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Compact Quotients of Large Domainsin a Complex Projective 3-space

Masahide KATO
Sophia University

Abstract. In acomplex projective 3-space, we consider a domain with a projective line. If there is a compact
non-singular quotient of the domain and the quotient manifold admits a non-constant meromorphic function, then
the domain is dense in the projective 3-space and its complement is properly contained in afinite union of complex
hypersurfaces and a set with Hausdorff dimension not more than two. Further, if the complement admits a certain
fiber space structure, then it is either adisjoint union of two projective lines, a projective line, or an empty set.

Introduction

By aline, we shall mean a projective linear subspace of dimension 1 in a 3-dimensional
complex projective space P3. A domain £2 in a projective 3-space P2 is said to be large* if
2 contains alinein P3. Let I" be a holomorphic automorphism group of £2. Suppose that
the action of I" isfixed point free and properly discontinuous, and that the quotient space is
compact. In this situation, we say that X is a compact quotient of a large domain 2 by I”
and indicated by X = £2/I'". Under the assumption that 2 is large, the automorphism group
I appears to be a subgroup of PGL(4) ([K2]). Put A = P3\ £2. We denote by a(M) the
algebraic dimension of a complex manifold M. In general, A may contain interior points
[K4]. In this note, we shall consider the case a(X) > 0. Without any assumptionson A, we
have

THEOREM A. Ifa(X) > 0,then A = P3\ 2 iscontained in S U A, where S isa finite
union of complex hypersurfacesin P3, and A is a closed subset of P2 \ S with the Hausdor ff
dimension d(A) not morethan 2. In particular, £2 isdensein P3.

We say that A is of fibered type, if A satisfies the following condition:
(F) A coincides with the set |, |€|, where {{,},¢; is afamily of lines parametrized
by an index set I with an arbitrary cardinality such that |¢;| N |¢,| = @ for any s # t.

THEOREM B. Supposethat A isof fibered type. Then, if a(X) > O, the cardinality of
I isat most 2, and X is biholomorphic to P3, a Blanchard manifold, or an L-Hopf manifold.
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* We shall use this term after Larusson [L].
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Here, |£| indicates the support of aline ¢. For the definitions of Blanchard manifolds and
L-Hopf manifolds, see [K3]. See also notes added in proof.

Among compact quotients of large domains are most of flat twistor spaces. Note that
the condition (F) is fulfilled for flat twistor spaces over conformally flat differentiable 4-
manifolds which are conformal quotients of domainsin S#. The condition (F) is preserved
by complex analytic connected sum operations (see, Proposition 5.1). Flat twistor spaces
with positive algebraic dimensions are already classified by Fujiki [F] as an application of his
theory on general twistor spaces. Since compact quotients of large domains, however, do not
always have flat twistor space structures, we take another approach to our study. We are rather
inclined to develop a higher dimensional analogue of Klein group theory.

Our main tool to study the set A isadeep result of S. Ivashkovich [I] on the extension of
meromorphic maps of Hartogs domains into complex manifolds with pluri-closed Hermitian
metrics (section 4). Theindex Hex,, for complex manifoldsintroduced in [KO] is aso useful.
Section 1 is for preliminaries. Theorem A will be proved in section 2. Theorem B will be
proved in section 3. On the existence of pluri-closed Hermitian metrics on the total space of
afamily of compact complex surfaces will be discussed in section 4. In section 5, we verify
that the condition (F) isfulfilled for complex analytic connected sums of flat twistor spaces.

1. Préiminaries

The envel ope of holomorphy for an r-dimensional Hartogs domain over C” isapolydisk,
whichwe call by the associated polydisk for the Hartogsdomain. In[l], S. Ivashkovich proved
among other things the following, which is a key of this paper.

THEOREM 1.1 (lvashkovich). Let X be a disk-convex complex manifold with a pluri-
closed Hermitian metric. Then every meromorphic map f of an n-dimensional Hartogs do-
main H into X extends meromorphicallyto A \ A, where A isthe associated polydisk of H,
and A isa closed subset of A with the Hausdorff dimension not more that 2n — 4. Further, if
n = 2and X isof dimension 2, then A isa set of isolated pointsin A.

In [KQ], we have introduced an index Hex,, of a complex manifold, which we call holo-
morphic extension index, to scale the extendability of holomorphic maps into the manifold.
See [KO] for the detail. Theorem 1.1 tells us, in particular, that Hex,(X) > 4 holds for a
holomorphically convex complex manifold X with a pluri-closed Hermitian metric.

PropPosITION 1.1. Let X beacomplexmanifoldand D = U, D, afiniteunion of non-
singular hypersurfaces D, C X. Assumethat X \ D and any component D, are n-probable
andthat Hex,, (X \ D) > 2. Then X isn-probable and Hex,, (X) > min, {Hex, (D,.), 2} holds.

PROOF. See[KO, Proposition 4]. 1

PROPOSITION 1.2. Let X beacomplex manifold whichisn-probablewith Hex, (X) >
2. Let (£2, ) be an étale domain over a Stein manifold M with dimc M = n. Then, for every
holomorphic map o : 2 — X, the maximal domain £2, of definition for o over M is a
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subdomain of £2,, satisfying
d(25 \ 25) < 2n — Hex, (X)) ,

where £2, isthe envelope of holomorphy for £2, over M.
PROOF. See[KO, Theorem 2]. ]

PrROPOSITION 1.3. Let X and Y are n-probable complex manifoldsand f : X — Y
a surjective holomorphic map. Let {U,}, be any open covering of Y. Then we have the
following inequality

Hex,, (X) = inf{Hex, (Y). Hex, (/7 (Ua))}

PROOF. See[KO, Theorem 3]. ]

LEMMA 1.1. Let X,Y be complex manifoldsand f : X — Y a holomorphic un-
ramified even covering. If Y is n-probable with Hex, (Y) > 2, then X is n-probable and
Hex, (X) = Hex, (Y) holds.

PROOF. See[KO, Proposition 5(b)]. ]

LEMMA 1.2. Let X be an n-probable complex manifolds with Hex,,(X) > 2 and D
a pure dimensional analytic subset of codimension 1. Then X \ D is also n-probable and
Hex, (X \ D) > Hex, (X) holds.

PrRoOOF. Any subdomain of an n-probable manifold is n-probable. Hence X \ D isn-
probable. Let o : H — X \ D be any holomorphic map of aHartogsdomain H. Since X is
n-probable, o extends to a holomorphicmap s : A\ A — X, where A is aclosed subset of
the associated polydisk A with d(A) < 2n — Hex,,(X) < 2n — 2. Put E = 6~ 1(D). Then E
is an analytic subset of A \ A with pure codimension 1, provided that E # (. E extendsto
an analytic subset £ of A. Hence £ N H # . Thisisabsurd, sinces (H) C X \ D. Hence
E = ¢ and consequently we have s (D \ A) C X \ D. Therefore we obtain Hex,,(X \ D) =
2n — sup, d(Ay) > Hex, (X). 1

THEOREM 1.2. Let X be a complex manifold of dimension3and S = {r € C : |t] <
1}. Suppose that X is n-probable and that there is a proper holomorphic surjective map
f X — S with connected fibers which is of maximal rank everywhere. Then Hex, (X) > 4
holds.

