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Abstract. Existence of a time-periodic solution to a non-linear wave equation with resonance is established
by a variational method. We consider the 2π -periodic weak solution to a wave equation �u(x, t) = h(x, t, u(x, t))

of space dimension 1, where h(x, t, ξ) is asymptotically linear in ξ both as ξ → 0 or ξ → ∞, with the co-efficient
as ξ → ∞ belonging to σ(�). It is proved that there are some cases, where the difference of h(t, x, ξ) from its linear
approximation is not bounded, that guarantee the existence of a non-trivial weak solutions. The proof is based on
local linking theory and (WPS)∗ condition for the existence of a non-trivial critical point of a functional.

1. Introduction

The purpose of this paper is to prove the existence of a non-trivial time-periodic solution
to the following non-linear wave equation (WE) with asymptotically linear non-linear term h

(� := ∂2/∂t2 − ∂2/∂x2):

(WE)


�u(x, t) = h(x, t, u(x, t)), (0 < x < π, t ∈ R) ,

u(0, t) = u(π, t) = 0 (t ∈ R) ,

u(x, t + 2π) = u(x, t) (0 < x < π, t ∈ R) .

Many authors treated this problem by variational methods under various conditions on
h(x, t, ξ). For example, Rabinowitz [13] dealt with h(x, t, ξ) = −f (ξ) where f (ξ) is strictly
monotonically increasing in ξ and is super-linear both at 0 and ∞. (Here f (ξ) is said super-

linear at ∞ if
∫ ξ

0 f (η)dη ≤ θξf (ξ) for some constant θ ∈ [0, 1/2) and for ξ with sufficiently

large |ξ |.) Tanaka [14] discussed in detail the case where h(x, t, ξ) = ±|ξ |p−1ξ for some
p > 1. [5] and [9] are also concerned with h(x, t, ξ) that is super-linear in ξ as |ξ | → ∞.
(We would like to note that the authors of these papers investigated the existence of infinitely
many non-trivial solutions in the super-linear case.)

On the other hand, as for the case of h(x, t, ξ) that satisfies |h(x, t, ξ)| ≤ C1|ξ | + C2,
Brezis [3] gives a good survey of earlier fundamental results for this probrem. Chang, Wu
and Li [4] is the pioneering work on the multiple existence of solutions to such probrems. Li
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and Szulkin [8], Kryszewski and Szulkin [7] and Bartsch and Ding [2] considered the case
where h(x, t, ξ) is asymptotically linear in ξ both as ξ → 0 and |ξ | → ∞. However, they all
assume that if h(x, t, ξ) = bξ + o(ξ) as |ξ | → ∞ (uniformly in (x, t)) and b ∈ σ(�), then
the “error” h(x, t, ξ) − bξ is bounded. The main purpose of this paper is to show that this
boundedness condition can be relaxed so as to allow the case like h(x, t, ξ) = bξ + |ξ |αsgnξ

for 0 < α < 1. (To be rigorous, |ξ |αsgnξ should be deformed to a C2 class function in a
neighbourhood of 0.) Although the method of proof in this paper owes very much to that in
[2], some generalizations and supplementations are necessary.

In the following Section 2, we prepare an abstract result on the line of local linking theory

concerning the existence of a non-trivial critical point of a C1 functional. Applying this result,
we prove our main theorem in Section 3.

Although our notations are standard, we would like to note here that BrX denotes
the closed r-ball of a Hilbert space X with center 0, while B(u, r) denotes the open r-
neighbourhood of u. ∂S is used to designate the topological boundary of S.

2. Abstract theory

Throughout this section, E denotes a Hilbert space with inner product 〈·, ·〉, and Φ

denotes a C1 class functional on E. The gradient ∇Φ(u) (u ∈ E) is considered to be

an element of E through the Riesz representation theorem. A subset Ẽ is defined by

Ẽ := {u ∈ E : ∇Φ(u) 	= 0}. Then recall that a map V : Ẽ → E is called a pseudo-gradient

vector field for Φ if V satisfies the following conditions on Ẽ:{ ‖V (u)‖ ≤ 3
2‖∇Φ(u)‖ ,

〈∇Φ(u), V (u)〉 ≥ 1
2‖∇Φ(u)‖2 .

It is well known that there exists a locally Lipschitz continuous pseudo-gradient vector field

V for every C1 class functional Φ ([12, lemma 6.1]). For such V , the ordinary differential
equation

du(t)

dt
= −V (u(t)), u(0) = u0 (u0 ∈ Ẽ)

has the unique solution which is maximally defined in the positive direction of t . This maximal
solution will be called the pseudo-gradient flow defined by V and (starting from) u0.

2.1. A region enclosing pseudo-gradient flows. We start with the following simple
observation about pseudo-gradient flows.

PROPOSITION 1. Let f : E → R be another C1 class functional on E and let U :=
{x ∈ E | f (x) < 0} be non-empty. Suppose that

〈∇Φ(u) ,∇f (u)〉 > 0 on ∂U . (1)
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Then there exists a locally Lipschitz continuous pseudo-gradient vector field V for Φ for
which every pseudo-gradient flow starting from a point in U remains in U as long as it is
defined.

To prove this proposition we prepare the following

LEMMA 2. Let Φ, f satisfy (1). Then, there exists a locally Lipschitz continuous

pseudo-gradient vector field V for Φ on Ẽ, for which

〈V (u) , ∇f (u)〉 > 0 on ∂U (2)

holds.

PROOF. Since Φ, f are C1 class and satisfy (1), there exists a γu > 0 for every u ∈ ∂U

such that

‖u − v‖ < γu ⇒
{ ‖∇Φ(u) − ∇Φ(v)‖ < 1/2‖∇Φ(u)‖ ,

〈∇Φ(u),∇f (v)〉 > 0 .

Set Y := ⋃
u∈∂U B(u, γu) ⊃ ∂U . Then the covering {B(u, γu) | u ∈ ∂U} of Y possesses

a locally finite refinement {Uα | α ∈ Λ} so that there exists uα ∈ ∂U for each α ∈ Uα

satisfying Uα ⊂ B(uα, γuα ). Let {ϕα}α∈Λ be a locally Lipschitz continuous partition of unity
on Y w.r.t. {Uα | α ∈ Λ}, and set V1(u) := ∑

α∈Λ ϕα(u)∇Φ(uα) for all u ∈ Y . Then
V1 is a locally Lipschitz continuous pseudo-gradient vector field for Φ on Y and satisfies

(2). On the other hand, since the functional Φ is of C1 class, there exists a locally Lipschitz

continuous pseudo-gradient vector field V2 for Φ on Ẽ. Let {β1, β2} be a locally Lipschitz
continuous partition of unity subordinate to the open covering Y ∪ (E \ ∂U) of E. Then

