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Abstract. A mathematical model of environmental fluid is presented to describe fluid flow motions with large
density variations. Moreover the associated numerical methods are discussed. The model of environmental fluid is
formulated as an unsteady low-Mach number flow based on the compressible Navier-Stokes equations. For low-Mach
number flows, the acoustic effects are assumed to be weak relative to the advection effects. Under this assumption,
detailed acoustic effects can be removed from governing equations. The low-Mach number formulation thus en-
ables numerical flow analysis with a projection methodology that uses high-order accurate upwind difference of the
convection terms with a time step restricted solely by an advection Courant-Friedrichs-Lewy (CFL) condition. The
algorithm presented here is based on an iterative implicit time evolution of second order accuracy and a high-accurate
spatial discretization with TVD properties for unsteady low-Mach number flows. It is seen from the results on the
verification for test cases of flows with a wide range of density variations that our numerical method is validated.

1. Introduction

In the compressible Navier-Stokes equations, two kinds of propagation speeds are in-
volved, namely, the convective velocities of fluid particles and the sound velocity which is
the propagation speed of sound waves. In fact, it is known that the application of numerical
methods for the compressible Navier-Stokes system to low-speed flows does not necessarily
provide us with satisfactory information regarding the convergence. This fact suggests that
numerical simulations are insufficient and the associated computational results turn out to be
inaccurate. These numerical difficulties are caused by the circumstances that the characteris-
tic velocities in the compressible Navier-Stokes systems are the convective speed and sound
speed, and so that their ratios become large and the so-called stiffness of the system may occur
due to the disparity of eigenvalues of the system.

One of the efficient counter measures for those numerical difficulties is to induce a sys-
tem of equations for incompressible flows from the compressible Navier-Stokes equations
and make analysis under the assumption that the density does not change in both space and
time. However, in actual applications, even if the convective speed of fluid is a low speed, it is
necessary to take the change of density due to the change of temperature into consideration.
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For instance, mixing processes of air and fuel in engines, water currents in the ocean
or air flows in the atmosphere are caused by the nonuniform distribution of temperature as
well as thermal stratification, and the air flow field in a neighborhood of a fire spot as well as
diffusion of smoke are typical phenomena which take place in environmental fluids and are
understood to be compressible Navier-Stokes flows.

One of the efficient counter measures for treating the change of density due to that of
temperature is to employ the so-called Boussinesq approximation which asserts that the ratio
of the change in density to that of temperature, ∂ρ/∂T , is sufficiently small. Under Boussi-
nesq approximation it is possible to think of buoyancy terms depending upon change in tem-
perature. However, the incompressibility condition is assumed as the equation of continuity.
This is inconsistent with the conservation law of mass, and so it is necessary to examine the
limitation of such approximations in their applications.

On the other hand, A. Majda proposed a method for deriving the governing equations
for the case of low-Mach numbers from the compressible Navier-Stokes equations by using
an asymptotic expansion with respect to Mach number which is supposed to be a sufficiently
small quantity. Although this method can not be applied to the flows with shocks that are
directly related with the propagation of sound waves, the method itself is effective for the
analysis of density driven flows associated with a large scale change of temperature and is
applicable to a wider variety of fluid phenomena than those under Boussinesq approximations.

The objective of this paper is threefold: First we introduce low-Mach number approxima-
tions in accordance with Majda’s idea. We next review the formulation of the Navier-Stokes
equations with low-Mach number approximations. Thirdly, we extend Najm’s numerical
method [9] for computation of low-Mach number flows to make the numerical computation
stable for higher Reynolds number flows. Furthermore, our new method is verified through
the results of numerical simulations for the following three test cases:

(1) Lid-driven cavity flows in incompressible fluid,
(2) Natural convection in a square cavity in case of flows of small density variation,
(3) Premixed combustion of hydrogen and bromine mixture in case of flows of large

density variation.
In Section 2 a complete system of the governing equations for fluid flows involving

chemical reactions is presented. In Section 3 a low-Mach number model is introduced for
isentropic gases as a special case of the Euler system. In Section 4 our model is applied
to the Navier-Stokes equations for reacting flows. In section 5 our numerical methods are
discussed. Najm’s numerical method proposed in [9] is reviewed and then an iterative implicit
method with a TVD properties is proposed. In Section 6, computations for the three test cases
mentioned above are performed in order to validate our numerical methods. Finally, some
conclusions are given.
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2. Governing equations

The starting point of our argument is to formulate the governing equations for the fluid
phenomena under consideration. In this section, a complete system of governing equations for
fluid flows involving chemical reactions is presented. We derived those equations by applying
low-Mach number approximations.

2.1. Conservative form of equations for reacting flows. Equations describing
chemically reactive flows with N participating species in conservative formulation are stated
as follows:

• Mass Conservation for Chemical Species:

∂ρYi

∂t
+ ∇ · (ρYiv) = −∇ · ji + wi (i = 1, 2, · · · N) (1)

• Mass Conservation for Mixture Gases:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2)

• Conservation of Momentum:

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = −∇p + ∇ · τ + ρ

N∑
i

Yi f i (3)

• Conservation of Energy

ρ
∂ρet

∂t
+ ∇ · {(ρet + p)v} = −∇ · q + ∇ · (τ · v) + ρ

N∑
i

Yi f i · v +
N∑
i

f i · ji (4)

et = h − p

ρ
+ 1

2
v · v (5)

• Thermodynamic Equation of State:

p = ρRT M−1 , M =
( N∑

i=1

Yi/Mi

)−1

, (6)

where ρ means the density, v denotes the velocity vector, p stands for the pressure, τ rep-
resents the viscous tensor, f i means the body force per unit mass of species i, Yi represents
the mass fraction of chemical species i, ji denotes the diffusive flux vector of species i, wi

stands for the mass production rate of species i, et is the total energy, q denotes the heat flux
vector, h represents the enthalpy, R is the universal gas constant, T denotes the temperature,
M means the mean molecular mass, and Mi stands for the molecular mass of species i. The
viscous stress tensor τ , the diffusive flux vector of species ji , and the heat flux vector q will
be given in the section of “Constitutive equation”.
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To be consistent with mass conservation, the species mass fractions, the diffusion veloc-
ities and chemical sources must satisfy

N∑
i

Yi = 1, 0 ≤ Yi ≤ 1 (7)

N∑
i

ji = 0 (8)

N∑
i

wi = 0 . (9)

Note that summation of conservations equations for all species in (1) implies total mass
conservation, (2), so that one of those N + 1 equations is redundant.

2.2. Constitutive equations. The viscous stress tensor, diffusive flux vector, and heat
flux vector are modeled by means of the following constitution equations:

• Viscous stress tensor

τ = µ

{
(∇v + (∇v)T ) − 2

3
(∇ · v)I

}
(10)

The viscous coefficient µ is obtained by semi-empirical formulae due to Wilke [13] and mod-
ified by Bird, et al. [1].

µ =
N∑

i=1

Xiµi

( N∑
j=i

XjΦi,j

)−1

, (11)

where

Φij = 1 (i = j) , Φij = 1√
8

(
1 + Mi

Mj

)− 1
2
[

1 +
(

µi

µj

) 1
2
(

Mj

Mi

) 1
4
]2

, i �= j (12)

and Xi represents mole fraction of species i in the mixture:

Xi = MM−1
i Yi . (13)

• Diffusive flux vector of species

ji = ρViYi (14)

where Vi denotes the diffusion velocity of species i and is determined by

∇Xi =
∑
j

XiXj

Dij

(Vj − Vj )

︸ ︷︷ ︸
Stefan−Maxwall

+ (Yi − Xi)
∇p

p︸ ︷︷ ︸
pressure gradient

+ ρ

p

∑
j

YiYj (f i − f j )

︸ ︷︷ ︸
body force



CHEMICALLY REACTING FLUID FLOW COMPUTATION 171

+
∑ XiXj

ρDij

(
DT,j

Yj

− DT,i

Yi

)∇T

T︸ ︷︷ ︸
Soret effect

(15)

where Dij means the binary mass diffusion coefficient matrix and DT,i represents the thermal
mass diffusion coefficient for species i.
In this paper a form of Fick’s law form is employed to evaluate the diffusion velocities of the
species in the associated mass-diffusion processes by introducing a diffusion coefficient Di .