PrROOF. Thiswill be proved in section 4. ]

Note that £2/I" is aways n-probable, since any holomorphic map of a Hartogs domain
into $2/I" liftsto £2 and extends to ameromorphic map of the associated polydisk into P3.

ProPosITION 1.4. Ifa(2/I') > 0,then Hex,,(2/I") > 2.

PrROOF. Put X = 2/I'. Let u : X* — X beablowing-up of X such that thereis a
holomorphic map f : X* — C onto a compact non-singular curve C with connected fibers.
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Thereisafinite subset A of C suchthat X*\ f~1(A) isof maximal rank everywhere and that
every irreducible component of £ ~1(A) isnon-singular. We have Hex,, (X*\ f~1(A)) > 4 by
Theorem 1.2. By Theorem 1.1, we know that Hex,, > 4 for any compact complex surfaces.
Hence we have Hex, (X*) > 2 by Proposition 1.1. Hencesois X. 1

2. Proof of Theorem A

A non-constant meromorphic function f definesameromorphicmap X - - - — PL. Since
Q2 islarge, n* f extendsto a I"-invariant rationa function F on P3. Thus we have a commu-
tative diagram of meromorphic maps

2 - ps
| :
ﬂi, i,F
X ~if—> pL,

where i is the natura inclusion, and 7 is the canonical projection. We eliminates the base
locus of F by successive blowing-ups of P2 to obtain a non-singular 3-manifold M and a
bimeromorphic holomorphic map u : M — P3. Then u*F : M — P! is holomorphic.
Consider the Stein factorization of u* F, and we obtain aramified covering v : C — P with
the commutative diagram

M 5 c
1) ul Y
p..fL Pt

where C ~ P! and F isasurjective holomorphic map. Each element of I” induces a bimero-
morphic map of M and a biholomorphic map of C. Since the group of automorphisms y of
C induced by I" which satisfy v o y = v isfinite, we can choose a normal subgroup I'y of I”
with a finite index such that each element ¢ € I'1 induces the identity on C. Thus replacing
X = /I" with X1 = £2/I'1, we can assume that the hypersurfaces

S, ={zeP>:F(z)=1}, tePl

are irreducible and non-singular outside the base locus B except for a finite number of S;’s,
t = ai,---,as. Suppose that s > 0 and consider a rational function /() which has poles
exactly onthe set {as, - - -, a;}. Put
S S
2) S:Usa_,, D:UDQ_,, D, =7(S;NK).
j=1 j=1

LEMMA 2.1. Hex,(X\ D) > 4.
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ProOOF. Letu : X* — X beamodification of X with the centerscontained in (£2 N
B). Let E* bethe exceptional divisor on X* and D* be the proper transform of D. The map
f defines a smooth family

f*X*\D* — P\ (a1, -, a)

of compact surfaces. Therefore by Theorem 1.2, we have

(3) Hex,(X*\ D*) > 4.

Since B iscontained in D, the map

w:X*\(D*UE*) > X\ D
is biholomorphic. By Lemma 1.2, we have
4 < Hex, (X* \ D*) < Hex,(X*\ (D* U E*)) = Hex,,(X \ D). 1
Let[zo: z1 : z2 : z3] be asystem of homogeneous coordinates on P3. Put

U={[z0:21:22:23] € P>: |z012 + |21]? < |z21® + |z3/%}
Ho={lzo:z1:22:231 € P3:20=0}, Hi={[z0:21:22:23] € P?: 21 =0},

Lo={lzo:z1:22:231 € P®: 20 =21 = 0}.

Let L bealine contained in 2. Displacing L dlightly if necessary, we can assume that there
are a neighborhood Uy, and a biholomorphic map ¢ : U — Up such that 7y, is an open
embedding and that T(Lg) = L. Let £ = 7 (L). We can further assume that ¢ intersects each

Dg; (j =1,---, ) transversely. Note that ¢ intersects D, for any t € PL. Note also that t
extends to an element of PGL (4) ([K2, Lemma 3.2]). Consider the holomorphic map defined

by
oc=mot:U— 2/I'.
Then we see that
U\ Hy >~ {(x1,x2,x3) € C3: 1+ |x1/? < |x2/® + |x3]%), v=0,1.
The r*l(SaJ.) \ H, are biholomorphic to (possibly singular, reducible) affine surfacesin C3.
For each k € N, we consider the following subdomainsin C3:

k2+3 k2+3
Gl(k>={(xl,xz,x3)603:|x1|<k, ol <y[=—— Ixal </ — }

ke+42
Ga(k) = {(xl,xz,xs) eC®: x| <k. |x2l < > lx3| < >
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W(k) = G1(k) \ [G2(k)], U(k) = {(x1,x2,x3) € C*: [xa] < k}.

Since t~1(S) coincides with the set of poles of the rational function (F o 7)*h, we see by a
theorem of Dloussky [D], that the envelope of holomorphy for the étale domain W (k) \ 7 ~1(S)
over C3isG1(k) \ t71(S). Sincemg\s : 22\ S — X \ D isan unramified even covering, we
have

4 Hexz(£2 \ §) > Hexa(X \ D) > 4

by Lemmas 1.1 and 2.1 for n = 3. Hence, by Proposition 1.2, we see that there is a closed
subset A, (k) C G1(k) \ S withd(A,(k)) < 2 suchthat

TIU()\H, Uk\H,—> £2\S
extends holomorphically to
(k) PP\ (H,UA,(k)UT) > 2\ S,

where T is a hypersurface in P2 containing z ~1(S) as an open subset. Letting k — oo, we
seethat 7 (k) extendsto

7, PP\ (H,UA,UT) > 2\ S,

where A, = |J, Ay (k). Thuswe see that £2 contains 7, (P2 \ (H, U A, U T)), and therefore

A =P3\ 2 C t(ApU A1 U T). Here, by the uniqueness of the extension of holomorphic
maps, we have A, (k + 1) N U (k) C A, (k). Henced(A,) < 2 holds, and hence we have
d(ApU A1) < 2. Thus Theorem A is proved. ]

For the measure of A outsidethealgebraic set § ¢ P2, we havealittle moreinformation.
LEMMA 2.2. Fort e P\ {ay,---, s}, therestricted projection
m=m|S : SN2 — Dy
does not extend holomorphically across any point of S, N A.