V (u) := β1(u)V1(u)+β2(u)V2(u) (u ∈ Ẽ) is a locally Lipschitz continuous pseudo-gradient

vector field for Φ on Ẽ and satisfies (2). �

Now we begin with the

PROOF OF PROPOSITION 1. By the preceding Lemma, we may take a locally Lipschitz

continuous pseudo-gradient vector field V for Φ on Ẽ, for which (2) holds. Suppose u0 ∈ U

and let u(t) be the gradient flow starting from u0 and defined for t ∈ [0, T ) (T may be ∞).
If f (u(t)) = 0 for some t ∈ (0, T ), there exists a t0 ∈ (0, T ) such that f (u(t0)) = 0 and
f (u(t)) < 0 for every t ∈ (0, t0). Since t �→ f (u(t)) is differentiable at t0, this implies
0 ≤ 〈(∇f )(u(t0)), u

′(t0)〉 = −〈(∇f )(u(t0)), V (u(t0))〉. On the other hand, f (u(t0)) = 0
means that u(t0) ∈ ∂U and hence 〈V (u(t0)) , ∇f (u(t0))〉 > 0 by (2). Thus the existence of t

such that f (u(t)) = 0 leads to a contradiction, so we are done. �

REMARK 3. After the authors finished this work, they noticed that P. Majer [11] con-
sidered a “repelling” condition that is more general than (1). However, under this general
condition, the existence of a pseudo-gradient vector field (in the sense defined above) as in
Lemma 2 is not necessarily guaranteed.
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Although in Proposition 1 the region U is assumed to have a smooth boundary, similar
results will hold for regions with piecewise smooth boundaries. For later use, we record one
such occasion.

PROPOSITION 4. Suppose that there exists an orthogonal decomposition E = V∞ ⊕
W∞, and Φ satisfies the following condition (R). Then there exists a locally Lipschitz contin-

uous pseudo-gradient vector field V for Φ on Ẽ, for which the region

U := {(v∞, w∞) | ‖v∞‖ < max{R1, δ‖w∞‖λ}} (3)

encloses pseudo-gradient flows starting from its elements.
(R) The following (i), (ii) hold for some λ ≥ 0, δ > 0, and R1 > 0, where

u = w∞ + v∞ (w∞ ∈ W∞ , v∞ ∈ V∞) .

(i)

〈
∇Φ(u) , v∞ − λδ2 w∞

‖w∞‖2−2λ

〉
> 0 (if ‖v∞‖ = δ‖w∞‖λ , ‖v∞‖ ≥ R1)

(ii) 〈∇Φ(u) , v∞〉 > 0 (if ‖v∞‖ ≥ δ‖w∞‖λ , ‖v∞‖ = R1)

PROOF. Note that the condition (R) roughly says that the inner product of the gradient
vector ∇Φ and the outward normal vector to U is positive on ∂U , hence ∂U “repels” the
gradient flow starting from inside of U . (One should recognize that except for points with
‖v∞‖ = R1, ∂U is smooth).

We state only a sketch of proof. As in the proof of Lemma 2, we can construct a pseudo-

gradient vector field V on Ẽ which satisfies the condition (R) with ∇Φ replaced by V . Then
suppose u0 ∈ U and let u(t) be the gradient flow determined by V that starts from u0. If there
exists a t̃ > 0 for which u(t̃) 	∈ U , then there exists a t0 ∈ (0, t̃] such that u(t0) ∈ ∂U and
u(t) ∈ U for every t ∈ [0, t0). Recall that u(t) can be written uniquely as u(t) = v(t)+w(t),
by a v(t) ∈ V∞ and a w(t) ∈ W∞. According as δ‖w(t0)‖λ > R1 or δ‖w(t0)‖λ < R1,

consider f (t) := ‖v(t)‖2 − δ2‖w(t)‖2λ or f (t) := ‖v(t)‖2 − R2
1, respectively (the case of

δ‖w(t0)‖λ = R1 will be treated later). Then f (t0) = 0 and f (t) < 0 if t < t0 is sufficiently
close to t0. Hence f ′(t0) ≥ 0, which contradicts the condition (R) with u and ∇Φ(u) replaced
by u(t0) and V (u(t0)), respectively. (Indeed, for example, if R1 < δ‖w(t0)‖λ, f ′(t0) =
−2〈V (u(t0)), v(t0) − λδ2w(t0)/‖w(t0)‖2−2λ〉.)

In the case where R1 = δ‖w(t0)‖λ, use the fact that there exists an increasing sequence
{tk}∞k=1 satisfying tk < t0 and R1 ≤ δ‖w(tk)‖λ for all k or R1 ≥ δ‖w(tk)‖λ for all k. By using
this sequence we are led to the same contradiction. �

REMARK 5. Let γ be a positive smooth functional on Ẽ and consider a differential
equation

du(t)

dt
= −γ (u(t))V (u(t)) , u(0) = u0 (u0 ∈ Ẽ) (4)
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instead of

du(t)

dt
= −V (u(t)) , u(0) = u0 (u0 ∈ Ẽ) .

Then by an essentially same argument, we can see that the conclusions of Propositions 1, 4
will still hold if the pseudo-gradient flow is replaced by the solution to (4).

For later use, we note the following.

COROLLARY 6 (Homotopy to a constant map in the negative region). Suppose that
Φ satisfies the condition (R) in Proposition 4 and let U be as in (3). In addition, assume that
the following conditions hold:

(a) Φ is bounded on every bounded sets.
(b) For every ε,M > 0 with ε < M < ∞,

inf{‖∇Φ(u)‖ | u ∈ Φ−1([−M,−ε])} > 0 .

(c) Under the notation that Q∞ is the orthogonal projection onto W∞,

lim
R→∞ inf{Φ(u) | u ∈ U, ‖Q∞u‖ ≥ R} = −∞ .

Then for each r > 0, every continuous map ϕ : Sn → U ∩ {u ∈ Ẽ | Φ(u) < 0, ‖u‖ < r}
with n < dim W∞ − 1 (Sn : n-dimensional usual sphere) is homotopic to a constant map in
U ∩ {u ∈ E | Φ(u) < 0}.