Vi = −DiY
−1
i ∇Yi . (16)

The diffusion coefficients Di are modeled in terms of the binary diffusion coefficient matrix
Dij as follows [1].

Di = (1 − Yi)

(∑
i �=j

D−1
ij Xi

)−1

. (17)

It turns out that the diffusive flux vector may be modeled as

ji = −ρDi∇Yi , (18)

and the diffusion coefficients Di are modeled in terms of the binary diffusion coefficients Dij

as in [1]. Conservation of mass requires that the sum of all N fluxes ji vanishes (see Eq. (8)).
This requirement is not necessarily fulfilled for this diffusion model. A simple remedy is then
to subtract any residual from the bulk flow velocity in the species transport equations.

∇ · (ρYiv) → ∇ ·
{
ρYiv − Yi

∑
j

jj

}
. (19)

• Thermal flux vector

q = −λ∇T︸ ︷︷ ︸
conduction

+
N∑
i

hiji

︸ ︷︷ ︸
mass duffusion

+ RT
∑

i

∑
j

XjDT,i

MiDij

(Vi − Vj )

︸ ︷︷ ︸
Dufour effect

+ qR︸︷︷︸
radiation

(20)

where λ denotes heat conductivity. Dufour effect and thermal radiation are neglected in the
present discussions. Hence we have

q = −λ∇T +
N∑
i

hi ji . (21)

The coefficient of heat conductivity of the mixture is obtained through a combination averag-
ing formula [1].

λ = 1

2

( N∑
i=1

Xiλi + 1∑N
i=1 Xi/λi

)
. (22)
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2.3. Enthalpy equation and temperature equation. The equation of energy con-
servation is usually formulated in term of specific enthalpy through the relation of et =
h − p

ρ
+ 1

2 |v|2:

∂ρh

∂t
+ ∇ · (ρhv) =

(
∂p

∂t
+ v · ∇p

)
− ∇ · q − τ : ∇v, (23)

where the enthalpy is given by means of formation enthalpies hi for each species by

h =
N∑

i=1

Yihi . (24)

For ideal gases, the enthalpies hi are independent of the pressure, so that the total differential
of hi is given in terms of partial heat capacities Cpi ,

dhi =
(

∂hi

∂T

)
p

dT = CpidT . (25)

The enthalpy hi of a species is given by

hi = h0i +
∫ T

T0

CpidT , (26)

with an enthalpy h0i at a reference temperature T0. The heat capacity Cp of mixture is ob-
tained by summing up all the Cpi , namely,

Cp =
N∑

i=1

YiCpi . (27)

Combining Equations (23), (24), (25) and (27) together gives

ρCp

(
∂T

∂t
+ v · ∇T

)
= (

∂p

∂t
+ v · ∇p) − ∇ · q − τ : ∇v −

N∑
i

hi
d(ρYi)

dt
. (28)

Substituting Eq. (1) into the last term on the right-hand side of Eq. (28), we get

ρCp

(
∂T

∂t
+ v · ∇T

)
=
(

∂p

∂t
+ v · ∇p

)
− ∇ · q − τ : ∇v +

N∑
i

hi (∇ · ji − wi) . (29)

Substituting of Eq. (21) into Eq. (29) and use of multiplication rule

∇ · hiji − hi∇ · ji = ji · ∇hi (30)

and

∇hi = Cpi∇T (31)
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imply the relation

ρCp

(
∂T

∂t
+ v · ∇T

)
=
(

∂p

∂t
+ v · ∇p

)
+ ∇ · (λ∇T )

+ ρ

( N∑
i

Cpiji

)
· ∇T − τ : ∇v −

N∑
i

hiwi . (32)

2.4. A model of chemical reactions. The parameter wi in the governing equations
represents the rate of mass production of species i. In order to evaluate this, we need an
appropriate model of chemical reactions. Elementary chemical reactions are described as

N∑
i=1

ν′
imi

kf

�
kb

N∑
i

ν′′
i mi , (33)

where ν′
is are stoichiometric coefficients of reactions for educts, ν ′′

i s are stoichiometric coef-
ficients of reactions for products, mis are the names of the species i, kf stands for reaction
rate of forward reaction, and kb means a reaction rate for the backward reaction. The mass
production rate wi for species i is computed through the following equation:

wi = Mi

Nr∑
k=1

(ν′′
i,k − ν′

i,k)ẇk , (34)

where Mi denotes the molecular mass of species i, Nr means the total number of elementary
chemical reaction stages. The symbol ẇk denotes the progress rate of the k-th stage of the
elementary chemical reaction, and it is calculated as follows:

ẇk = kf,k

N∏
i

C
ν ′
i,k

i − kb,k

N∏
i

C
ν ′′
i,k

i (35)

where kf,k represents the reaction rate coefficient for forward reaction of the k-th stage of the
elementary reaction, kb,k is the coefficient of reaction rate for backward reaction of the k-th
stage of the elementary reaction, and Ci is the concentration of species i, that is defined as
Ci = Yiρ/Mi . The reaction rate coefficients kf,k and kb,k for the k-th elementary reaction are
given, respectively, by the Arrhenius-law.

kf,k = Bf,kT
af ,k exp

(
− Ef,k

RT

)
, (36)

kb,k = Bb,kT
ab,k exp

(
− Eb,k

RT

)
, (37)

where the parameters Bf,k and Bb,k are frequency factors, αf,k and αb,k are temperature
indices, and Ef,k and Eb,k are activation energies of the forward and backward reactions,
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respectively. This law is empirically validated, while the constants are usually determined by
experiments.

3. Low-Mach number approximations for isentropic flows

For simplicity, the derivation of a low-Mach number model is discussed for the equa-
tions for an isentropic gas which is a special case of the Euler system. This reduced model
involves the same difficulty as the Navier-Stokes system with low-Mach numbers. It becomes
increasingly ill-conditioned as Ma → 0. The simplified system of governing equations for
one-dimensional isentropic flows consists of partial difference equations for the density ρ, the
velocity v, and an algebraic equation for the pressure p:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (38)

ρ
∂v

∂t
+ ρv∇ · v + ∇p = 0 , (39)

p = Cργ , (40)

together with given the initial conditions

ρ|t=0 = ρ0 , v|t=0 = v0 .