PrROOF. Takeany pointx € S;NA. Notethat x isaboundary point of S,N£2 in S;, since
S; N A has no interior point in S, by Theorem A. Suppose that rz; extends holomorphically
to an open connected neighborhood W of x in S;. Denote by 7, the extended holomorphic
map. Put y = 7,(x) € D;. Sincern, : S; N 2 — D, isaGalois unramified covering, there
is arelatively compact subdomain A around y in D; and arelatively compact subdomain A
in S; N £2 such that n,*l(A) = UgEF g(A), where the right-hand side is a disjoint union of

relatively compact connected component of nfl(A). Since 71, is continuous, we can assume
that 7; (W) C A. Hencenr; (W N 2) = 7,(W N £2) C A. Since the Hausdorff dimension of
W N Aisnot morethan 2, W N £2 is connected. Therefore W N §2 iscontained in a connected
component of n,‘l(A). Since each connected component of n,‘l(A) isrelatively compact in
S; N §2, we seethat the closure [W N £2] iscompact in S; N £2. Hence, for any sequence {x, },
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v=12, .-, 0of pointsin W N £ which convergesto x € A, we can choose a subsequence
of {x,}, which convergesto an interior point of S; N £2, which is absurd. 1

LEMMA 2.3. Foranyt € P\ E, the Hausdorff dimension d((S; \ B) N A) is equal
to zero, where E is a subset of P! with the Lebesgue measure zero, and B is the set of inde-
terminateof F : P3... — PL

PROOF. In view of the diagram (1), since u is biholomorphic outside u~1(B), it is
enough to show that the Hausdorff dimension of u~1((S; \ B) N A) is equa to zero for
t € C\ E',where E’ isasubset of C with Lebesgue measure zero. Since B C S, we have by
(4) that

d((M\u™' () Nu™H(A) =d((PP\ $) N A) =d(A\S) <2,
We consider the continuous map
F':u%A\B) - C,
which is therestriction of 7 : M — C. Then, by alemma of Federer (see[S, Lemma2.7]),
we have, for any k € N, thereisaset E;, C C with Lebesgue measure zero such that

dw (S, \ B)n A)) < % forany e C\ Eg.

Hence, letting E' = U2, Ey, we have the lemma. 1

PROPOSITION 2.1. Thereisaset E ¢ P! with Lebesgue measure zero such that, for
anyr € PL\ E, (S; \ B) N A isaset of isolated pointsin S; \ B.

PrROOF. Replacing E of Lemma 2.3 by E U {a1,...,as} wetakeany r € P\ E.
Then S; \ B isanon-singular Stein surface. By Lemma 2.3, the envelope of holomorphy for
(S;\ B)N 2 over S; \ BisS; \ B. Hence, by Theorem 1.1, r; extends to a holomorphic map
of S, \ (BU A)to D;, where A isaset of isolated pointsin S; \ B. Since (S; \ B)N A C A
by Lemma 2.2, we seethat (S; \ B) N A isaset of isolated pointsin S; \ B. Thuswe havethe
proposition. ]

3. Proof of Theorem B

Step 1.  Supposethat A contains uncountably many distinct lines. Since A isof fibered
type, thereis anatural injection

t: I — Gri4,2) .

We identify the index set I with itsimage «(/). Then thereisa projectioni : A — I C
Gr(4, 2) definedby A > z — £ € Gr(4, 2), wherez € £. Itiseasy to seethat i isacontinuous
map and that / isaclosed subset in Gr(4, 2), since A is compact. Put

I'={sel:t,CS}y, I"={sel:t; ¢S},
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where S isthe hypersurface defined by (2). Consider the algebraic subset
B={eGr(4,2):¢cCS}.

By Proposition 2.1, I” is a countable set. Let Bp by any irreducible component of B with
I' N Bo uncountable. Obviously we have dimBp > 1. Let Zg be the tautological fiber space
of linesover Bpand ¢ : Zg — S bethe evaluation map. Sincedim Zg = dim B+ 1 and since
2 <dime(Zp) < dimS = 2, we see that ¢ is surjective to an irreducible component Sp of S.
If dimBgo = 2, thendime=1(x) > 1for any point x € Sp. Thisimpliesthat on a non-singular
mode of Sp, Bo defines an algebraic family £ whose any two members intersect properly.
On the other hand, however, £ contains members, say C1, C2, which correspond to linesin
A’. Since A is of fibered type, C1 and C2 do not intersect each other. Thisis a contradiction.
Therefore we have dim By = 1 and that £(Zp) is ahypersurfacein P3,

Step 2. Now we can assume that By is I"-invariant, by replacing I” with its subgroup
of finite index. Let S;, r € P\ E, be an irreducible hypersurface in P2 of Proposition 2.1
such that S; is non-singular outside the base locus B. Put

A=l A=l

sel’ sel”

Thenwehave A = A/U A” and A’ C S. Letv : S, — S, bethe normaization of S,. Note
that

Vs p-1ep) 0 S \vTHB) > S\ B

is biholomorphic and that I" acts also on S; as an automorphism group. Put i = 7 o v. Since
S, N(BUA)=S8N(BUA")andsinced(S, Nv1(BU A”)) <2 <5, themap

V=Bl 1a) S\ VTHA) > Dy

does not extend holomorphically across any boundary point of S; N v=1(A) by the similar
argument to the proof of Lemma 2.2. On the other hand, we note that S; \ v~1(B) is a
non-singular Stein surface and that the envelope of holomorphy for S, \ v=1(B U A) over
S, \vY(B)is S, \ v-1(B) itself. By Theorem 1.1, ¥, extends holomorphically outside of a
set A of isolated pointsin S; \ v=1(B), and hence

v i) cAuvi(B).

Step 3. Weclaim that, if B1 isan irreducible component of B such that B1 ¢ A, then
B1 N A isacountable set. To verify this claim, we consider theopenset V inv=1(B1\ A) =
v 1By N Q) andapointh € 3V C v-1(B1). We assume that b is not only a non-singular
point of S, but a non-singular point of v"1(B). Let W C S, be a polydisk centered at b
with a system of local coordinates (u, v) suchthat W = {(u, v) € C2: |u| < 1, |v| < 1} and
v YB)NW = {v = 0}. Since (5; \v~1(B))Nv~1(A) isaset of isolated pointsin S, \v~1(B),
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there are positive numbers ¢, § such that {(u,v) € W : |u| < 8, |v] = e} N A = @ holds,
whereb = (0, 0). Choosing aconstant @ with |a| small, we can assume that the 1-dimensional
disk {(a,v) € W : Ju| <8 |v| < e}N A = @. Thusthe polydisk W = {(u,v) € W : |u| <
8, |v| < )} isthe envelope of holomorphy for a Hartogs domain contained in S; \ v=1(A)
over W. Then by Theorem 1.1, W N v=1(A) is a set of isolated points. Therefore every
boundary point of V is discrete provided that S; and v—1(B) are smooth there. Thisimplies
that B1 N A isacountable set. Thus our claim is verified. Since any two distinct linesin A’
intersect B at distinct points, and since A’ contains uncountably many lines, we conclude that
thereis an irreducible component of B which iscontainedin A.
Step 4. Put

B'={beB:t,CSNA},

where ¢, isalinein A passing through the point . Then B’ isaclosed subset of B. From step
3, it followsthat B’ contains an irreducible component of B and that the complement B \ B’
is countable. Therefore, there is a non-degenerate holomorphic map from the irreducible
component of B to an irreducible component, say Bo, of B. By step 1 and the definition of
B’, we see that the hypersurface £(Zp) is contained in S N A. Thisis absurd however, since
2 =P3\ A c P32\ &(Zo) and 2 contains lines. Thus we conclude that A contains at most
countably many distinct lines.