PROOF. Let ϕ be as in the statement of the corollary. Then there exists a constant
ε > 0 satisfying Φ ◦ ϕ ≤ −ε. On the other hand, from the assumption (c), there exists
a constant R2 > 0 such that u ∈ U , ‖Q∞u‖ ≥ R2 imply Φ(u) < 0. By the definition
of U , we can see that u ∈ U and ‖Q∞u‖ ≤ R2 imply the boundedness of ‖u‖. Hence
C0 := inf{Φ(u) | u ∈ U with ‖Q∞u‖ ≤ R2} ∈ R is well-defined by the assumption (a) in
the Corollary. By Proposition 4, there exists a pseudo-gradient vector field V for Φ, for which
the maximal solution σ(u, t) of the differential equation

dσ(u, t)

dt
= − V (σ(u, t))

‖V (σ(u, t))‖ , σ (u, 0) = u

starting from any point u of ϕ(Sn) remains in U as long as it exists, and the value of Φ on this
flow is strictly less than Φ(ϕ(u)) ≤ −ε for t ≥ 0. Moreover, by the assumption (a) and (b),
σ(u, t) is defined for every u ∈ ϕ(Sn) and t ≥ 0 with inft≥0 Φ(σ(u, t)) = −∞. Therefore,
by rescaling the time variable t , we may assume that σ : ϕ(Sn) × [0, 1] → U ∩ {u ∈ E |
Φ(u) < 0} is continuous with σ(u, 0) = u and C0 − 1 < Φ(σ(u, 1)) < C0 (∀u ∈ ϕ(Sn)).
Hence ‖Q∞σ(u, 1)‖ > R2 holds for all u ∈ ϕ(Sn). By virtue of the assumption (c), we may
also assume that the image σ(ϕ(Sn) × [0, 1]) is contained in a ball {u ∈ E | ‖u‖ < C} for
some constant C.

Next we set for t ∈ [1, 2] and u ∈ ϕ(Sn),

σ(u, t) := (2 − t)σ (u, 1) + (t − 1)Q∞σ(u, 1) .
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Thus we have defined σ on ϕ(Sn) × [0, 2] and it is easy to see that σ is continuous there.
Moreover, since ‖Q∞σ(u, t)‖ = ‖Q∞σ(u, 1)‖ > R2 for t ∈ [1, 2], Φ(σ(u, t)) < 0 for
(u, t) ∈ ϕ(Sn) × [1, 2], and σ(u, 2) ∈ W∞ for u ∈ ϕ(Sn).

Next, we define σ(u, t) := {(t − 2)R2/‖σ(u, 2)‖ + (3 − t)}σ(u, 2) for (u, t) ∈ ϕ(Sn) ×
[2, 3]. Then σ is continuous on ϕ(Sn) × [0, 3], σ(u, t) ∈ W∞, Φ(σ(u, t)) < 0 for (u, t) ∈
ϕ(Sn) × [2, 3], and ‖σ(u, 3)‖ = R2.

Suppose now that dim W∞ < ∞. Then σ(·, 3) ◦ ϕ is a continuous map from Sn to a
sphere of radius R2 in the finite dimensional Euclidean space W∞. Since we have assumed
that n < dim W∞ − 1, this map is homotopic in this sphere to a constant map. (In the
terminology of algebraic topology, this is expressed as the triviality of the homotopy group

πn(S
k) (n < k). See e.g., [6, Cor. 4.9].) Denoting this homotopy by H(x, t) for (x, t) ∈

Sn × [0, 1] with H(x, 0) = σ(ϕ(x), 3) (x ∈ Sn) and H(x, 1) a constant point in that sphere.
Collecting the parts we have made so far, we set

τ (x, t) :=
{

σ(ϕ(x), 4t) , (0 ≤ t ≤ 3/4) ,

H(x, 4t − 3) , (3/4 ≤ t ≤ 1) .

Then τ gives the desired homotopy.
If dim W∞ = ∞, we use the compactness of σ(ϕ(Sn), 3) to obtain a finite dimensional

subspace W of W∞ with dim W − 1 > n for which the orthogonal projection PW onto W

makes supw∈σ(ϕ(Sn),3) ‖PW w − w‖ sufficiently small so that the segment joining σ(u, 3) to
PW σ(u, 3) is contained in U ∩ {u ∈ E | ‖Q∞u‖ > R2}. Therefore we can construct a
homotopy in U ∩{u ∈ E | Φ(u) < 0} from σ(·, 3) to a continuous map with values in a finite
dimensional subspace of W∞. Thus we are led to the case already discussed. �

2.2. Local linking and the existence of a critical point. First let us recall the defini-
tion of local linking.

DEFINITION 7. Let Φ be a C1 functional on E. Then we define as follows.
(i) If there exist an orthogonal decomposition E = V0⊕W0 and an r > 0 satisfying the

following condition, Φ is said to have a local linking at 0 with respect to (V0,W0):{
Φ(u) ≥ 0 (∀u ∈ BrV0) ,

Φ(u) ≤ 0 (∀u ∈ BrW0) ,
(5)

where, BrV0 := {u ∈ V0 : ‖u‖ ≤ r}, BrW0 := {u ∈ W0 : ‖u‖ ≤ r}.
(ii) Φ is said to have a strong local linking at 0 w.r.t. (V0,W0) if there exists an r > 0

satisfying (5), and the following properties hold for some ε > 0:{
Φ(u) ≥ ε on ∂BrV0 ,

Φ(u) ≤ −ε on ∂BrW0 .
(6)

Needless to say, 0 is a critical point of Φ if it has a local linking at 0.
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The notion generalizing the so-called Palais–Smale condition has been introduced to
obtain a useful conclusion from the local linking property.

DEFINITION 8. Suppose that a sequence {En}n of finite dimensional subspaces of E

satisfies

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ⊂ E , E =
∞⋃

n=1

En , (7)

and let Pn denote the orthogonal projection from E onto En. Then,
(i) a sequence {uj }j is called a (PS)∗c sequence (w.r.t. Φ and {En}n) provided uj ∈

Enj , nj → ∞, Φ(uj ) → c and Pnj

(∇Φ(uj )
) → 0 (as j → ∞);

(ii) Φ is said to satisfy the (WPS)∗c condition if every (PS)∗c sequence has a subse-
quence weakly convergent to a critical point u of Φ with Φ(u) = c.

The following easy paraphrase is useful in proving the existence of a non-trivial critical point.

LEMMA 9. Let {En}n be as in Definition 8 and let Φ satisfy the (WPS)∗c condition for
every c ∈ R. Moreover, suppose that 0 is the only critical value of Φ. Then for any ε > 0,
M > 0 and n0 ∈ N, there exist an n1 > n0 and b > 0 such that

‖∇Φn(u)‖ ≥ b , ∀u ∈ Φ−1
n ([−M,−ε]) ∪ Φ−1

n ([ε,M]) (8)

holds for every n ≥ n1, where Φn := Φ|En . (Note that ∇Φn(u) = Pn(∇Φ(u)) for u ∈ En.)

Now let us collect the conditions relevant to our abstract theory about the critical points.
(Φ1) With respect to a sequence {En}n of finite dimensional subspaces satisfying (7),

Φ satisfies (WPS)∗c condition for every c ∈ R.
(Φ2) Φ is bounded on every bounded set.
(Φ3) There exists an orthogonal decomposition E = V0 ⊕ W0 that satisfies one of the

following conditions:
(i) Φ has a strong local linking at 0 w.r.t. (V0,W0).

(ii) Φ has a local linking at 0 w.r.t. (V0,W0), and for some r > 0 with the
property (5), every (PS)∗0 sequence in B2rE has a strongly convergent sub-
sequence.

