ g1 If k is odd, then gk ∈ Γ ∗1 and
h(F ) ⊂ F1 by induction assumption. Hence g(F ) = gk ◦ h(F ) ⊂ gk(F1) ⊂ F2 ∩Ω1. If k is
even, then gk ∈ Γ ∗2 and h(F ) ⊂ F2 ∩Ω1 by induction assumption. Hence

g(F ) = gk ◦ h(F ) ⊂ gk(F2 ∩Ω1) ⊂ gk(F2) ⊂ F1.

The case g negative can be settled similarly.

PROPOSITION 5.2 ([K5] Proposition 2.1). Λ = L ∪ T .

PROOF. By Lemmas 5.6 and 5.11, we have Λ ⊂ Ω ∪ L ∪ T . Hence, by Ω ∩Λ = ∅,
we obtain Λ ⊂ L ∪ T . The other implication follows from Lemmas 5.12 and 5.5.

LEMMA 5.13. L ∩ T = ∅.
PROOF. Suppose that there is a point x ∈ L∩T . Then by (21), there is g ∈ Γ such that

x ∈ g(Λ1) or x ∈ g(Λ2). We can assume that x ∈ g(Λ1) holds without loss of generality.

Fix n ∈ N such that n > |g−1| + 1. Then, Since x ∈ T ⊂ Tn, there is either p ∈ Γ such that
x ∈ p(W1) with |p| = n and p > 0, or q ∈ Γ such that x ∈ q(W2) with |q| = n and q < 0.
Then either x ∈ p(W1) ∩ g(Λ1) �= ∅, or x ∈ q(W2) ∩ g(Λ1) �= ∅ holds. Therefore either
g−1 ◦ p(W1) ∩Λ1 �= ∅, or g−1 ◦ q(W2) ∩Λ1 �= ∅ holds. Since g−1 ◦ p > 0, |g−1 ◦ p| > 0,
g−1 ◦q < 0, and |g−1 ◦q| > 0, we see that T1∩Λ1 ⊃ (g−1 ◦p(W1)∪g−1 ◦q(W2))∩Λ1 �= ∅
holds. On the other hand, since T1 ⊂ (Ω1 \W1) ∪ (Ω2 \W2), we have T1 ∩ Λ1 = ∅. Thus
we have a contradiction.

LEMMA 5.14. For any g, h ∈ Γ with g �= h, we have g(Λ1) ∩ h(Λ2) = ∅.
PROOF. We can assume that h = 1 and g �= 1. Take any g ∈ Γ ∗ and write it in the

normal form g = gn ◦ gn−1 ◦ · · · ◦ g1. We shall show by induction on |g| that if gn > 0 then
g(Λ1) ⊂ W2 and that if gn < 0 then g(Λ1) ⊂ W1 ∩ Ω2. From the assertion, the lemma
follows immediately. First suppose that |g| = 1. If g > 0, then g(Λ1) = Λ1 ⊂ W2. If
g < 0, then g(Λ1) ⊂ g(W2) ⊂ W1 ∩ Ω2. Thus the case |g| = 1 is settled. Next suppose
that |g| > 1. If gn > 0, then gn−1 < 0. Hence gn−1 ◦ · · · ◦ g1(Λ1) ⊂ W1 ∩ Ω2 holds by
the induction assumption. Therefore we have g(Λ1) ⊂ gn(W1 ∩Ω2) ⊂ W2. If gn < 0, then
gn−1 > 0. Hence gn−1 ◦ · · · ◦ g1(Λ1) ⊂ W2 holds by the induction assumption. Therefore we
have g(Λ1) ⊂ gn(W2) ⊂ W1 ∩Ω2.

Let α be any connected component of Λ.

LEMMA 5.15. α ⊂ T .

PROOF. Take any point x ∈ T and let α be the connected component of Λ with x ∈ α.
Since x ∈ Tn for any n, either x ∈ g(W1) with g > 0 and |g| = n, or either x ∈ h(W2) with
h < 0 and |h| = n. If x ∈ g(W1) holds, then since α is connected and since α ∩ g(Σ) = ∅, α

is contained in g(W1). Similarly, if x ∈ h(W2) holds, then α is contained in h(W2). Thus in
any case we have α ⊂ Tn. Therefore we have α ⊂ T .
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Put

Ω#
ν = Ων \

⋃
g∈Γ ∗ν

g(Wν) = Fν ∪
⋃

g∈Γ ∗ν
g(Fν \Wν), ν = 1, 2 .