Step 5. Then by atheorem of Hopf on the cardinality of ends, we see that the cardinal -
ity of 7 isat most 2. Hence X is either P3, a Blanchard manifold, or an L-Hopf manifold by
[K3]. Thus Theorem B is proved. ]

4. Holomorphic extension index of a family of surfaces

In this section, we shall prove Theorem 1.2. Let X beacomplex manifold of dimension 3
andU = {t € C: |t| < 1}. Supposethat thereisaproper holomorphic surjection f : X — U
with connected fibers and that f is of maximal rank everywhere. Put X, = f~1(1),t € U.
Let b; denote the j-th Betti number of the manifold Xo. Put U, = {r € C : |t] < &}.

4.1. Familiesof Kahler surfaces. A C differential form w on acomplex manifold
is said to be pluri-closed if 39w = 0 holds. A Hermitian metric on a complex manifold
is caled a pluri-closed Hermitian metric or pluri-Kéhler metric, if the associated Hermitian
form is pluriclosed, and the form is called a pluri-closed Hermitian metric form or pluri-
Kéhler form.

Then we have the following.

ProPOSITION 4.1. Let f : X — U be a complex analytic family of compact Kahler
surfaces. Then f~1(U,) admits a pluri-closed Hermitian metric for somee > O.

ProOF. It is known that a compact complex surface is of Kahler if and only if b1 is
even. Supposethat by iseven. Let @ : X — Xg x A beadiffeomorphism,and p : Xox A —
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Xo be the projection to the first component. Let wp be a Kéhler metric on Xo. Let &g be the
(1, 1)-component of the d-closed form (p o @)*wg. Then wg + ids A ds givesapluri-closed
Hermitian metric on a neighborhood of Xg. Thus the proposition follows. 1

PROPOSITION 4.2. Let f: X — U be a smooth family of compact Kéhler surfaces.
If X isn-probable, then Hex, (X) > 4.

PrROOF. By Propositions 4.1 and 1.3, this followsimmediately from Theorem 1.1. 1

4.2. Families of surfaces with odd 51 > 1. First consider the case where Xg is
minimal, i.e, free from the exceptional curves of the first kind. In this case, thereise > 0
such that the X,;’s are minimal for all € U,. Thus we can assume that every member X, is
minimal from the beginning. Main part of the argument in the following isthe relative variant
of [K1, Section 7(B)].

PROPOSITION 4.3. Wecanchoosee > Oand N € N so that there is a proper finite
holomorphic map
@ fTHU) = (CV\(0)) x Up) /(@)
where « isa holomorphic automorphismof (CV \ {0}) x U, of the form
o (21, rzn, 1) > (a(t)ze, - o)z, 1)

satisfying |a(r)| < 1for ¢ € U,.

PrOOF. Thedirect image sheaf Rof*Q,l(/A isfreeon A, since the rank of the coherent
sheaf is constant given by b1 = 2dim HO(X,, 2%,) + 1. Put g = rank R £, 2% .. Since
every holomorphic 1-form on compact surfaces are d-closed, we have the relative Albanese
map

X > (CIxA)/G, G~Z%.

By [U, Proposition 9.19], Albanese maps of surfaces with odd »1 > 1 have non-singular
images, connected fibers, and multiple elliptic curves as singular fibers. Therefore ¥ also has
the same properties. Put M = ¥ (X) and C; = ¥ (X;). Letting u : M — A bethe projection
to the 2nd component, we have a commutative diagram

where f = poW and C; = u=1(r), 1 € A. Thegenusof C; isequal to g. Leto : U, — M be
asection of u|M, for somee > 0, where M, = = 1(U,). Put X, = f~1(U,) and consider
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the following commutative diagram,

-  HY(X,0x) > @ H(X,0%) S HXX.,2) —
(5) it _ 0 [
- H'Xe, f7YO0u)) - HYX., fH0}) — HAX..2) —.

Here f~1(Oy,) and f~1(0;) ) are the set theoretic inverse of germs. The homomorphism j
is the map induced by the natural inclusion. Since R? f, Oy isfree with rank = p,, we have
(R f.Ox); ~ HY(X,, Ox,) ~ Cl1 forany t € A. Sincewe know that
0— HY%S,dOg) — HY(S,C) - HYS, 05) > 0
is exact on any compact surface S, we see that
R f(f7HOv,) = R* f.C ®c Oy, — R*[»0x,
is surjective. Therefore
6 00— HXe, Ox,/fH(Ov,) = H'(Xe, f7H(Ou,)) - H'(Xe, Ox,) > 0
is exact.
LEMMA 4.1. The pull-back ¥*F € Hl(Xg,(9§€) of any line bundle F €
HY (M, O}, ) hasarepresentativein H(X., f~1(O}))).
PROOF. Since
f*:H*M,,C) - H*X.,C)

is a zero-map, we see that ¢ (W * F®") = 0 for somem < N. Then, by (5) and (6), there is
an element n € HY(X., f~X(Oy,)) suchthat e o j(n) = ¥*F. Hencei(n) is the desired
element. ]

Takeasectiono : U; — M, and regard theimage D = o (U,) as an effective divisor on
M. By Lemma 4.1, the pull-back ¥ *([D]®™) of the m-th multiple of the line bundle [ D] is
flat on each X;. Let
p:Hi(Xe,Z) - I'(Xe, f7HO}) = I'(Ue, 07))

be the associated group representation. Choose m € N such that p(H1(Xe, Ztor) = {1}.
Let {yo0, y1,- -, y2¢} be aBetti basisof Hy(X,, Z) suchthat the f,(y;) form aBetti basis of

Hi(M,,Z) and f(y0) = 0. We consider thelinebundle & € HY(M,, yfl((’)*Ug)) associated
with the representation ¢ defined by

(fxyp) =pWj), j=1,---,2g.
Then F = ¢*([D1®"®& 1) € HL(X,, f*l(O;}E)) istheline bundle of which the associated
representation p1 : H1(X¢,2Z) — I'(U,, (’)a) isgiven by

p1(yo) = p(yo), pay;)) =1, j=1,---,2¢g.
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Put o = p1(y0) € I'(Ug, O*Ug). Then the image of the group representation p; is an infinite
cyclicgroupin I" (U, Op;,) generated by «. Notethat o = «(¢) is aholomorphic function on
U, andwehave |a(7)| # 1forany ¢ € U,. Herewe can assumethat |a(¢)| < 1forany ¢ € A,
replacing  with o~ if necessary. Fix m to be asufficiently large number. Then, since

dim (X, Fix,) =dimI'(C,, (D1®" @& Y)c)=2—-2g+m=3—by+m

isindependent of 7, RO/, F isfreeon U,. Put N = 3 — by + m. Let G be the cyclic group
generated by a holomorphic automorphism of (CV \ {0}) x U, of theform

o (Zl7 "IN, t) = ((x(t)Zl, ) (Y(t)ZN, t) .
Let {g1, - - -, on} bethe set of generators of (RC f, F)o. Then the map

qb:x'—>(§0l(x)""’§0N(x)), XEX{;‘
defines the desired holomorphic map for a sufficiently small ¢ > 0. 1

REMARK 4.1. By the construction above, we have the following commutative dia-
gram,

X. -2 (CV\{0)) x Un)/la)
£l o

v << PN-1x U,

where @ is the natural projection, and p is the projection to the 2nd component. If m >
2g + 1 = b1, @ induces a holomorphic embedding M, — PV-1 x U,.
PROPOSITION 4.4. Thereis a Sein space Z of dimension 3 and an analytic subset

C C Z of dimension 1 such that Z \ C is non-singular, and is an infinite cyclic unramified
covering of X.. In particular, X, isn-probable.