(Φ̃4) There exists an orthogonal decomposition E = V∞ ⊕ W∞ that satisfies the
following (i)∼(iii) for some λ ≥ 0, δ > 0, R1 > 0:

(i)

〈
∇Φ(u) , v∞ − λδ2 w∞

‖w∞‖2−2λ

〉
> 0, (if ‖v∞‖ = δ‖w∞‖λ , ‖v∞‖ ≥

R1),

(ii) 〈∇Φ(u) , v∞〉 > 0, (if ‖v∞‖ ≥ δ‖w∞‖λ , ‖v∞‖ ≥ R1),

(iii) for every c < 0 there exists an R > 0 such that Φ(u) < c provided
‖v∞‖ ≤ δ‖w∞‖λ and ‖w∞‖ ≥ R, where

u = w∞ + v∞ (w∞ ∈ W∞ , v∞ ∈ V∞) .
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REMARK 10. The conditions (Φ1) to (Φ3) are the same as those in [2], while (Φ̃4) is
a generalization of (Φ4) in [2]. (i) and (ii) in (Φ̃4) is the same as in condition (R) appearing
in Proposition 4.

When we assume the conditions (Φ1) and (Φ3), we adopt the following notations:

Φn := Φ|En ,

Φc
n := {u ∈ En : Φ(u) ≤ c} , (Φn)c := {u ∈ En : Φ(u) ≥ c} ,

E1
n := En ∩ V0 , E2

n := En ∩ W0 ,

B
j
n := BrE ∩ E

j
n (j = 1, 2) , S

j
n := ∂B

j
n (j = 1, 2) .

We say that the sequence {En}n in (Φ1) is compatible with the orthogonal decomposition
V0 ⊕ W0 [resp. V∞ ⊕ W∞] (Φ1) if

En = (En ∩ V0) ⊕ (En ∩ W0) [resp. En = (En ∩ V∞) ⊕ (En ∩ W∞)] (9)

holds for every n.
The following lemma finishes the preparation for our main result in this section.

LEMMA 11. If Φ satisfies (Φ̃4) with {En}n being compatible w.r.t. (V∞ ⊕ W∞), then

Φ|En satisfies (Φ̃4) with (V∞ ∩ En,W∞ ∩ En) instead of (V∞ ⊕ W∞) for every n ∈ N.

PROOF. We consider only the condition (i) of (Φ̃4), because the condition (ii) can be

proved similarly. We set f (u) := ‖v∞‖2 − δ2‖w∞‖2λ where u = v∞ + w∞, v∞ ∈ V∞,
w∞ ∈ W∞. We can show that ∇f (u) ∈ En for every n ∈ N if u ∈ En. Indeed, 〈∇f (u), z〉 =
2〈vn∞, ṽ∞〉 − 2λδ2‖wn∞‖2λ−2〈wn∞, w̃∞〉 for every z ∈ E⊥

n where u = vn∞ + wn∞ ∈ En and

z = ṽ∞ + w̃∞. Since {En}n in (Φ̃4) is compatible w.r.t. (V∞ ⊕W∞), Pn P∞ = P∞ Pn where
Pn : E → En and P∞ : E → V∞ are orthogonal projections. Hence we have 〈vn∞, ṽ∞〉 =
〈P∞ Pn u, P∞(1 − Pn)z〉 = 〈PnP∞ u, (1 − Pn)P∞ z〉 = 〈(1 − Pn)Pn P∞ u, P∞z〉 = 0 and
〈wn∞, w̃∞〉 = 0 similarly. Therefore ∇f (u) ∈ En for every n ∈ N if u ∈ En.

On the other hand since 〈∇Φ(u),∇f (u)〉 > 0 if f (u) = 0 and ‖P∞u‖ ≥ R1 by the
condition (i), we obtain 〈Pn∇Φ(u),∇f (u)〉 = 〈∇Φ(u), Pn∇f (u)〉 = 〈∇Φ(u),∇f (u)〉 > 0
if u ∈ En, f (u) = 0 and ‖P∞u‖ ≥ R1. �

Now we can state and prove our main abstract result. The line of arguments is similar to
that for Theorem 2.1 of [2].

THEOREM 12. Let Φ be a C1 class functional on a Hilbert space E and let the condi-

tions (Φ1) to (Φ̃4) be satisfied with {En}n in (Φ1) compatible with the decomposition V0⊕W0

in (Φ3) and V∞ ⊕ W∞ in (Φ̃4) (cf . (9)). Moreover, suppose that

lim sup
n→∞

[dim En ∩ W∞ − dim En ∩ W0] > 0 (10)

holds, and the set U defined by (3) contains B2rE, where r is the number appearing in (Φ3).
Then Φ has at least one non-zero critical point.
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PROOF. We prove this theorem by contradiction. So suppose that there exist no critical
points other than the origin. First we consider the easier case where (i) of (Φ3) holds. Then
there exist an r > 0 and an ε > 0 satisfying (6). Suppose dim W0 > 0. Then dim En∩W0 > 0
holds for large n because of the compatibility of {En}n with the orthogonal decomposition
V0⊕W0. By the assumption (10), there exists an increasing sequence {nj }j of natural numbers
satisfying dim Enj ∩ W∞ − dim Enj ∩ W0 > 0. We may also assume that dim Enj ∩ W0 > 0.
Then, by virtue of Lemma 9 and Lemma 11, we may apply Corollary 6 with E replaced by
Enj = (Enj ∩ V∞) ⊕ (Enj ∩ W∞) and Φ with Φnj for sufficiently large j . Therefore, by

considering a homeomorphism ϕ from a standard sphere to S2
nj

, we can obtain a homotopy

τj : S2
nj

× [0, 1] → Enj from the identity map S2
nj

→ Enj to a constant map. Note that

because of our assumption (Φ̃4) and the proof of Corollary 6, we may suppose that there
exists a constant C independent of j such that the image of each τj is contained in the ball
{u ∈ E | ‖u‖ ≤ C} and hence M := sup{Φ(u) | ‖u‖ ≤ C} is well defined. Indeed, first
choose an R2 > 0 such that u ∈ U with ‖Q∞u‖ ≥ R2 satisfies Φ(u) < 0, and then set
C0 := inf {Φ(u) | u ∈ U, ‖Q∞u‖ ≤ R2} (the infinum exists by (Φ2)). Finally, by (iii) of

(Φ̃4), there exists a constant C1 > 0 such that u ∈ U and Φ(u) > C0−1 imply ‖Q∞u‖ ≤ C1,
hence ‖u‖ ≤ C1 + δ Cλ

1 .