Here, the constant C is determined by means of the constant entropy of the system and γ > 1
denotes the ratio of specific heat capacities. The total derivative of the pressure with respect
to density is the square of the speed of sound:

c2 = dp

dρ
= γ

p

ρ
. (41)

In what follows, it is assumed that the Mach number Ma , defined by

Ma = v

c
, (42)

be sufficiently small. Since the total derivative of the pressure in terms of the derivative of
density is written as

dp

dt
= dp

dρ
· dρ

dt
= c2 dρ

dt
= c2

(
∂ρ

∂t
+ v∇ρ

)
, (43)

with the aid of the continuity equation (38). Hence we have

∂p

∂t
+ ρc2∇ · v + v · ∇p = 0 . (44)

Therefore, the linearization of the system (38)–(40) takes the form

∂u

∂t
+ A(u)

∂u

∂x
= 0 , (45)
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where u = (ρ, v, p)T and the matrix A(u) is given by

A(v) =

 v ρ 0

0 v ρ−1

0 ρc2 v


 . (46)

The eigenvalues of A(u) are λ1 = v, λ2,3 = v ± c and correspond to the convective and
sound waves, respectively. For low-Mach numbers, the discrepancy between the speed of
sound and the convective velocity becomes large, and so A(u) becomes ill-conditioned in the
following sense: Greatly varying signal speeds appear in the equations. A time step for the
time integration of the equations is adapted to the fastest speed in them. This in turn implies
a “stiff” system. In the limit as c → ∞, the sound waves will propagate infinitely fast, and so
the fluid becomes hydrodynamically incompressible in the sense that the fluid compressibility

is expressed by dρ = (∂ρ/∂p)dp + (∂ρ/∂T )dT = (1/c2)dp + (∂ρ/∂T )dT . In this case,
the compressibility of fluid is led only by a thermodynamic effect. First, we introduce non-

dimensional variables depending on the initial data v0 for velocity and ρ0 for density:

ṽ = v

maxΩ v0
, ρ̃ = ρ

maxΩ ρ0
. (47)

This lead us to the following non-dimensional form of the Euler equations:

∂ρ̃

∂ t̃
+ ∇ · (ρ̃ṽ) = 0 , (48)

ρ̃
∂ṽ

∂ t̃
+ ρ̃ṽ∇ · (ṽ) + λ2∇p(ρ̃) = 0 , (49)

p(ρ̃) = Cρ̃γ , (50)

where λ means the constant

λ = 1

Ma

√
γC

, (51)

and p(ρ̃) is given by Eq. (40):

p(ρ̃) = p

(maxΩ ρ0)γ
= Cρ̃γ . (52)

In the low-Mach number limit, λ tends to infinity. Therefore, the pressure gradient in Eq. (49)
is multiplied by a large factor. We suppose that asymptotic expansions in term of powers of
λ−1 of the form

p = p0 + λ−1p1 + λ−2p2 + O(λ−3) (53)

ṽ = v0 + λ−1v1 + λ−2v2 + O(λ−3) (54)
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with certain coefficient functions pj and vi . Substituting these expansions into the momentum
equation (39) and rearranging the resultant equation with respect to powers of λ, we obtain

λ2∇p0 + λ∇p1 + ρ
dv0

dt
+ ∇p2 + O(λ−1) = 0 . (55)

Comparing the power of λ, we let Ma → 0 and see that ∇p0 = ∇p1 = 0. We then call the
sum of these pressures, which are constant in space, “thermodynamic pressure”,

Pth := p0(t) + λ−1p1(t) . (56)

Therefore, in the low-Mach number approximation, the lower order terms p2, p3, · · · are
neglected in the ideal gas law. The gas law then becomes an equation for the density,

ρ = (C−1Pth)
1/γ . (57)

Majda [8] has shown that under certain smallness condition for the initial data, as Ma → 0,
the solution (p, v) of the compressible Euler equation converges to the solution (p2, v0) of
the incompressible Euler equations:

∇ · v0 = 0 , (58)

ρ0
∂v0

∂t
+ ρ0v0 · ∇v + λ−2∇p2 = 0 , (59)

ρp = (C−1Pth)
1/γ . (60)

In the incompressible formulation, acoustic wave are suppressed. This is due to the fact
that the higher order terms in asymptotic expansions are not taken into account. In the low-
Mach number approximation, pressure p is decomposed into the thermodynamic pressure
Pth, which is constant in space, and the “hydrodynamic pressure” phyd , which is caused by
fluid motion and neglected in the gas law.

P(x, t) = Pth(t) + phyd(x, t) . (61)

4. Navier-Stokes equations for low-Mach numbers

For the Navier-Stokes equations for reactive flows such that density varies in space due
to spatial gradients of temperature and mean molecular mass, a similar low-Mach number
approximation can be employed in order to obtain a well-conditioned system. Similarly to the
previous case of the Euler equations, the pressure p is split into two parts,

p(x, t) = Pth(t) + phyd(x, t) , (62)

where the thermodynamic part Pth is constant in space and does not appear in the momentum
equation, and the hydrodynamic part phyd is neglected in the gas law. In the low-Mach number
approximation, the terms describing work due to viscous stress, τ : ∇v, and hydrodynamic
pressure in the equation for temperature can be neglected. In this study, only gravitation is
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considered as the external force f . Since hydrodynamic pressure phyd take several magnitudes
smaller than Pth, the assumption that the hydrodynamic pressure can be neglected in both
equation for temperature and the gas law is in fact appropriate. As a result, the Navier-
Stokes equations for reacting flow are formulated for low-Mach-number approximation in the
following way:

• Mass conservation of species

∂ρYi

∂t
+ ∇ · (ρYiv) = ∇ · (ρDi∇Yi) + wi (i = 1, 2, · · · , N) (63)

• Mass conservation

∂ρ

∂t
+ ∇ · (ρv) = 0 (64)

• Momentum conservation

∂ρv
∂t

+ ∇ · (ρv ⊗ v) = −∇phyd + ∇ · τ + ρg (65)

• Energy equation

ρCp

(
∂T

∂t
+ v · ∇T

)
= ∂Pth

∂t
+ ∇ · (λ∇T ) + ρ

(
N∑
i

CpiDi∇Yi

)
· ∇T −

N∑
i

hiwi (66)

• Thermal state of equation

Pth = ρ
RT

M
= ρRT

N∑
i=1

Yi

Mi

(67)

Since the material derivative of the thermal state of equation,

1

ρ

(
∂ρ

∂t
+ (v · ∇)ρ

)
= 1

Pth

∂Pth

∂t

1

M

(
∂M

∂t
+ (v · ∇)M

)
− 1

T

(
∂T

∂t
+ (v · ∇)T

)
, (68)

equation (64) is rewritten as

1

Pth

∂Pth

∂t
= −∇ · v − 1

M

(
∂M

∂t
+ (v · ∇)M

)
+ 1

T

(
∂T

∂t
+ (v · ∇)T

)
. (69)

Since Pth is constant in space, the time derivative of Pth is obtained by averaging Eq. (69)
over the whole domain Ω .

∂Pth

∂t
= −Pth

|Ω |
∫

Ω

{
∇ · v − 1

T

dT

dt
+ 1

M

dM

dt

}
dx

= −Pth

|Ω |
[ ∫

∂Ω

v · ndS +
∫

Ω

{
− 1

T

dT

dt
+ 1

M

dM

dt

}
dx

]
. (70)

Here we consider the case where Ω is an open domain. The right-hand side of Eq. (70) van-
ishes and the thermodynamic pressure remains constant in both time and space, independently
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of the assumptions imposed,

Pth ≡ const . (71)

This is our situation that we have to take into account in our application below.
In order to investigate the effect of heat release in chemical reactions in a closed vessel,

we suppose that non-slip boundary condition for the velocities (v = 0 on ∂Ω), constant Ω in
time, constant mean molecular mass M , and constant specific heat capacity Cp. In this case
the boundary integral in Eq. (70) and time derivative of M vanish. Substituting Eq. (66) into
the material derivative of the temperature of Eq. (70) and using the relation Eq. (8), that is,∑

i ji = ∑
i Di∇Yi = 0, and a thermodynamic equation of state in the form Pth/T = ρR/M ,

we get

∂Pth

∂t
= R

MCp

(
∂Pth

∂t
+ 1

|Ω |
∫

Ω

∇ · (λ∇T )dx

)
. (72)

For homogeneous Neumann boundary conditions for the temperature on ∂Ω ,

∂Pth

∂t
= R

MCp − R
· 1

|Ω |
∫

Ω

(
−

N∑
i

hiwi

)
dx . (73)

For exothermic reaction (wi < 0), the above equation means that thermodynamic pressure
increases.