PROOF. Let X, theinfinite unramified covering corresponding to the kernel of

W, s w1(Xe) = m((CY\ {0} x Ue)/(@)) .

Put W, = ¢~ 1(¥(X,)), whereq : (C¥N\{0}) xU, — ((CN\{0}) xU,)/(c) isthe canonical
projection. Then ¥ liftsto

U X e —> We,
a finite branched covering. Note that we can extend W, by attaching 1-dimensional subset
C = {0} x U, to aclosed analytic subvariety W, inC¥N x U,. Therefore, by the continuation

theorem of Grauert-Remmert, X, aso can be extended to a complex analytic space Z, which
is proper over vflg. Hence Z, is a Stein space. Since the deck transformation of X, which
correspondsto « acts on Z, as a contracting automorphism on each fiber of zr and fixes each
point on C, we seethat Z, \ X, isal-dimensiona analytic set biholomorphic to C. Thusthe
proposition is proved. 1
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PROPOSITION 4.5. Let f: X — U bea smooth family of compact non-Kéhler sur-
faces with odd b1 > 1. Suppose that X is n-probable. If every member of the family is
minimal, then Hex,, (X) = oo, otherwise Hex,, (X) = 4.

PROOF.  Suppose that every member isminimal. Then by Propositions 4.4 and 4.3, this
follows from Proposition 1.3, since the image manifold @ (f~1(U,)) is a family of liptic
bundle over a curve of positive genus, and hence

Hex, (f~1(U.)) = +o0.

Sincethe exceptional curves of thefirst kind constitute a complex analytic family of submani-
foldsover U,, we can blow down such curves simultaneously to obtain another smooth family
of compact surfaces with the same b1. By afinite steps of blowing-downs, we obtain afamily
of minimal surfaces. Thusin this case we have Hex,, (X) = 4. 1

4.3. Families of surfaceswith b1 = 1. The aim of this subsection is to prove that
Proposition 4.5 holds true also in the case b1 = 1, by showing the existence of a pluri-closed
Hermitian metric. It is known by Gauduchon [G] that every compact complex surface admits
apluri-closed Hermitian metric form. Therefore what have to do is to check the existence of
such forms on a neighborhood of each member of the smooth family.

We shall begin the argument in alittle more generd setting.

PROPOSITION 4.6. On a complex manifold Y, we have the following exact sequence
of sheaves:

(7) 0— Oy/iR-5 Ry @@ 25 A0 2 4y — 0,
where

iR = the constant sheaf of the pure imaginary number onY ,

Oy = the sheaf of germs of holomorphic functionson Y ,

Ry = the sheaf of germs of real-valued C* functionson Y,

21 = the sheaf of germs of holomorphic 1-formson Y ,

AD? = the sheaf of germs of C* (p, g)-formson Y,

Hy =Im(AL? 25 4ty

and the sheaf homomor phisms are defined by

a1(p) = (p + ¢, —dg), ax(p,0) =dp+6, az(n) =i+ on.

ProoF. (1) Itisclear that o1 isinjective. (2) Proof of Im a1 C Ker ap. Take
¢ € Oy. Thenaoa1(p) = a2(p + @, —dp) = (¢ +¢@) —dp = d¢p —dp = 0. (3) Proof
of Ker ez C Imaq. Take any germ (¢, 0) € Ker ap. Since dp + 6 = 0, thereis an element
h € Oy suchthat & = —dh. Therefored (¢ —h) = 0. Hencethereisan element ¢ € Oy such
that ¢ = h + g. Since p isreal, ¢ — h isacertain real constant function. Therefore we can
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replace i with a suitable element of Oy so that the equality ¢ = & + & holds. The & defines
adesired class [i] € Oy/iR. (4) Theimplication Im ay C Ker azisclear. (5) Proof of
Ker a3 C Imap. Fix any point y € Y and any germ n € Ker a3 in the stalk over y. We put
w=19n. Sincew = @ and dw = 0, we seethat w isaC*> (1, 1)-form with dw = 0. Hence
there is a C™ real-vaued function u such that w = iddu. Put @ = n — du. Then the germ
u,0) e Ry & .(2)} has the image n by the sheaf homomorphism ap. (6) Surjectivity of a3
is obvious by definition. ]

Let X be a complex manifold of dimensionn +1and A = {t € C : |t] < 1}. Let
f : X — A beaproper surjective holomorphic map which is of maximal rank everywhere on
X.Then X, = f~1(r) (t € A) isanon-singular compact complex manifolds of dimension .
Assume that the centra fiber Xo = f~1(0) satisfies the following three conditions:

(8) H?(Xo, Ox,) =0,
) H3(Xo, Ox,) =0,
(10) H?(Xo. 2%,) = 0.

Let: : Xo — X be the inclusion map. By Proposition 4.6, we have the following
commutative diagram of sheaveson X:

0 - Ox/iR - Ry®R2y —> Gx — 0

(11) A A 2
0 — Ox,/iR — RXO@Q§O - Gx, — O,

and

0 - Gx — AP - My - o0
(12) ! ! !

O_>gXo—>A]§(?—>HXO—>0,
where
Gx = coker{Ox /iR = Rx ® 23}, Gx, = coker{Ox,/iR = Rx, ® 23 } .

LEMMA 4.2. The natural map R’ff*Q)l( — qu*.(z,l(o is surjective for ¢ = 1 and
injectivefor g = 2.
ProoOF. Consider the exact sequences of sheaves

(13) o—>f*9i—>9}<—>9}</A—>o,

(14) 0— f*(m)2%,4 — 2%4 — 2%, — 0.
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where m is the maximal ideal of the stalk Oxg a 0 € A. The natural map qu*{z}( —
R4 f*Q}(o is the composition of the natural maps

RUf,2} *4 RUf.2%,, % R 2}, .
Since
R2f. f*(R}) = R* f.0x ®0, 24 =0
by the assumption (8), u1 is surjective and u» isinjective by (13). Since
R*f.2% = H*(Xo, 23,) =0
by the assumption (10), we have
R*f.2%,,=0

by (14) and Nakayama's Lemma. Hence v1 is surjective and v isinjective by (14). Thuswe
have the lemma. ]

LEMMA 4.3. *: R?f,Ox/iR — R?f,Ox,/iR isan isomorphism.
PrROOF. By the assumption (9) and by the exact sequences
0—-iR—- 0Ox - 0Ox/iR—-0, 0—iR— Ox,— Ox,/iR— 0,
we have the isomorphisms
R?f.(Ox/iR) ~ R3f4iR ~ R? f.(Ox,/iR) . |
LEMMA 4.4. R'f.Gx — R'f.Gx, issurjective.
PROOF. Since
R'f.Rx = R*f,Rx, =0,

we have by (11) the diagram

- RY.Q% - RYGx — RY*f(Ox/iR) — Rf2% —
io | i1 i2 | \2
— RY2% - RYGx, — R*fu(Oxo/iR) — R*f2% —,

where the low sequences are exact. Then by Lemmas 4.2, 4.3, we have the lemma. ]
LEMMA 4.5. ROf,Hx — ROf.Hx, issurjective.