Now, since ∂(B2
nj

× [0, 1]) = (B2
nj

× {0}) ∪ (S2
nj

× (0, 1)) ∪ (B2
nj

× {1}), the map τj

determines a continuous map γj : ∂(B2
nj

× [0, 1]) → Enj by the following definition, where

aj denotes the constant value τj (u, 1) (u ∈ S2
nj

):

γj (u, t) :=


u (u ∈ B2

nj
, t = 0) ,

τj (u, t) (u ∈ S2
nj

, t ∈ (0, 1)) ,

aj (u ∈ B2
nj

, t = 1) .

Set Γj := {ρ | ρ ∈ C(B2
nj

× [0, 1], Enj ), ρ|∂(B2
nj

×[0,1]) = γj }. Note that by the well known

Dugundij extension theorem, there exists a ρ ∈ Γj with values in the ball {u ∈ Enj | ‖u‖ ≤
C}. Therefore,

c := inf
ρ∈Γj

sup {Φ(u) | u ∈ ρ(B2
nj

× [0, 1])} ≤ M

holds by the definition of M . By a standard argument (cf. [2, Lemma 3.2]), it can be proved

that ρ(B2
nj

× [0, 1])∩ S1
nj

	= ∅ for any ρ ∈ Γj . (Note that dim Enj ∩ W0 < dim Enj ∩ W∞ ≤
dim Enj implies dim Enj ∩ V0 > 0.) Hence c ≥ ε. On the other hand, c0 := sup {Φ(u) |
u ∈ γj (∂(B2

nj
× [0, 1]))} ≤ 0 holds by construction. So, by Ekeland’s mini-max theorem

([12, Theorem 4.3]), there exists a point uj ∈ Enj such that ε ≤ Φnj (uj ) < M + 1 and
‖∇Φnj (uj )‖ < 1/j . However, this contradicts Lemma 9.
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In the case where W0 = {0}, then Φ(0) = 0 and Φ(u) ≥ ε for u with ‖u‖ = r .
Therefore, together with (iii) of (Φ̃4), applying Ekeland’s mini-max theorem ([12, Theorem
4.3]) (in the situation of mountain pass Theorem), we obtain a point uj ∈ Enj such that
ε ≤ Φnj (uj ), supj Φnj (uj ) < ∞ and ‖∇Φnj (uj )‖ < 1/j . Hence the same contradiction
occurs.

The case where (ii) of assumption (Φ3) holds could be treated similarly as in the proof
of Theorem 1 in [10] (cf. also [2, Lemma 3.2]) by using a deformation. In more detail, due
to (Φ1), (Φ2) and the assumption that 0 is the only critical point, there exists a continuous
deformation ηj : E1

nj
× [0, 1] → Enj for large j , possessing the following properties where

ε > 0 is independent of j (cf. Lemma 9, [10, Lemma 2], [2, Lemma 3.1]):

— ‖ηj (u, t) − u‖ < r/2 for all (u, t) ∈ BrE
2
nj

× [0, 1];
— For some constant ε > 0, Φ(ηj (u, 1)) > ε for all u ∈ BrE

2
nj

\ Br/3E.

Then, instead of S1
nj

in the proof above, we obtain ρ(B2
nj

× [0, 1]) ∩ ηj (S
1
nj

, 1) 	= ∅ for any

ρ ∈ Γj , and the proof similarly goes on. �

2.3. Almost quadratic, hyperbolic functional. In this subsection, we prepare an ab-
stract framework suitable for the treatment of wave equations. The following conditions stat-
ing that Φ is “nearly hyperbolic” are of our primary concern:

(Φ5) There exist a self-adjoint bounded linear operator L : E → E and a C1 func-
tional Φ1 on E:
(a) Φ(u) := 1

2 〈Lu, u〉 + Φ1(u),
(b) ‖∇Φ1(u)‖ = o(‖u‖) (as ‖u‖ → ∞), and ‖∇Φ1(u)‖ is bounded on ev-

ery bounded set.
(c) 0 /∈ σ(L) or 0 ∈ σ(L) is an isolated point of the spectrum.

(Φ6) In addition to (Φ5), ∇Φ1 is bounded.
The following two lemmas show that the conditions (Φ5) and (Φ6) are nearly sufficient

for (Φ̃4).

LEMMA 13. Suppose that Φ satisfies (Φ5) with 0 /∈ σ(L) and σ(L) ∩ R± 	= ∅.
Then Φ satisfies (Φ̃4) with λ = 1, V∞ := X+, and W∞ := X−, where X± is the spectral

subspace w.r.t. L and σ(L) ∩ R±. Moreover, −Φ satisfies (Φ̃4) with λ = 1, V∞ := X− and
W∞ := X+.

PROOF. In correspondence with the decomposition E = X+ ⊕ X−, we write u =
u+ + u− for u ∈ E. Since 0 /∈ σ(L), there exists γ > 0 such that ±〈Lu±, u± 〉 ≥ γ ‖u±‖2

for every u± ∈ X±. Let us fix a δ > 0 with 0 < δ2 <
γ

‖L‖ ≤ 1, and let λ = 1. Then by

(b) of (Φ5), for every ε1 with 0 < ε1 <
δγ

1+δ
there exists an R1 > 0 such that ‖∇Φ1(u)‖ <

ε1 ‖u‖ for every u ∈ E with ‖u‖ ≥ R1. Therefore, if u satisfies ‖u+‖ = δ‖u−‖ and ‖u+‖ ≥
R1, it holds that

〈∇Φ(u), u+ − δ2u−〉 ≥ 〈Lu+, u+〉 − δ2〈Lu−, u−〉 + 〈∇Φ1(u), u+ − δ2u−〉
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≥ γ ‖u+‖2 + γ δ2‖u−‖2 − ε1‖u‖(‖u+‖ + δ2‖u−‖)

≥ 2γ ‖u+‖2 − ε1(1 + δ)

(
1 + 1

δ

)
‖u+‖2

≥ 2‖u+‖2
(

γ − ε1

(
1 + 1

δ

))
.

Similarly for u with ‖u+‖ ≥ δ‖u−‖ and ‖u+‖ ≥ R1,

〈∇Φ(u), u+〉 = 〈Lu+, u+〉 + 〈∇Φ1(u), u+〉 ≥ γ ‖u+‖2 − ε1‖u‖‖u+‖

≥ γ ‖u+‖2 − ε1

(
1 + 1

δ

)
‖u+‖2 ≥ ‖u+‖2

(
γ − ε1

(
1 + 1

δ

))
.

Hence

〈∇Φ(u), u+ − δ2u−〉 > 0 if ‖u+‖ = δ‖u−‖ , ‖u+‖ ≥ R1 ;
〈∇Φ(u), u+〉 > 0 if ‖u+‖ ≥ δ‖u−‖ , ‖u+‖ ≥ R1 ,

and hence the condition (i) and (ii) of (Φ̃4) hold.