5. Numerical methods

We begin by reviewing the low-Mach number pressure correction method proposed by
Najm, el al. [9], propose a method for improving the computational efficiency of time in-
tegration by introducing implicit iteration method. In the method proposed by Najm el al.,
so-called Predictor-Corrector method is employed for numerical integration. For both stages
of the predictor and corrector, the fractional method is incorporated in accordance with the
pressure-split momentum equations. The predictor uses a second order Adams-Bashforth time
integration scheme to update the velocity as well as scalar field. A pressure correction step is
incorporated in order that the continuity equation holds. The corrector is based on a second
order quasi Crank-Nicolson integration and also incorporates a pressure correction step. In
their scheme, the rate of change of density in time is derived by differentiating the equation of
state Eq. (67) so that the energy equation and the mass conservation of species are combined
through the equation of state,

∂ρ

∂t
= ρ

[
− 1

T

∂T

∂t
− M

N∑
i=1

1

Mi

∂Yi

∂t

]
. (74)

For open domain systems considered in this study, the thermodynamic pressure Pth is uniform
and constant so that the material derivative of pressure is equal to zero.
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5.1. Numerical scheme of Najm et al. [9]. The Najm’s algorithm is summarized as
follows:
Predictor stage:

1. The time derivative ∂T /∂t|n, ∂(ρYi)/∂t|n, (i = 1, · · · , N − 1), and ∂ρ/∂t|n are
explicitly evaluated through Eq. (66), Eq. (63), and Eq. (74), respectively.

∂T

∂t

∣∣∣n = − (
vn · ∇n

)
T n + 1

ρnCn
p

[
∇ · (λn∇T n)

+ρn

(
N∑
i

Cpn
i Dn

i ∇Yn
i

)
· ∇T n −

N∑
i

hn
i w

n
i

]
(75)

∂(ρYi)

∂t

∣∣∣n = −∇ · (ρnY n
i vn

)+ ∇ · (ρnDn
i ∇Yn

i

)+ wn
i , i = 1, 2, · · · , N − 1 (76)

∂ρ

∂t

∣∣∣n = ρn

[
− 1

T n

∂T n

∂t
− Mn

N∑
i=1

1

Mn
i

∂Y n
i

∂t

]
. (77)

The concentration ρYN of the last species is determined from
∑N

i=1 ρYi = ρ.
2. Predicted values for the density and scalar concentration field are determined as

ρP − ρn

∆t
= 3

2

∂ρ

∂t

∣∣∣∣n − 1

2

∂ρ

∂t

∣∣∣∣n−1

(78)

ρP YP − ρnY n

∆t
= 3

2

∂(ρYi)

∂t

∣∣∣∣n − 1

2

∂(ρYi)

∂t

∣∣∣∣n−1

(79)

and the predicted temperature is obtained from the equation of state,

T P = Pth/(RρP ). (80)

3. The intermediate velocity v̂ is determined by integrating the pressure-split momen-
tum equations,

ρP v̂P − ρnvn

∆t
= 3

2
Rn − 1

2
Rn−1 (81)

where

R = −∇ · (ρv ⊗ v) − ∇ · τ + ρg . (82)

4. The intermediate hydrodynamic pressure is determined by solving the pressure Pois-
son equation. The derivation of the Poisson equation is discussed later.

∇2pP
hyd = 1

∆t

[
∇ · (ρP v̂P

) + ∂ρ

∂t

∣∣∣∣P
]

(83)
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where ∂ρ/∂t|P is given by the second-order discretization, since vP is not known at
this stage, and ∂ρ/∂t|P cannot be directly evaluated from Eq. (64).

∂ρ

∂t

∣∣∣∣P = 1

2∆t
(3ρP − 4ρn + ρn−1) . (84)

5. Finally, the predicted velocity vP is obtained through the projection step:

ρP vP − ρP v̂P

∆t
= −∇pP

hyd . (85)

The pressure Poisson equation (83) is obtained by taking the divergence of Eq. (85)

under the restriction of the continuity condition, ∂ρP /∂t + ∇ · (ρP vP ) = 0.
Adding Eq. (81) to Eq. (85), we get

ρP vP − ρnvn

∆t
= 3

2

(
− ∇ ·

(
ρv ⊗ v

)
− ∇ · τ + ρg

) ∣∣∣∣n

− 1

2

(
−∇ ·

(
ρv ⊗ v

)
− ∇ · τ + ρg

) ∣∣∣∣n−1

− ∇pP
hyd . (86)

We find that in the predictor stage of the Najm’s scheme pressure term is implicitly
treated by means of a backward Euler scheme and other terms are explicitly treated
using a second order Adams-Bashforth scheme.

Corrector stage:

1. The time derivative of the density and species concentrations at the (n + 1)th time
step are calculated using the predicted values. The corrected values are calculated
by applying Crank-Nicolson time integration of the second order accuracy.

ρn+1 − ρn

∆t
= 1

2

(
∂ρ

∂t

∣∣∣∣n + ∂ρ

∂t

∣∣∣∣P
)

(87)

ρn+1Yn+1
i − ρnY n

i

∆t
= 1

2

(
∂(ρYi)

∂t

∣∣∣∣n + ∂(ρYi)

∂t

∣∣∣∣P
)

. (88)

The temperature at the (n + 1)th time step is obtained from the equation of state
(67).

T n+1 = Pth/(Rρn+1) . (89)

2. The momentum equations are decomposed into a part excluding the pressure gra-
dient (Eq. (90)) and the pressure gradient part (Eq. (94)) in accordance with a frac-

tional step method. The intermediate velocities v̂n+1 are calculated by applying the
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Adams-Bashforth time integration to the former equation (the pressure-split mo-
mentum equations).

ρn+1v̂n+1 − ρnvn

∆t
= 3

2
Rn − 1

2
Rn−1 , (90)

where

R = −∇ · (ρv ⊗ v) − ∇ · τ + ρg . (91)

3. The hydrodynamic pressure at the (n + 1)th time step is determined by solving the
pressure Poisson equation that is obtained by taking the divergence of Eq. (94) under

the restriction of the continuity condition, ∂ρn+1/∂t + ∇(ρn+1vn+1) = 0.

∇2pn+1
hyd = 1

∆t

[
∇ · (ρn+1v̂n+1

) + ∂ρ

∂t

∣∣∣∣n+1]
. (92)

Since vn+1 is not determined in this stage, (∂ρ/∂t)|n+1 can not be directly calculated

using Eq. (64). Thus, (∂ρ/∂t)|n+1 is determined as

∂ρ

∂t

∣∣∣∣n+1

= 1

2∆t
(3ρn+1 − 4ρn + ρn−1) . (93)

4. Finally, the velocity vn+1 at the (n + 1)th time step is determined by

ρn+1vn+1 − ρn+1v̂n+1

∆t
= −∇pn+1

hyd . (94)

As shown in [9], the predictor itself is conditionally stable for relatively low temperature
variation (ratio of the highest temperature to the lowest is in the range of ∼ 2). For higher
temperature ratios, incorporation of the corrector step is necessary for the stability.

As we have mentioned in the predictor stage, adding of Eq. (90) to Eq. (94) implies

ρn+1vn+1 − ρnvn

∆t
= 3

2
(−∇ · (ρv ⊗ v) − ∇ · τ + ρg)

∣∣∣∣n

− 1

2
(−∇ · (ρv ⊗ v) − ∇ · τ + ρg)

∣∣∣∣n−1

− ∇pn+1
hyd . (95)

We find that in a way similar to the predictor stage, in the corrector stage as well, the pres-
sure term is implicitly treated by means of a backward Euler scheme and the other terms are
explicitly treated using a second order Adams-Bashforth scheme.