ProoF. By (12), we have the diagram,

- ROfAYY — ROfHxy — RYfAGy — RUAAYY S
jo 4 iy 2 \:
— ROARARY - ROfLMx, — RYUAGx, — RULAY —,
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where the low sequences are exact. Since
R AR = R AR = R fu( AR (=X0) = 0,
we have the lemmaby Lemma4.4. 1

PROPOSITION 4.7. Let f : X — U beasmooth family of compact complex manifolds
of dimension n. Suppose that the central fiber Xo = f~1(0) admits a pluri-closed Hermitian
metric form and satisfies

HA(Xo, Ox,) = H3(Xo, Ox,) = H*(Xo, 2%,) = 0.

Then f~1(U,) admits a pluri-closed Hermitian metric formfor somee > 0.

PrROOF. The pluri-closed Hermitian metric form on Xg defines an element w €
ROf*HXO. Then by Lemma 4.5, there is a pluri-closed Hermitian form & on f~1(U,) for
somee > O suchthat @x, = . Then® + idt A dt would be a pluri-closed Hermitian metric
formon f~1(U,,) for some0 < ¢; < e. 1

Now we go back to the original situation. Let X be a complex manifold of dimension 3
and A ={reC:|t] <1}. Let f : X — A beaproper surjective holomorphic map which
is of maximal rank everywhereon X. Theneach X; = f~1(t) (r € A) isanon-singular
compact complex surface.

PROPOSITION 4.8. Let f: X — U beasmooth family of compact complex surfaces
with b1 = 1. Then f~1(U,) admitsa pluri-closed Hermitian metric formfor somee > 0.

PROOF. SincedimX, = 2, we have always H3(X,, Ox,) = 0. Since by = 1, we have
aso H?(Xo, Ox,) = 0and H?(Xo, 2%,) = HO%(Xo, 2%,) = 0. Further by atheorem of

Gauduchon [G], there is an element w € Rof*HXO which defines a pluri-closed Hermitian
metric form on Xo. Hence the proposition follows from Proposition 4.7. ]

PROPOSITION 4.9. Let f: X — U beasmooth family of compact complex surfaces
with b1 = 1. If X isn-probable, then Hex,, (X) > 4 holds.

PrROOF. By Propositions 4.8 and 1.3, thisfollowsimmediately from Theorem 1.1. 1

PROOF OF THEOREM 1.2.  Combine Propositions 4.2, 4.5 and 4.9. 1

5. Onthestructureof A

If X = 2/ isaflat twistor space over aconformally flat differentiable 4-manifold, itis
clear that P2\ £2 is of fibered type. The complex analytic connected sum of flat twistor spaces
isno longer aflat twistor space. We can show, however, the following.

PrRoOPOSITION 5.1. Supposethat X1 = £21/I'1 and X2 = £22/1% are compact quo-
tients of large domainsin P2. If both A1 and A are of fibered type, then the complex analytic
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connected sum X1#X» is also a compact quotient of a large domain £2 in P3 such that the
complement P2\ £2 is of fibered type.

We recall the argument of Maskit [M] (see adso [K5]). Fix a system of homogeneous
coordinates z = [zo : z1 : z2 : z3] on P® and we consider the real hypersurface

T ={zeP:|201%+ 211 = |22)% + |z3/%} .

Fix 0 < ¢ < 1and define

W ={z € P®: e(lz0” + |21/") < lz21* + Iz3l* < e (|20l + |21/} ,

W1 ={z € P?:|z0l” + |z1)” < e (Iz21* + |23/} ,

Wi ={z € P>: |z0l” + |21/ < |z2l* + |23l

W2 ={z € P*: |22 + |zal® < e (20l + 1211 ,

W)= 1{z € P*: |z2l” + |zal* < lz0l® + |z1/°}.}.
We prepare also a copy U of W1. Suppose that there are open holomorphic embeddings
Jv : Wy, = X,,. Then the complex analytic connected sum X1#X, = Sum(X1, X2, j1, j2, X)
of X1 and X, isthe union X% U X5, X5 = X, \ ju(W, \ W), where ji(x) € j1(W), x € W,
isidentified with jo(x) € jo(W). Let j, : W, — £2, C P3 bealift of j,. Then j, extendsto
an element of PGL (4) by [K2, Lemma3.2]. Put W, = j,(W,) and ¥, = j,(X). Let F, be
afundamental region for I, on £2,, which contains W,. Here we can assume that the F,, are
compact simplicial complexes embedded in £2,,, by considering triangulation of X,,. By ];1,
weregard F, asasubset in P® which contains W,,, and Y,asX. PutF = (FL\WDU(F2\ W)
and 2 = U, 9(F), where I' is the subgroup of PGL (4) generated by j ' 1 ju, v = 1, 2.
Thenwe seethat X 1#X» isacompact quotient of 2 by I". Here I" is given by the free product
() * (o 12J2). Inthefollowing, we write I, instead of j; 1T, j, for short. We put
A=P3\ 2.

For agroup G, weindicatetheset G \ {1} by G*. Every element of I"* can bewrittenin

the normal form

(15 g=gno---0a1,

where either g; € I, goir1 € IS, Of go; € Iy, g2iv1 € I'}. The number of factorss in the
right hand side of (15) is determined by the element g. We call n the length of ¢, and denote
thelength by |¢g|. We set |1] = 0. Furthermore, writing ¢ in the normal form (15), we say that
g ispositive (g > 0) if g1 € I}, and negative (g < 0) if g1 € I';.

We decompose I into the sets of positive elements, negative elements and the identity
element, and write

(16) F={L4Y pau+) dnu
n,pn n,u
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where |p, .| = |gn |l =1, ppp > 0,and g, < 0. Forn > 0, we set

(17) To = puu WD) U g (W2) .
" Iz

and Top = Wy U Wo.
LEMMA 5.1. Forn >1,T7,_1 D T, holds.

PrROOF. Letx € T, beany element. Supposex € p, ,(Wy) for some p,, > 0. We
WIite ppy = gy o - - - o g1 inthenormal form, where g1 € I'}". Since g1(W1) C W2, we have

Pnp(W1) C gpo---0ga(W2).

Since|gyo---og2]l =n—1and g, o---o g2 iSnegative, we conclude x € T,,_1. We can settle
thecase x € g, .(W>) for someg, ,, < 0inthe same manner. ]

LEMMA 5.2, Foranyg e I'with|g| <n,n > 1, g(T;) C T,_ 4 holds.

PrROOF. Takeany x € T,,. Wewrite g = gy o---o g1 inthenormal form, k = |g|. Then
we see easily that g(x) € U;’:ffk T;. Since {T,} isadescending sequence by Lemma5.1, we
have g(x) € T,,—x. ]

We set

T:ﬂT,,.

n>1
Asacorollary to Lemma5.2, we have immediately
LEMMA 5.3. Foranyg e I', g(T) C T holdsand hence T is I"-invariant.
LEMMA 5.4, Foranyge I',T, N g(F) =} holdsfor n > |g| + 1.