Next for every ε2 satisfying 0 < ε2 <
γ−δ2‖L‖

1+δ2 there exists a C2 > 0 such that

Φ1(u) =
∫ 1

0
〈∇Φ1(su), u〉ds ≤ C2 + ε2

2
‖u‖2

because of (b) of (Φ5) and Φ1(0) = 0. Thus if ‖u+‖ ≤ δ‖u−‖

Φ(u) = 1

2
〈Lu, u〉 + Φ1(u)

≤ 1

2
‖L‖‖u+‖2 − γ

2
‖u−‖2 + ε2

2
‖u‖2 + C2

≤ 1

2
‖L‖δ2‖u−‖2 − γ

2
‖u−‖2 + ε2

2
(1 + δ2)‖u−‖2 + C2

≤ 1

2
‖u−‖2{‖L‖δ2 − γ + ε2(1 + δ2)} + C2 .

Hence for every c < 0 there exists an R > 0 such that Φ(u) < c provided ‖u+‖ ≤ δ‖u−‖,
‖u−‖ ≥ R. �

The following condition deals with a special case treated in [2].

LEMMA 14 ([2, Theorem 2.4]). Suppose that Φ satisfies (Φ6), 0 ∈ σ(L) and

Φ1(u) → −∞ (u ∈ ker L, ‖u‖ → ∞) .

Then, Φ satisfies (Φ̃4) with λ = 0, V∞ = X+, and W∞ = X−⊕X0, where X± is the spectral

subspace w.r.t. L and σ(L) ∩ R±, X0 := ker L.
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Now we look into the structure of Φ more closely. Specifically, we consider the follow-
ing situations:

(Φ7) The Hilbert space E is densely and continuously embedded in another Hilbert

space H and there exists an orthogonal decomposition E = E+ ⊕ E0 ⊕ E− so
that the following conditions hold:
(a) The embeddings of E± into H are compact, and E0 is a closed subspace

of H .
(b) By using the orthogonal projections P± from E onto E±, Φ can be written

as

Φ(u) = 1

2
(‖P+u‖2 − ‖P−u‖2) − Ψ (u) , (u ∈ E)

where Ψ is a convex C1 functional on the Hilbert space H , and ∇HΨ is
bounded on every bounded subset of H ( ∇H Ψ denotes the gradient of Ψ

on H ).
(c) There exists a sequence {En}n of finite dimensional subspaces of E satis-

fying (7) and P±Pn = PnP
± (∀n), where Pn is the orthogonal projection

onto En.
(Φ8) In addition to (Φ7), for a self-adjoint bounded linear operator S∞ on H , Ψ is

written as

Ψ (u) := 1

2
〈S∞u, u〉 + Ψ1(u) , (u ∈ H) , (11)

where Ψ1 is a C1 functional on H satisfying

∇HΨ1(u) = o(‖u‖H) (as ‖u‖H → ∞) . (12)

Moreover, the bounded self-adjoint operator L on E defined by L := P+ −
P− − S satisfies the following conditions (a) and (b), where S : E → E is the
self-adjoint operator on E determined by

〈Su, v〉E := 〈S∞u, v〉H (u, v ∈ E) .

(〈·, ·〉E , 〈·, ·〉H denote the inner product in E and H , respectively.)
(a) L(En) ⊂ En (n ∈ N) holds for the sequence {En}n in (Φ7),
(b) 0 /∈ σ(L) or 0 ∈ σ(L) is an isolated point of the spectrum,

(Φ8′) In addition to (Φ8), ∇HΨ1 is bounded on H and

|Ψ1(u)| → ∞ (u ∈ ker L, ‖u‖E → ∞) .

Let us recall the following facts concerning the (WPS)∗ condition.

LEMMA 15 ([2, Proposition 2.5]). Let Φ satisfy (Φ7), and suppose that {uj }j∈N is a
bounded (PS)∗c sequence for Φ. Then, there exist a critical point u of Φ with Φ(u) = c and
a subsequence {ujk }k∈N of {uj }j∈N such that

u±
jk

→ u± (k → ∞) in E ,
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u0
jk

⇀ u0 (k → ∞) in E ,

where u = u+ + u0 + u− (u± ∈ E±, u0 ∈ E0), ujk = u+
jk

+ u0
jk

+ u−
jk

(u±
jk

∈ E±, u0
jk

∈
E0)

LEMMA 16 ([2, Proposition 2.6]). Let Φ satisfy (Φ8), and if 0 ∈ σ(L) assume further
that Φ satisfies the additional condition (Φ8′). Then Φ fulfills the (WPS)∗c condition for
every c ∈ R.

Let us also recall the following result concerning the verification of (ii) in (Φ3).

LEMMA 17 ([2, Remark 3.3]). Suppose that Φ satisfies (Φ7) and there exist no criti-
cal points in B2rE other than 0 ∈E. In addition, let

Ψ (v) ≥ a‖v‖α
H (∀v ∈ H)

hold for some constants a > 0, α > 0. Then every (PS)∗0 sequence in B2rE has a strongly
convergent subsequence.

The following proposition deals with a sufficient condition for (WPS)∗ condition, which
is not covered by Lemma 16.

PROPOSITION 18. Suppose that Φ satisfies (Φ8) and there exist some constants α, β

satisfying 0 < α ≤ β < 1 and β − α/2 < 1/2, for which the following conditions (a) and (b)
hold.

(a) For some constant c0 > 0, ‖∇EΨ1(u)‖ ≤ c0(‖u‖β + 1) (∀u ∈ E). (Here we
consider ∇Ψ1(u) ∈ H ∗ ⊂ E∗.)

(b) For some constants c1 and d , one of the following conditions hold where X0 :=
ker L:
(i) ∀u0 ∈ X0 Ψ1(u

0) ≥ c1‖u0‖α+1 − d‖u0‖,
(ii) ∀u0 ∈ X0 Ψ1(u

0) ≤ −c1‖u0‖α+1 + d‖u0‖.
Then Φ satisfies the (WPS)∗c condition for every c ∈ R (w.r.t. {En}n in (Φ8)).

PROOF. We first treat the case where (i) of the condition (b) holds. By Lemma 15,
it remains to show that any (PS)∗c sequence is bounded. We assume that {uj }j is a (PS)∗c
sequence. According to the spectral decomposition of σ(L) we have E = X+ ⊕ X0 ⊕ X−
where X± and X0 correspond to σ(L)∩R± and ker L, respectively. We write u = u+ +u0 +
u− for u ∈ E corresponding to this decomposition. By the condition (b) in (Φ8), there exists

γ > 0 such that ±〈Lu±, u±〉E ≥ γ ‖u±‖2
E for ∀u± ∈ X±.