5.2. Implicit schemes. As an extension of the original scheme, we incorporate an
implicit type treatment. Therefore grid refinements, for instance in the direction normal to the
wall, do not limit the time step. We need to use fine grid points near the wall to resolve the
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boundary layer, especially, in case of flow calculations with high Reynolds number. Firstly,
we consider an implicit scheme for the following scalar transport equation:

ut + ∇ · f + d = 0 . (96)

Using a trapezoidal time-advanced scheme to discretize the time derivative, we get

un+1 − un

∆t
+ (1 − θ)∇ · fn + θ∇ · fn+1 + d = 0 . (97)

This scheme is is an explicit scheme for θ = 0, a Crank-Nicolson scheme for θ = 1/2, and a
fully implicit scheme for θ = 1. Linearizing Eq. (97) with f = au, we get

(1 + ∆tθ∇ · a)un+1 = un − ∆t [(1 − θ)∇ · f + d]n . (98)

Furthermore, we get the following implicit scheme in the delta form with un+1 = un + δun

in Eq. (98).

(1 + ∆tθ∇ · a)δun = −∆t(∇ · f + d)n . (99)

In case of steady state calculation, the right-hand side of Eq. (99) corresponds to the residual of
Eq. (96), which we want to solve. If the residual approaches zero during the iteration process,
the additive δun also goes to zero. Therefore, since the accuracy of numerical solution depends
upon the accuracy of of the right-hand side of Eq. (99), we can have the room of the selection
of the operator on the left-hand side from the point of view of the numerical stability and the
computational cost.

For the unsteady calculation, it is necessary to increase temporal accuracy. Although
Eq. (99) is discretized using a second-order accurate Clank-Nicolson scheme, the overall ac-
curacy depends on not only the accuracy of spatial discretization of the right-hand side but
also that of the left-hand side. Thus, in order to get high accuracy in time, we use Crank-

Nicolson scheme and incorporate the Newton-Raphson iteration procedure. Replacing un+1

with uk + δuk , and ∇ · fn+1 with ∇ · fk + ∇ · (aδuk), we get the following implicit scheme
of delta form for unsteady calculation:(

1 + 1

2
∆t∇ · a

)
δuk = −(uk − un) − 1

2
∆t[∇ · fn + ∇ · fk] + d , (100)

where

uk+1 = uk + δuk . (101)

The superscript k refers to the iteration cycle between solution at time steps n and n + 1, the
superscript 0 indicates the initial guess for the first iteration. If the iteration converges in the
sense of that the condition |δuk| ≤ ε is satisfied for a certain k and a certain admissible error
bound ε, we put un+1 = uk. The accuracy of solution is obtained from Eq. (100) and depends
on that of the right-hand side. It dose not depend on that of the left-hand side, because the
right-hand side of Eq. (100) corresponds to Eq. (97) with θ = 1/2 provided that |δuk| → 0.
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The stability condition for this scheme is given by

1

2
CFL ≤ 1, CFL = |a|/ min(∆x1,∆x2,∆x3) (102)

which is understood to be a TVD stability condition.

5.3. Iterative implicit schemes. As seen in Eqs. (86) and (95) in the previous section,
the discretization in time of momentum equations is similar to two stages (predictor stage and
corrector stage) in Najm’s scheme. Furthermore, it seems to be no particular reason that the
“only two” specific stages (prediction stage and correction stage) should be introduced in the
scheme. Here we propose a implicit iteration procedure that is more robust and stable for flow
calculations with high Reynolds numbers.

In our scheme the following temporal discretization is employed. For the momentum
equation, the pressure term is discretized through a backward Euler method of the first order
accuracy. The other terms are discretized by a Crank-Nicolson method of the second order
accuracy.

ρn+1vn+1 − ρnvn

∆t
= −∇ · (ρv ⊗ v) − ∇ · τ + ρg − ∇pn+1

hyd . (103)

This equation is split into predictor and corrector parts using pn+1
dyn = pn

dyn + δpdyn.

ρn+1v̂ − ρnvn

∆t
= −∇ · (ρv ⊗ v) − ∇ · τ + ρg − ∇pn

hyd (104)

ρn+1vn+1 − ρn+1v̂
∆t

= −∇δpn
hyd . (105)

Here v̂ means a provisional value of the velocity vector, which will be corrected later to
account using Eq. (105). Following Eq. (100), the implicit scheme of delta form for Eq. (104)
can be written as[

1 + 1

2
∆t

{
v · ∇ − µ

ρ
∇2
}]

δv̂k = −(vk − vn) + 1

2
(rhsk

m + rhsn
m) , (106)

rhsm = −∆t

[
(v · ∇)v + 1

ρ
∇pdyn − 1

ρ
∇τ − g

]
, (107)

where

δv̂k = v̂k+1 − v̂k
. (108)

The linearization of fluxes on the left hand side of Eq. (106) is simplified, because the exacti-
tude of this is not essential for the last solution as described in the previous section. Similar
implicit schemes of delta form can be derived for the temperature equation and equations of
species concentrations. For the temperature equation, we get[

1 + 1

2
∆t

{
v · ∇ − λ

ρCp

∇2
}]

δT k = −(T k − T n) + 1

2

(
rhsk

T + rhsn
T

)
, (109)
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rhsT = −∆t

[
v · ∇T − 1

ρCp

{
∇ · (λ∇T ) + ρ

( N∑
i

CpiDi∇Yi

)
· ∇T −

N∑
i

hiwi

}]
.

(110)

Also, for the equations of species concentrations, we get[
1 + 1

2
∆t
{

v · ∇ − Di∇2
} ]

δY k
i = −(Y k

i − Yn
i ) + 1

2

(
rhsk

Y + rhsn
Y

)
, (111)

rhsY = −∆t

[
v · ∇Yi − 1

ρ
∇(ρDi∇Yi) − wi

ρ

]
. (112)

We then make an attempt to describe our procedure of computing a numerical solution at
the (n + 1)th time step from the solution at nth step. In the following, the superscript n refers
to the values of solutions that are known from the previous time level, the superscript k stand
for the iteration cycle between the solution at time levels n and n + 1, and the superscript 0
indicates the initial guess for the first iteration k = 0.

1. As values for the initial guess for the values at the next time level, we set

ρ0 = ρn, v0 = vn , T 0 = T n , Y 0
i = Yn

i (i = 1, · · · , N) . (113)

We find from Eq. (103) that this choice of values for the initial guess corresponds to
the use of an explicit Euler scheme for the first iteration.

2. Time evolution governed by the species concentration equations is treated with the
aid of Eqs. (111) and (112).

3. Time evolution governed by the temperature equation is specified through Eqs.
(109) and (110).

4. The density at iteration cycle k + 1 is obtained using the equation of state.

ρk+1 = Pth/(RT k+1) . (114)

5. Provisional values of velocity vectors are computed in accordance with the time
evolution of the momentum equations by means of Eqs. (106) and (107).