PrROOF. It is clear by the definition that 71 N F = (. Since {T,} is a descending
sequence by Lemma5.1, we have

(18) T,NF =0

for n > 1. We shall prove thelemmaby induction on k = |g|. Thelemmaholdsfor k = 0 by
(18). Supposethatk > 1. Put g = gx o h, |h| =k — 1, gx € I}, wherev = 1 or 2. Then we
have

T, N g(F) =T, N gk o h(F)
(19) = gk (g¢ - (T) Nh(F)).
Forn > 1, we have
9 H(T) C Ta
by Lemma 5.1. By the induction assumption, we have

Th1Nh(F)=0.



COMPACT QUOTIENTS OF LARGE DOMAINS 227

Hence by (19), we have

T, N g(F) = g (g (T) N h(F))
C ge(Tu—1 N h(F))
=0. 1
LEMMA 55. T C A.

ProOF. We shall prove thelemmaby contradiction. Supposetherewereapointx € T
which were contained in 2 = P3\ A. Let K be acompact neighborhood of x in £2. By the
definition of T and the fact that {7} is a descending sequence,

(20) xeKknT, fordl n>1.

Since K and F are compact, and since F is afundamental region, there is a finite number of
eements g1, g2, - - -, g- € I" such that

Kc|Jg
j=1
and
Kng(F)=0¢foradlge I'\{q, g2, 9r}-
Hence, by (20),

Ug(F)NT o KNT o {x) # 0
j=1

for all n > 1. On the other hand, by Lemma5.4, we have T,, N g; (F) = ¢ for all integersn
with

n>maXj=1..,{lgjl +1}.
Thus we have a contradiction for such n. 1

We set
Snng\Tn’ SZUSn
n

Then we have

LEMMA 56 A=(ANS)UT.

PROOF. SinceP® = S U T, thelemmafollowsimmediately from Lemma5.5. ]
Following three lemmas follow immediately from Lemmas 5.1, 5.2 and 5.3.

LEMMA 5.7. Forn=>1,S,_1CS,.
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LEMMA 5.8. Foranyge I"andn > 1, g(S,) D S;—|¢ holds.
LEMMA 5.9. Foranyg e I', g(S) C S holdsand hence S is I'-invariant.
Put

(21) L=JgnuJhn.

gel’ hel’

Itis easy to verify the following.
LEMMA 5.10. Ifx e P3\ L, then

(22 gx) e 21Ny foral gerl.

LEMMA 5.11. SC 2UL.

PROOF. Takex € SN (P3\ L). Itisenough to show that x € £2. Sincex € S and
{S»}n is ascending, there is an integer ng such that x € Sy \ Spo—1. Thenx € T,p—1 =
P3\ Sy,—1. Therefore either there is a point wi € Wi and an element p,—1, > 0in I
with x = pjo—1,(w1), or thereis apoint wp € W> and an element ¢,,,—1, < 0in I" with
X = gno—1,(w2). Suppose the former case holds; the proof of the latter case is similar. If
wy € T1, thenthereisapoint v € W2 and g € Iy such that wy = ¢(v2). Hence we have
X = Png—1pu0q(v2). SINCE ppy—1, 0gq isnegative and haslength ng, we seethat x € T,,,. But
this contradicts x € S,,,. Hence wy ¢ 71, i.e,, wy € S1. Namely, for every element x € S,
withn > 1, thereisan element ¢ € I" such that g(x) € S1. On the other hand, by the choice
of x and by Lemma5.10, we also have g(x) € £21 N £22. If g(x) € Wo, then g(x) ¢ W1\ W.
Since g(x) € £21, g1 0 g(x) € Fy holdsfor some g1 € I'1. Supposethat g1 o g(x) € W1 \ W.
Thenwe have g1 # 1and g(x) = g; *(g1 0 g(x)) € g “(W1\ W) C T1. This contradicts
g(x) € S1. Therefore g1 o g(x) € (F1\ W) UW C F. Hencex € §2. The remaining case
g(x) € Wy can be settled similarly. |

LEMMA 5.12. L C A.

PROOF. Since A is I'-invariant, it is enough to show that 2 C £2,. We consider the
case v = 1. The proof works also for v = 2. Recall that 2 = UgeF g(F) and 21 =

Uger1 g(F1). Then 2 c £21 followsimmediately from the following
SUBLEMMA 5.1. Let g be an element of I" and put k = |g|. If g is positive, then

g(F) C Fo N 21 for odd k, and g(F) C Fy for even k. If g is negative, then g(F) C Fy for
odd k, and g(F) C F> N §21 for even k.

PROOF. Consider the case ¢ positive. We shall prove the sublemmaby induction on k.
If k =1,then g e I'}". Hence g(F) C g(F1) C F2N 21. If k = 2,then g = g2 o g1 for some
g1 € I'f and g2 € I';. Hence

g(F) C g20 g1(F1) C g2(F2 N §21) C g2(F2) C Fy.
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Supposethat k > 3. Writegasg = gxoh, h = gx—10---0 g1 If kisodd, then g € I') and
h(F) C F1 by induction assumption. Hence g(F) = g o h(F) C g (F1) C Fo N 21. Ifkis
even, then g, € I'; and h(F) C F N §21 by induction assumption. Hence

g(F) = gro h(F) C gx(F2N £21) C g (F2) C F1.

The case g negative can be settled similarly. ]
PROPOSITION 5.2 ([K5] Proposition2.1). A=LUT.

PrROOF. By Lemmas5.6and5.11, wehave A ¢ 2 UL UT. Hence, by 2 N A = ¢,
weobtain A ¢ L U T. The other implication follows from Lemmas 5.12 and 5.5. ]

LEMMA 5.13. LNT =40.

PrROOF. Supposethat thereisapointx € LNT. Thenby (21), thereisg € I such that
x € g(Ayp) or x € g(A2). We can assume that x € g(Aj) holds without loss of generality.
Fixn € Nsuchthatn > |¢g~1| + 1. Then, Sincex € T C Ty, thereiseither p € I'" such that
x € p(Wy) with|p| =nand p > 0,0r g € I' suchthat x € g(W2) with|¢g| =nandg < 0.
Then either x € p(W1) N g(A1) # 0, 0r x € g(W2) N g(A1) # @ holds. Therefore either
g LopWi)NAL#@,0r g L og(Wa) N Ay # @ holds. Sinceg™to p > 0,|g7 1o p| >0,
g7 log <0,and|g tog| > O,weseethat T1N A1 D (¢ Lo p(W1)Ug Log(Wo))N AL £ 0
holds. On the other hand, since Ty C (£21 \ W1) U (£22 \ W2), wehave Ty N A1 = @. Thus
we have a contradiction. ]

LEMMA 5.14. For any g, h € I" with g # h, we have g(A1) Nh(A2) = 0.