If j is sufficiently large, the first inequality of the following formula holds, and the
assumption (a) yields

‖u+
j ‖E ≥ 〈u+

j , Pnj ∇Φ(uj )〉E = 〈u+
j , Lu+

j 〉E − 〈u+
j ,∇Ψ1(uj )〉E

≥ γ ‖u+
j ‖2

E − ‖u+
j ‖E‖∇Ψ1(uj )‖E ≥ γ ‖u+

j ‖2
E − c0‖u+

j ‖E(‖uj‖β
E + 1) .
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Hence c0 + 1 ≥ γ ‖u+
j ‖E − c0‖uj‖β

E for j large enough. Similarly c0 + 1 ≥ γ ‖u−
j ‖E−

c0‖uj‖β
E for j large enough. Therefore 2(c0 + 1) ≥ γ (‖u+

j ‖E + ‖u−
j ‖E) − 2‖uj‖β

E

for j large enough. Let yj := ‖u+
j ‖E + ‖u−

j ‖E , if {yj } is not bounded, then we may as-

sume, going if necessary to a subsequence, yj → ∞ (as j → ∞). Since 2(c0 + 1) ≥ γ yj −
2c0‖uj‖β

E for j large enough, there exists a C > 0 such that C‖u0
j‖β

E ≥ yj for j large enough.

Hence by using the condition (a) and (i) of (b), we obtain for sufficiently large j

Φ(uj ) = 1

2
〈Luj , uj 〉E − Ψ1(uj )

= 1

2
〈Lu+

j , u+
j 〉E + 1

2
〈Lu−

j , u−
j 〉E − Ψ1(u

0
j )

−
∫ 1

0
〈 ∇Ψ1(u

0
j + s(u+

j + u−
j )) , u+

j + u−
j 〉Eds

≤ 1

2
‖L‖E‖u+

j ‖2
E − γ

2
‖u−

j ‖2
E − c1‖u0

j‖α+1
E + d‖u0

j‖E

+ (‖u+
j ‖E + ‖u−

j ‖E)

∫ 1

0
‖∇Ψ1(u

0
j + s(u+

j + u−
j ))‖Eds .

≤ C2

2
‖L‖E‖u0

j‖2β
E − c1‖u0

j‖α+1
E + d‖u0

j‖E + c2‖u0
j‖2β

E + c3‖u0
j‖β(β+1)

E

where c2 > 0 and c3 > 0 are constants independent of j . Since β(β + 1) < 2β < α + 1,

Φ(uj ) → −∞ as j → ∞. Thus we obtain the contradiction. Next if ‖u0
j‖E is not bounded,

then similarly we may assume, going if necessary to a subsequence, ‖u0
j‖E → ∞ (as j →

∞) and Φ(uj ) ≤ c4 − c1‖u0
j‖α+1

E + d‖u0
j‖E + c5‖u0

j‖β
E for j large enough. Therefore

Φ(uj ) → −∞ as j → ∞, and this is a contradiction.
Similar argument also proves the assertion of the theorem in the case (ii) in (b).
The following technical Lemma is for the verification of (Φ̃4).

LEMMA 19. Suppose that Φ satisfies (Φ8) and let α, β, λ, p and q be constant num-
bers satisfying

0 < α ≤ β < 1 , β <
α + 1

2
, (13)

max

{
1

2
, β

}
< λ <

α + 1

2
, (14)

max

{
2,

1

β

}
< p <

2λ

β
,

1

p
+ 1

q
= 1 . (15)

Moreover, let X0 := ker L and let X± be the spectral subspace for L w.r.t. σ(L)∩R±. Then if
there exist positive constants C1, C2 and C3 for which one of the following conditions (b1) or
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(b2) holds, Φ or −Φ satisfies (Φ̃4) with δ = 1, λ as above, and (W∞, V∞) = (X0⊕X−,X+)

or (W∞, V∞) = (X0 ⊕ X+,X−), respectively. Moreover for every r > 0, the set U defined
by (3) can be made to satisfy U ⊃ B2r .

(In the sequel, u0 ∈ X0, u+ ∈ X+ and u− ∈ X− denote arbitrary elements in respective
subspaces.)

(b1) (i) Ψ1(u
0) ≥ C1‖u0‖α+1

E − C2‖u0‖E .

(ii) |Ψ1(u
0 + u− + u+) − Ψ1(u

0)|
≤ C3(‖u− + u+‖β+1

E + ‖u− + u+‖E + ‖u0‖pβ
E + ‖u− + u+‖q

E).

(iii) |〈∇H Ψ1(u
0 + u− + u+), u+〉H |

≤ C3(‖u+‖β+1
E + ‖u+‖E + ‖u0 + u−‖pβ

E + ‖u+‖q
E).

(iv) |〈∇H Ψ1(u
0 + u− + u+), u0 + u−〉H | ≤ C3(‖u+‖β+1

E + ‖u0 + u−‖β+1
E ).

(b2) (i) Ψ1(u
0) ≤ −C1‖u0‖α+1

E + C2‖u0‖E .

(ii) |Ψ1(u
0 + u− + u+) − Ψ1(u

0)|
≤ C3(‖u− + u+‖β+1

E + ‖u− + u+‖E + ‖u0‖pβ
E + ‖u− + u+‖q

E).

(iii) |〈∇H Ψ1(u
0 + u− + u+), u−〉H |

≤ C3(‖u−‖β+1
E + ‖u−‖E + ‖u0 + u+‖pβ

E + ‖u−‖q
E).

(iv) |〈∇H Ψ1(u
0 + u− + u+), u0 + u+〉H | ≤ C3(‖u−‖β+1

E + ‖u0 + u+‖β+1
E ).

PROOF. We treat only the case of (b1), since we can similarly show that −Φ satisfies

(Φ̃4) in the case of (b2). So we assume that the condition (b1) holds and shall show that Φ

satisfies (Φ̃4) with δ = 1. First note that there exists γ > 0 such that ±〈Lu± , u±〉E ≥
γ ‖u±‖2

E for ∀u± ∈ X±, since 0 ∈ σ(L) is an isolated point of the spectrum. Utilizing

these inequalities, we shall show (iii) of (Φ̃4) for Φ. From (i) and (ii) of (b1), for u with
‖u+‖E ≤ ‖u0 + u−‖λ

E , we obtain

Φ(u) = 1

2
〈Lu, u〉E − Ψ1(u)

≤ 1

2
‖L‖‖u+‖2

E − γ

2
‖u−‖2

E − C1‖u0‖α+1
E + C2‖u0‖E

+ C3
(‖u− + u+‖β+1

E + ‖u− + u+‖E + ‖u0‖pβ
E + ‖u− + u+‖q

E

)
≤C4(‖u0‖2λ

E + ‖u−‖2λ
E ) − γ

2
‖u−‖2

E − C1‖u0‖α+1
E + C2‖u0‖E

+ C4(‖u−‖λ(β+1)
E + ‖u0‖λ(β+1)