6. Pressure correction. The hydrodynamic pressure at the iteration level k + 1
is determined by solving the pressure Poisson equation that is obtained by tak-
ing the divergence of Eq. (105) under the restriction of the continuity condition,

∂ρk+1/∂t + ∇(ρk+1vk+1) = 0:

∇2δpk+1
hyd = 1

∆t

[
∇ · (ρk+1v̂k+1

) + ∂ρ

∂t

∣∣∣∣k+1]
. (115)

Since vk+1 is not determined at this stage, (∂ρ/∂t)|k+1 can not be directly obtained

from Eq. (64). The value (∂ρ/∂t)|k+1 is determined by

∂ρ

∂t

∣∣∣∣k+1

= 1

2∆t
(3ρk+1 − 4ρn + ρn−1) . (116)
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7. Finally, the velocity vk+1 and pressure pk+1
hyd are determined by

vk+1 = v̂k+1 − ∆t

ρk+1 ∇δpk+1
hyd , (117)

pk+1
hyd = pk

hyd + δpk
hyd . (118)

This completes one cycle of the iteration process. If more iterations are required the
process should continue from step 2.

5.3.1. Spatial discretization. As to the discretization of the physical space Ω , we em-
ploy a collocated variable arrangement such that the scalar and vector quantities are stored
on the same grid points [10]. It is well known that a regular variable arrangement causes the
so-called checkerboard oscillation due to the decoupling of the velocity and pressure fields. A
staggered variable arrangement has been used to overcome this problem. However, staggered
arrangement is not necessarily an appropriate choice for calculation with curvilinear coordi-
nate system. Importance of avoiding the checkerboard oscillation is to couple the velocity
and pressure fields through the continuity equation. One possibility of avoiding checkerboard
oscillations is to interpolate the velocity field in computing the term ∇ ·(ρv) on the right-hand
side of Eq. (115) so that variable arrangement can be staggered arrangement.

The discretization of the non-linear convective term is important from the point of view
of numerical stability. When dealing with especially flame propagation problem, it is neces-
sary to treat nonlinear convection terms appropriately in order to avoid the numerical instabil-
ity arising from the numerical oscillations due to rapid changes of physical quantities, such as
temperature, density, and species concentration near the flame surface. For this purpose we
introduce a total variation diminishing (TVD) scheme.

For simplicity, we consider the time-dependent convection problem for conservative vari-
able in one space dimension. Conservation equations for the mass, momentum, energy, and
species concentrations can be written in equation of the following forms for unknown inde-
pendent variable q that is a physical quantity per unit mass φ multiplied by the density ρ.

∂q

∂t
+ ∂f

∂x
= 0 , (119)

f = v · q . (120)

Here q denotes a conserved variable and q is written by q = ρφ, f stand for the convective
flux, and v represents velocity. In general, it is not possible to make discretization with TVD
property for such scalar conservation laws, because the flux f is not a function of only q

and depends on u as well. However, if we rewrite Eq. (119) in terms of continuity equation
∂ρ/∂t = −∂(ρv)/∂x as

∂φ

∂t
+ v

∂φ

∂x
= 0 , (121)

we find that the solution of this equation has TVD property since the solution of φ of Eq. (121)
is constant along curve dx/dt = u, which is known as the characteristics equation. This can
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be verified by differentiating φ(x, t) along the curve to find the rate of change of φ along the
characteristics:

d

dt
φ(x(t), t) = ∂

∂t
φ(x(t), t) + ∂

∂x
φ(x(t), t)x ′(t)

= φt + vφx = 0 . (122)

Therefore, it is possible to construct a TVD scheme starting with Eq. (121). In fact, we
consider the following equation that is equivalent to Eq. (121).

∂φ

∂t
+ ∂(vφ)

∂x
− φ

∂v

∂x
= 0 . (123)

Since the second term is of the derivative of flux, we can incorporate the discretization with
TVD property. This will be introduced next.

We discretize the x − t plane by choosing a mesh width h ≡ ∆x and a time step k ≡ ∆t .
We then define the discrete mesh points (xi, tn) by

xi = ih, i = · · · ,−1, 0, 1, 2, · · · ,
tn = nk, n = 0, 1, 2, · · · . (124)

It is also useful to define

xi+1/2 = xi + h

2
=
(

i + 1

2

)
h . (125)

For simplicity we take a uniform mesh with h and k constant. Our finite-difference method we
will discuss provides us with approximate values φn

i ∈ R to the values of solution φ(xi, tn) at
the discrete grid points. Here we discretize Eq. (123) as follows:

φn+1
i − φn

i

∆t
= − 1

∆x
(f̃i+ 1

2
− f̃i− 1

2
) (126)

f̃1± 1
2

denotes a numerical flux function at the cell interface x
i+ 1

2
. This can be evaluated by

summing up appropriate discretizations of the second and last terms of Eq. (123). Since the
second term takes the form of flux, it can be discretized through the method of the Mono-
tone Upstream Centered Schemes for Conservation Laws (MUSCL) method [7] by means of
minmod limiter function [2]. Since the last term can be discretized as,

φ
∂v

∂x
⇒ [(a

i+ 1
2

− a
i− 1

2
)/h]φ , (127)

with a = vn, the total numerical flux can be evaluated as follows:

f̃i+ 1
2

= −ai+ 1
2
φi

+ f
(upw)

i+ 1
2

+ a+
i+ 1

2
· 1

4
[(1 + κ)Φ+C

i+ 1
2

+ (1 − κ)Φ+U

i+ 1
2
]
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− a−
i+ 1

2
· 1

4
[(1 + κ)Φ−C

i+ 1
2

+ (1 − κ)Φ−U

i+ 1
2
] . (128)

The first term of Eq. (128) corresponds to the last term of Eq. (123), the second term f
(upw)

i+ 1
2

corresponds to the first-order accurate upwind difference of the second term of Eq. (123) and
the other terms are corrections of higher order accuracy. More precisely, these terms may be
written as follows:

f
(upw)

i+ 1
2

= a+
i+ 1

2
φi + a−

i+ 1
2
φi+1 , (129)

where

a = vn , a± = v± = 1

2
(vn ± |vn|) , (130)

and Φ is defined as follows:

Φ+C

i+ 1
2

= minmod[φi+1 − φi, β(φi − φi−1)] ,

Φ+U

i+ 1
2

= minmod[φi − φi−1, β(φi+1 − φi)] ,

Φ−C

i+ 1
2

= minmod[φi+1 − φi, β(φi+2 − φi+1)] ,

Φ−U

i+ 1
2

= minmod[φi+2 − φi+1, β(φi+1 − φi)] . (131)

Here the minmod function is defined by

minmod(x, y) = 1

2

[
sgn(x) + sgn(y)

]
min(|x|, |y|) . (132)

The numerical flux f̃i− 1
2

is obtained by replacing subscript i+ 1
2 with i− 1

2 . In this replacement

of subscript, it should be noted that the first term with the subscript replaced is not −a
i− 1

2
φi−1

but −a
i− 1

2
φi . When the scheme is written as

φn+1
i = φn

i − C
i− 1

2
(φi − φi−1) + D

i+ 1
2
(φi+1 − φi) , (133)

the conditions for the scheme to be total variation diminishing (TVD) is:

C
i+ 1

2
≥ 0, D

i+ 1
2

≥ 0 , C
i+ 1

2
+ D

i+ 1
2

≤ 1 . (134)

The proof will be given later. From conditions Ci+ 1
2

≥ 0 and Di+ 1
2

≥ 0, it follows that

(1 ≤) β ≤ 3 − κ

1 − κ
.

In view of condition C
i+ 1

2
+ D

i+ 1
2

≤ 1, we get

∆t ≤ ∆x

|a
i+ 1

2
| + 1

4 (a+
i+ 3

2
− a+

i− 1
2
)(β(1 + κ) + 1 − κ)

.
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Under this condition, the scheme becomes a TVD scheme [4] for the discretization of
Eq. (126). When the advective speed is constant (namely, a = const), the above condition
may be replaced by

∆t ≤ 4

5 − κ + β(1 + κ)
· ∆x

|a| .

This scheme is of the third-order accuracy for the parameters κ = 1
3 and β = 4.