PrROOF. Wecanassumethath = 1and g # 1. Takeany g € I'* and write it in the
normal form g = g, o gy—1 0 - - - o g1. We shall show by induction on |g| that if g, > O then
g(A1) C Wp and that if g, < Othen g(A1) C W1 N £22. From the assertion, the lemma
follows immediately. First supposethat || = 1. If ¢ > O, then g(A1) = A1 C Wa. If
g < 0, then g(A1) C g(W2) C Wi N £22. Thusthe case |g| = 1is settled. Next suppose
that |g| > 1. If g, > 0O, then g,—1 < 0. Hence ¢g,—1 0 --- o g1(A1) C W1 N £22 holds by
the induction assumption. Therefore we have g(A1) C g,(W1 N §22) C Wa. If g, < O, then
gn—1 > 0. Hence g,—1 0 - - - 0 g1(A1) C W holds by the induction assumption. Therefore we
have g(A1) C g, (W2) C W1 N £22. 1

Let o be any connected component of A.
LEMMA 5.15. o CT.

PROOF. Takeany point x € T and let « be the connected component of A with x € «.
Sincex € T, for any n, either x € g(W1) with ¢ > 0and |g| = n, or either x € h(W2) with
h <0and|h| = n. If x € g(W1) holds, then since « is connected and sincea N ¢(X) = ¥, «
iscontained in g(W1). Similarly, if x € h(W>) holds, then « is contained in 2(W2). Thusin
any casewe havea C T),. Thereforewehavea C T. 1
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Put

f=2,\ |Jsw)=FU ] gF\ W), v=12.
gely gely

Then we have A N QV# = (). Since either « C W1 or a C W», we may assume here that
o C W1. Since

anN2¥cAn2i=¢ ad anL=9,
thereisan element go € Iy suchthat o C go(W2). Since
wloneicanei=9 and ggl@nL=9,
thereisan element g1 € I';* suchthat g () C g1(W1). Since
gitogtn2icAan2i=0 ad g logtae)nL =9,

thereis an element g, € I'y suchthat g; ' o gy () C g2(W2). Continuing this process, we
have a sequence {g,}, C I" with gox 1 € I}, gox € I’y suchthata C goo - - gax—1(W1).
Here, we can also check in each step that « C goo --- o gx—1(W1 \ W) hold. We put
Pk = goo--- o g1 and consider the sequence { py )72 ;. We put

Ur=pr(W1), Kip=pcWi\W), Xp=p(X).

Then, we havefor k > 1

(23) pe >0, |pkl =2k,
(24) o C K1 CUr C K C U C Wy,
(25) Xy C Ur \ Ky .

By (24), we have

K:=(\U=[)kk

k>1 k>1
is compact and
(26) a CK.

In the following, we indicate by M the subset of Gr(4, 2) which parametrizes the lines
contained in aset M c P3. Each p; defines abiholomorphic map py of Gr(4, 2) such that

ﬁk2W1—> UkCfol.
The open subset Ui C Gr(4, 2) is biholomorphic to a domain of the form

{X € Ma(C) : I —'XX ispositive definite }
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which is abounded Stein domain in C* and K, is acompact subset of Uy, where K is of the
form

{X € M2(C) : rI —'XX ispositive semi-definite} ,

for some constant 0 < r < 1. Obviously we have p; (Ux) = Ury1 and pr(Ki) = Kpg1.
Therefore the holomorphic maps { px}x constitutes a normal family on Wy. Let {gx}x be a
uniformly convergent subsequence of { px }x and put

g = lim g.
k— o0

On the other hand, since Ky D Kj1, we have easily
o0

K = ﬂ Ky .
k=1

LEMMA 5.16. §: W1 — K issurjective.

PROOF. Take any point a € K. Then there is a line l, C K. Since, £, C Ki
for any k, we can consider aline ¢; = q,;l(za) in W1\ W. Choosing a subsequence of

{€}, we can assume that limy €, = £o for some £g in (W1 \ W)". Thisis possible because
(W1 \ W)™ is compact. Since the convergence of {g}x is uniform on (W1 \ W)", we have

§(Lo) = limy g (Lo) = limy i (£) = L. 1
LEMMA 5.17. K consists of a single point.

PROOF. Let f be any holomorphic function on W1. Then | f1¢ has amaximum point

onk. By Lemmab.16, | f o ¢| has amaximum point on W1. Thusthe holomorphic function
f o g isconstant on Wy. Since W1 is of Stein, thisimpliesthe lemma. |

LEMMA 5.18. K coincideswith the support of a line.

PrROOF. Through every point of K, there passesalinein K. Thuswe have the lemma
from Lemma5.17. ]

LEMMA 5.19. Any connected component « of T' coincideswith aline.

PROOF. Since o contains at least a line, the lemma follows from (26) and Lemma
5.18. 1

PROOF OF PROPOSITION 5.1. The proposition isimmediate from Lemmas 5.13, 5.14,
5.19, and Proposition 5.2. ]

NOTES ADDED IN PROOF. The example 1 given in [K3] as a Blanchard manifold of
type (A) was not correct, since LemmaA.6 in the appendix of [K3] wasfalse. We can disprove
the existence of Blanchard manifolds of type (A). Thiswill be published elsewhere.



232

(D]

(Gl
1]

[K1]
[K2]
[K3]
[K4]
[Ks]
[KO]
[L]

M)

)

MASAHIDE KATO
References

DLoussky, G.: Envelopes d holomorphie et prolongements d’ hypersurfaces, Seminaire Pierre Lelong p.
215-235, Année 197576, Lec. Notes in Math. 578, Springer (1977).

FuJiki, A.: Topology of compact self-dual manifol ds whose twistor space is positive algebraic dimension, J.
Math. Soc. Japan 54 (2002), 587—608.

GAUDUCHON, P.: Lethéoreme del’ excentricité nulee, C. R. Acad. Sc. Paris, t. 285 (1977), Série A 387-390.

IVASHKOVICH, S. M.: Extension properties of meromorphic mappings with values in non-Kéhler complex
manifolds, Ann. of Math. 160 (2004), 795-837.

KATO, MA.: Complex structures on S1 x §5, Jour. Math. Soc. of Japan, 28 (1976), 550-576.

KATO, MA.: On compact complex 3-folds with lines, Japanese J. Math. 11 (1985), 1-58.

KATO, MA.: Factorization of compact complex 3-folds which admit certain projective structures, Tohoku
Math. J. 41 (1989), 359-397.

KATO, MA.: Examples on an extension problem of holomorphic maps and a holomorphic 1-dimensional
foliation, Tokyo J. Math. 13 (1990), 139-146.

KATO, MA.: Compact quotient manifolds of domains in a complex 3-dimensiona projective space and the
L ebesgue measure of limit sets, Tokyo J. Math. 19 (1996), 99-119.

KATO, MA.; Okada, N.: On holomorphic maps into compact non-Kahler manifolds, Ann. Inst. Fourier,
Grenoble 54 (2004), 1827-1854.

LARUSSON, F.: Compact quotients of large domains in complex projective space, Ann. Inst. Fourier, Greno-
ble 48, 1 (1998), 223-246.

MASsKIT, B.: On Klein's combination theorem 111, Ann. Math. Studies 66 (1971) 297-316.

Siu, Y. T.: Techniques of extension of analytic objects, Dekker, New York (1974).

UENO, K.: Classification theory of algebraic varieties and compact complex spaces, Lec. Notes Math. 439,
Springer-Verlag (1975).

Present Address:

DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY,
K10oICHO 7-1, TOKYO, 102-8554 JAPAN.

e-mail: kato@mm.sophia.ac.jp