Then we have Λ ∩ Ω#
ν = ∅. Since either α ⊂ W1 or α ⊂ W2, we may assume here that

α ⊂ W1. Since

α ∩Ω#
2 ⊂ Λ ∩Ω#

2 = ∅ and α ∩ L = ∅ ,

there is an element g0 ∈ Γ ∗2 such that α ⊂ g0(W2). Since

g−1
0 (α) ∩Ω#

1 ⊂ Λ ∩Ω#
1 = ∅ and g−1

0 (α) ∩ L = ∅ ,

there is an element g1 ∈ Γ ∗1 such that g−1
0 (α) ⊂ g1(W1). Since

g−1
1 ◦ g−1

0 (α) ∩Ω#
2 ⊂ Λ ∩Ω#

2 = ∅ and g−1
1 ◦ g−1

0 (α) ∩ L = ∅ ,

there is an element g2 ∈ Γ ∗2 such that g−1
1 ◦ g−1

0 (α) ⊂ g2(W2). Continuing this process, we
have a sequence {gn}n ⊂ Γ with g2k−1 ∈ Γ ∗1 , g2k ∈ Γ ∗2 such that α ⊂ g0 ◦ · · · g2k−1(W1).
Here, we can also check in each step that α ⊂ g0 ◦ · · · ◦ g2k−1(W1 \ W) hold. We put
pk = g0 ◦ · · · ◦ g2k−1 and consider the sequence {pk}∞k=1. We put

Uk = pk(W1) , Kk = pk(W1 \W) , Σk = pk(Σ) .

Then, we have for k ≥ 1

pk > 0 , |pk| = 2k ,(23)

α ⊂ Kk+1 ⊂ Uk+1 ⊂ Kk ⊂ Uk ⊂ W1 ,(24)

Σk ⊂ Uk \Kk .(25)

By (24), we have

K :=
⋂
k≥1

Uk =
⋂
k≥1

Kk

is compact and

α ⊂ K.(26)

In the following, we indicate by M̂ the subset of Gr(4, 2) which parametrizes the lines

contained in a set M ⊂ P3. Each pk defines a biholomorphic map p̂k of Gr(4, 2) such that

p̂k : Ŵ1 → Ûk ⊂ Ŵ1 .

The open subset Ûk ⊂ Gr(4, 2) is biholomorphic to a domain of the form

{X ∈ M2(C) : I − tX̄X is positive definite } ,
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which is a bounded Stein domain in C4 and K̂k is a compact subset of Ûk , where K̂k is of the
form

{X ∈ M2(C) : rI − tX̄X is positive semi-definite} ,

for some constant 0 < r < 1. Obviously we have p̂k(Ûk) = Ûk+1 and p̂k(K̂k) = K̂k+1.
Therefore the holomorphic maps {p̂k}k constitutes a normal family on W1. Let {q̂k}k be a
uniformly convergent subsequence of {p̂k}k and put

q̂ = lim
k→∞ q̂k .

On the other hand, since Kk ⊃ Kk+1, we have easily

K̂ =
∞⋂

k=1

K̂k .

LEMMA 5.16. q̂ : Ŵ1 → K̂ is surjective.

PROOF. Take any point a ∈ K̂ . Then there is a line �a ⊂ K . Since, �a ⊂ Kk

for any k, we can consider a line �k = q−1
k (�a) in W1 \ W . Choosing a subsequence of

{�k}k , we can assume that limk �̂k = �̂0 for some �̂0 in (W1 \ W) .̂ This is possible because
(W1 \ W)ˆ is compact. Since the convergence of {q̂k}k is uniform on (W1 \ W)ˆ, we have

q̂(�̂0) = limk q̂k(�0) = limk q̂k(�̂k) = �a .

LEMMA 5.17. K̂ consists of a single point.

PROOF. Let f be any holomorphic function on Ŵ1. Then |f |
K̂

has a maximum point

on K̂ . By Lemma 5.16, |f ◦ q̂| has a maximum point on Ŵ1. Thus the holomorphic function

f ◦ q̂ is constant on Ŵ1. Since Ŵ1 is of Stein, this implies the lemma.

LEMMA 5.18. K coincides with the support of a line.

PROOF. Through every point of K , there passes a line in K . Thus we have the lemma
from Lemma 5.17.

LEMMA 5.19. Any connected component α of T coincides with a line.

PROOF. Since α contains at least a line, the lemma follows from (26) and Lemma
5.18.

PROOF OF PROPOSITION 5.1. The proposition is immediate from Lemmas 5.13, 5.14,
5.19, and Proposition 5.2.

NOTES ADDED IN PROOF. The example 1 given in [K3] as a Blanchard manifold of
type (A) was not correct, since Lemma A.6 in the appendix of [K3] was false. We can disprove
the existence of Blanchard manifolds of type (A). This will be published elsewhere.
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