In the iterative implicit scheme described in the previous section, this scheme can be
incorporated in the first term of Eqs. (107), (110), and (112).

5.4. TVD schemes. PROPOSITION. When the scheme described in the previous
section is written as

φn+1
i = φn

i − C
i− 1

2
(φi − φi−1) + D

i+ 1
2
(φi+1 − φi) , (135)

conditions for the scheme to be a total variation diminishing (TVD) are:

C
i+ 1

2
≥ 0 , D

i+ 1
2

≥ 0 , C
i+ 1

2
+ D

i+ 1
2

≤ 1 . (136)

PROOF. Equation (126) is rewritten as

φn+1
i = φn

i − τ (f̃i+ 1
2

− f̃i− 1
2
)

= φn
i − C

i− 1
2
δφ

i− 1
2

+ D
i+ 1

2
δφ

i+ 1
2
, (137)

where δφ
i− 1

2
= φi − φi−1, φ

i+ 1
2

= φi+1 − φi ,

C
i− 1

2
= τa+

i− 1
2

[
1 − 1 + κ

4
minmod

(
1, β

δφi−3/2

δφi−1/2

)
− 1 − κ

4
minmod

(
δφi−3/2

δφi−1/2
, β

)

+ a+
i+1/2

a+
i−1/2

{
1 + κ

4
minmod

(
δφi+1/2

δφi−1/2
, β

)

+ 1 − κ

4
minmod

(
1, β

δφi+1/2

δφi−1/2

)}]
, (138)

D
i− 1

2
= −τa+

i− 1
2

[
1 − 1 + κ

4
minmod

(
1, β

δφi+3/2

δφi+1/2

)
− 1 − κ

4
minmod

(
δφi+3/2

δφi+1/2
, β

)

+ a−
i−1/2

a−
i+1/2

{
1 + κ

4
minmod

(
δφi−1/2

δφi+1/2
, β

)

+ 1 − κ

4
minmod

(
1, β

δφi−1/2

δφi+1/2

)}]
. (139)

Using the conditions below,

Ci+1/2 ≥ 0 , Di+1/2 ≥ 0 , Ci+1/2 + Di+1/2 ≤ 1 , (140)
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we get the following estimate:

T V (φn+1) =
M∑
i

|φn+1
i+1 − φn+1

i |

=
M∑
i

|φn
i+1 − φn

i + Di+3/2δφi+3/2 − Ci+1/2δφi+1/2

− Di+1/2δφi+1/2 + Ci−1/2δφi−1/2|

≤
M∑
i

[{1 − (Ci+1/2 + Di+1/2)}|δφi+1/2|

+ Ci−1/2|δφi−1/2| + Di+3/2|δφi+3/2|] . (141)

Letting M → ∞, for supp(φ) ⊂ [−M,M], we obtain

M∑
i

(Ci−1/2|δφi−1/2|) =
M∑
i

(Ci+1/2|δφi+1/2|) ,

M∑
i

(Di+3/2|δφi+3/2|) =
M∑
i

(Di+1/2|δφi+1/2| .

Therefore,

T V (φn+1) ≤
M∑
i

[{1 − (Ci+1/2 + Di+1/2)}|δφi+1/2|

+ Ci+1/2|δφi+1/2| + Di+1/2|δφi+1/2|

=
M∑
i

|δφi+1/2| = T V (φn) . (142)

6. Numerical results

In this section, the proposed numerical scheme is discussed by computing the following
three types of fluid flow problems.

1. Lid driven flows in the square cavity
2. Natural convection flows in the square cavity
3. Premixed laminar combustion of hydrogen and bromine

Problem 1 is what calculates the flow field in the square cavity driven by the shear force
generated when the top wall moves towards the right with uniform velocity. Here it is assumed
that initial gas is filled in the cavity and that the top wall of the cavity is moving at a constant
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speed. This problem has served over and over again as a model problem for testing and
evaluating numerical techniques for incompressible fluid flows, in spite of the singularities
at the two corners. Here, this problem is taken up as a validation problem for the numerical
scheme for fluid flow motion without the density change. Problem 2 is the flow fields advected
by the buoyancy which is caused by the density change due to the change in temperature
under the gravity. As initial conditions we assume that the square cavity is filled with gas,
and that the temperature difference of 10 ◦C is given to the right and left walls. Here, this
problem is taken up as a validation problem for the numerical scheme to describe natural
advection of fluid in case of small ratios of the density change to the temperature change. The
Boussinesq approximation has been employed to such kind of problems so far. Our numerical
scheme involves methods for incompressible fluid flows, fluid flows to which the Boussinesq
approximation is applicable, and fluid flows with large temperature difference that we have
experienced in the combustion problems. The Problem 3 is concerned with the numerical
methods for computing the flow fields with chemical reaction. We numerically solve the
propagation of the flame surface formed by igniting a part of premixed gases moving with
uniform velocity. In this case, the temperature change becomes 1000 ◦C or more according to
the combustion.

6.1. Lid-driven square cavity flows without density variation. Schematic of the
problem is shown in Fig. 1. For all walls, an adiabatic condition is imposed on the temper-
ature, non-slip velocity condition is applied to the bottom, right and left walls. The top wall
moves with uniform velocity. The size of cavity and velocity value are set so that Reynolds
number is equal to the given conditions. As initial conditions, the pressure is set to be 0.1 MPa,
and the temperature is set to be 300 K. The Reynolds numbers based on the top-wall velocity
are Re = 1,000, 3,200, and 7,500. The CFL number v∆t/∆x is set to be 0.5 and the mesh
size is 101 × 101 for all calculations. In Fig. 2, the computed velocity profiles for vertical
and horizontal lines passing through the geometric center of the cavity. In the figure, the
computed u-velocity along vertical line and v-velocity along horizontal line through geomet-
ric center for Re = 1,000 are shown with the results taken from Ghia et al. [3]. Although
their results were calculated using a vorticity-stream function method that is only applicable
to the two-dimensional incompressible flow fields, their results have been well referred by
many researchers as an example of high-accurate solutions and have been used for validation
of numerical schemes by comparing with their numerical results. Our results agree well with
the results of Ghia et al. as shown in the velocity profiles presented. The computed contours
of stream function for Re = 1,000, 3,200, and 7,500 are shown with results of Ghia et al.
in Figs. 3, 4, and 5, respectively. Although the figures are not depicted using the same val-
ues of contour lines, we find that both results agree well in a qualitative way. Figure 3 for
Re = 1,000 shows that the calculation capture the corner vortices formated at two respective
bottom corners of the cavity. It is seen that for Re = 3,200 the third vortex appears around
the top-left corner of the cavity in Fig. 4. In Fig. 5 it is observed that the fourth vortex forms
at the bottom-right corner of the cavity. It can be mentioned from these computational results
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FIGURE 1. Schematic of wall shear driven flows in a square cavity.

FIGURE 2. Comparison with the results of Ghia, U. et al.

presented here that our results capture the flow feature for each Reynolds number as well as
the Ghia’s results in a satisfactory way.

6.2. Natural convection in square cavity flows due to buoyancy. Computations of
natural advection in the square cavity flows driven by buoyancy arising from the density
change due to the change in temperature under gravity are made. This numerical problem
was first suggested by Jones [6] as test case for suitable validation for numerical techniques.
Although the Boussinesq approximation is applicable to this problem, we here employ the
low-Mach number approximation in a way similar to problem 1. The schematic diagram of
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(a) Present result (b) Result taken from [3]

FIGURE 3. Comparison of stream function contours in lid-driven square cavity flows at Re = 1,000.

(a) Present result (b) Results taken from [3]

FIGURE 4. Comparison of stream function contours in lid-driven square cavity flows at Re = 3,200.

the problem is shown in Fig. 6. As the wall boundary conditions for the temperature, temper-
ature of 305 K is set on the vertical-left wall, and that of 295 K is set on the vertical-right wall.
The adiabatic wall conditions, that corresponds to the homogeneous Neumann condition for
the temperature, are assumed on the bottom and top walls. We suppose that the gas is air and
the Rayleigh number Ra is 10,000, so that the size of cavity L can be determined using the
following equation:

Ra = β|g|∆T L3

νk/(Cpρ)
(143)

where β denotes the thermal coefficient of volumetric expansion, ν means the kinematic vis-
cosity, k is the thermal conductivity, and Cp stand for the specific heat at constant pressure.
As initial states, 0.1 MPa of the pressure and 300 K of the temperature are assumed. The
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(a) Present result (b) Results taken from [3]

FIGURE 5. Comparison of stream function contours in lid-driven square cavity flows at Re = 7,500.

FIGURE 6. Schematic of natural convec-
tion flows in a square cavity.

FIGURE 7. Velocity field in natural con-
vection at Ra = 10,000.

flow fields at steady state solution are shown in Figs. 7, 8 and 9 for the velocity, temperature,
and density, respectively. These results agree the results with classical Boussinesq equations
published in [12]. Accordingly, the present scheme is confirmed to be applicable to the flows
with density variation due to variation in temperature.

6.3. Chemically reacting flows. In order to verify the codes, computation of the pre-
mixed combustion of hydrogen and bromine was performed. This problem has been investi-
gated by Spalding and Stephenson [11] in which the following four-stage elementary reactions
are taken into account:

(1) Br2 + M ↔ 2Br + M

(2) H2 + M ↔ 2H + M
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FIGURE 8. Isotherms in natural convec-
tion at Ra = 10, 000.

FIGURE 9. Density contours in natural
convection at Ra = 10, 000.

FIGURE 10. Schematic model of laminar flame propagation of combustion of hydrogen and bromine.

(3) Br + H2 ↔ HBr + H

(4) H + Br2 ↔ HBr + Br

The schematic of the computational model is shown in Fig. 10.

6.3.1. Calculation condition. The reaction rate constant for the i-th stage, ki , is com-
puted by means of Arrhenius’ law, as follows:

ki = BiT
αi exp

(−Ei

RT

)
[(mol/m3)1−ns−1] , (144)

where Bi is the frequency factor [(mol/m3)1−nK−αi s−1] , Ei means the activation energy
[J/mol] αi denotes the temperature dependent parameter, T stands for the absolute tempera-
ture [K], R represents the universal gas constant [J/mol K]=8.314 [J/ (mol K)], and n denotes
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the reaction index n = a + b. The Arrhenius parameters used in this study are shown in Table
1 below. The material properties for chemical species are calculated through the following
temperature dependent formula.

Diffusion coefficient D:

D = D0

(
T

Tref

)1.67

(145)

Thermal conductivity λ:

λ = λ0

(
T

Tref

)0.67

(146)

where Tref = 323 [K], the parameter D0 in the equation of the diffusion coefficient and
parameter λ0 in the equation of the thermal conductivity are listed in Table 2 below. The same
value of Cp is used for all species as in the paper by Spalding and Stephenson [11].

Cp = 530.86 [J/(kg K)] .

6.3.2. Initial and boundary conditions. As initial conditions, the velocity is set to be

zero (u = 0 [m/s]), the temperature is set to be 49.85 ◦C, the pressure is set to be 1 ×105 [Pa],
the mole fraction of bromine is set to be 0.4 (XBr2 = 0.4), and the mole fraction of hydrogen
is set to be 0.6 (XH2 = 0.6) in the whole computational domain. More precisely, the following
boundary conditions are used:

TABLE 1. Chemical reaction parameters.

Reaction Forward Reaction Backward Reaction

Arrhenius parameters Bi αi Ei Bi αi Ei

(1) Br2 + M ↔ 2Br + M 7.03 × 1011 −0.5 196700 3.63 × 103 0.0 0

(2) H2 + M ↔ 2H + M 7.63 × 1013 −1.0 452100 3.63 × 103 0.0 0

(3) Br + H2 ↔ HBr + H 3.46 × 104 1.0 69490 9.06 × 105 0.5 7158

(4) H + Br2 ↔ HBr + Br 6.42 × 106 0.5 4646 6.52 × 104 1.0 178300

TABLE 2. Properties of species.

Species Molecular Mass[kg/mol] Enthalpy[J/mol] D0 [m2/s] λ0 [W/mK]
H2 2.016 × 10−3 0.0 1.01 × 10−5 3.34 × 10−2

Br2 159.8 × 10−3 3.09 × 104 1.01 × 10−5 3.34 × 10−2

HBr 80.908 × 10−3 −3.66 × 104 1.01 × 10−5 3.34 × 10−2

H 1.008 × 10−3 2.18 × 105 1.01 × 10−5 3.34 × 10−2

Br 79.90 × 10−3 1.12 × 105 1.01 × 10−5 3.34 × 10−2
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On the inlet boundary:

u = 0.244 [m/s] T = 49.85 [◦C] pn = 0

XBr2 = 0.4 XH2 = 0.6 XHBrn = 0

XH n = 0 XBrn = 0 (147)

On the outlet boundary:

un = 0 Tn = 0 p = 1 × 105 [Pa]
XBr2 n = 0 XH2n = 0 XHBrn = 0

XH n = 0 XBrn = 0 (148)

Here subscript “n” denotes the derivative in the normal direction to the boundary.

6.3.3. Computational results. At the beginning of computation, heat source is given
nearby outlet as follows.

S(x, 0) = 2.5 × 1010 [W/m3] x ∈ [0.75 × 10−4, 1 × 10−4] [m] . (149)

As time goes by, the flame surface has propagated toward the center of the computational
domain. When the flame reached to the center, the heat source has been removed. After then,
the flame propagation has stopped and kept the position. The computation has been made
until the temperature and species concentrations reached the steady state.

The computed species concentrations and temperature are shown in Fig. 11. From the
right boundary, unburnt gases come into the computational domain, and the flame front is
formed around the center of domain. In order that gases come from the inlet boundary with
the velocity of 0.244 [m/s], the flame front moves with the relative velocity to the coming
gases. Since the mainstream velocity of 0.244 [m/s] is equal to the laminar flame propagation
speed on this combustion, the flame propagation stops around center of the domain after the
removement of the heat source. It is seen that the radical species, H and Br have the peak
values just behind flame front surface. The results taken from Spalding and Stephenson [11] is
also shown in Fig. 12. Our result is in good agreement with that of Spalding and Stephenson.
Thus, it is confirmed that the results obtained through our numerical scheme are reasonable.

7. Concluding remarks

The mathematical model based on the low-Mach-number approximation is presented and
a new numerical method is proposed. Our numerical scheme consists of an iterative implicit
time evolution of the second order accuracy and a spatial discretization with the TVD property
of high accuracy. The implicit iteration algorithm for time evolution is effective for not only
numerical stability but also for the use of TVD discretization of the nonlinear convective terms
in the implicit scheme.

In order to validate the numerical scheme, the lid-driven cavity flow, natural convection
in the square cavity, and the flame propagation problem are solved as appropriate validation
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FIGURE 11. Profiles of computational results of concentration and temperature of the species.

FIGURE 12. Results cited from Spalding and Stephenson [11].

of test cases for the incompressible flows, density variation flows with small temperature fluc-
tuation and also chemically reacting flows with difference in large temperature, respectively.
From the results for the validation of test cases, our numerical method is validated for a wide
range of flows with density variation.
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