E + ‖u−‖E + ‖u0‖pβ

E + ‖u0‖λ + ‖u−‖λ

+ ‖u−‖q
E + ‖u0‖λq

E + ‖u−‖λq
E )

where C4 > 0 is constant. Now since λ(β + 1), λq and pβ < 2λ < α + 1 from (13) and (14),
Φ(u) → −∞ as ‖u− + u0‖E go to ∞ with ‖u+‖E ≤ ‖u0 + u−‖λ

E . Thus we have proved

that Φ satisfies (iii) of (Φ̃4).
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Next we prove that Φ satisfies (ii) of (Φ̃4). By (iii) of (b1), we obtain for u with ‖u0 +
u−‖λ

E ≤ ‖u+‖E

〈∇Φ(u) , u+〉E = 〈Lu+, u+〉E − 〈∇H Ψ1(u) , u+〉H
≥ γ ‖u+‖2

E − C3(‖u+‖β+1
E + ‖u+‖ + ‖u0 + u−‖pβ

E + ‖u+‖q)

≥ γ ‖u+‖2
E − C5(‖u+‖β+1

E + ‖u+‖ + ‖u+‖
pβ
λ

E + ‖u+‖q
E) ,

where C5 > 0 is a constant. Since β + 1, pβ
λ

and q < 2 from (13) and (14), and so

〈∇Φ(u), u+〉E > 0 for ‖u+‖E large enough with ‖u0 + u−‖λ
E ≤ ‖u+‖E .

Finally we show that Φ satisfies (i) of (Φ̃4). By (iii) and (iv) of (b1), the following

inequality holds for u with ‖u0 + u−‖λ
E = ‖u+‖E :〈

∇Φ(u) , u+ − λ
u0 + u−

‖u0 + u−‖2−2λ
E

〉
E

≥ 〈Lu+, u+〉E − 〈∇H Ψ1(u), u+〉H + λ

‖u0 + u−‖2−2λ
E

〈∇H Ψ1(u), u0 + u−〉H

≥ γ ‖u+‖2
E − C3(‖u+‖β+1

E + ‖u+‖E + ‖u0 + u−‖pβ

E + ‖u+‖q

E)

− λC3

‖u0 + u−‖2−2λ
E

(‖u+‖β+1
E + ‖u0 + u−‖β+1

E )

≥ γ ‖u0 + u−‖2λ
E − C3(‖u0 + u−‖λ(β+1)

E + ‖u0 + u−‖λ
E)

− C3(‖u0 + u−‖pβ
E + ‖u0 + u−‖λq

E )

− λC3(‖u0 + u−‖λ(β+1)−(2−2λ)
E + ‖u0 + u−‖2λ+β−1

E ) .

Since pβ, λ(β + 1) and λq < 2λ from (13) and (14), we can show that 〈∇Φ(u), u+ − λ(u0 +
u−)/‖u0 + u−‖2−2λ

E 〉E > 0 as ‖u+‖E large enough with ‖u0 + u−‖λ
E = ‖u+‖E .

The last statement of the Lemma is easily verified. �

REMARK 20. Under the assumptions (13) to (15), 1 < β + 1 < q holds, and so we

can omit the term ‖u− + u+‖β+1 in (ii) of (b1), for example.

3. Statement and proof of the main theorem

3.1. Statement of the result. Let us return to the nonlinear wave equation (WE):

(WE)


�u(x, t) = h(x, t, u(x, t)) (0 < x < π, t ∈ R) ,

u(0, t) = u(π, t) = 0 (t ∈ R) ,

u(x, t + 2π) = u(x, t) (0 < x < π, t ∈ R) .
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The nonlinear term h : [0, π] × R2 → R is assumed to satisfy the following conditions (h1)
to (h3).

(h1) h is continuous and h(x, t + 2π, ξ) = h(x, t, ξ) ((x, t, ξ) ∈ [0, π] × R2).
(h2) h is non-decreasing in ξ and h(x, t, ξ) 	= 0 (ξ 	= 0).
(h3) There exist constants b0 ≥ 0, b > 0 that satisfy the following properties:

g0(x, t, ξ) := h(x, t, ξ) − b0ξ = o(|ξ |) as ξ → 0 uniformly in (x, t),
g(x, t, ξ) := h(x, t, ξ) − bξ = o(|ξ |) as |ξ | → ∞ uniformly in (x, t).

Let Q := (0, π) × (0, 2π) and define

b+
0 := min{λ | λ ∈ σ(�), b0 < λ} , b−

0 := max{λ | λ ∈ σ(�), λ < b0} ,

where � (D’Alembertian) mean the self-adjoint operator in L2(Q) obtained as the closure of

∂2/∂t2 − ∂2/∂x2 with domain {u ∈ C2([0, π] × R) | u(x, t + 2π) = u(x, t), u(0, t) =
u(π, t) = 0}.

Now we state and prove the main theorem of this paper, of which the part of cases (A3)
and (A4) referring to (C2) are new.

THEOREM 21. As to the equation (WE), assume that the non-linear term h satisfies the

conditions (h1) ∼ (h3) and let b0, g0, b and g be as in (h3). Set G(x, t, ξ) := ∫ ξ

0 g(x, t, s)ds,

G0(x, t, ξ) := ∫ ξ

0 g0(x, t, s)ds and consider the following conditions:
(C1) g is bounded, and G(x, t, ξ) → +∞ (as |ξ | → ∞) uniformly in (x, t),
(C2) the following condition (a1) or (a2) holds for some constants 0 < α ≤ β < 1,

β − α
2 < 1

2 , c1, c2 > 0, and d1, d2 ≥ 0:

(a1) |g(x, t, ξ)| ≤ c1|ξ |β + d1 , G(x, t, ξ) ≥ c2|ξ |α+1 − d2|ξ | ,
(a2) |g(x, t, ξ)| ≤ c1|ξ |β + d1 , G(x, t, ξ) ≤ −c2|ξ |α+1 + d2|ξ | .

(C3) There exists a δ > 0 such that G0(x, t, ξ) ≥ 0 if |ξ | ≤ δ,
(C4) There exists a δ > 0 such that G0(x, t, ξ) ≤ 0 if |ξ | ≤ δ.

Then (WE) has a non-trivial weak solution in each of the following cases:
(A1) b0 /∈ σ(�), b /∈ σ(�) and b /∈ [b−

0 , b+
0 );

(A2) b0 ∈ σ(�), b 	∈ σ(�), and one of the following conditions holds:
(1) b 	∈ [b0, b

+
0 ) and (C3);

(2) b 	∈ [b−
0 , b0) and (C4);

(A3) b0 /∈ σ(�), b ∈ σ(�), and one of the following conditions holds:
(1) b0 < b and (C1) or (a1) of (C2);
(2) b0 > b and (a2) of (C2);

(A4) b0 ∈ σ(�), b ∈ σ(�), and one of the following conditions holds:
(1) (C3), b0 < b and (C1) or (a1) of (C2);
(2) (C3), b0 ≥ b and (a2) of (C2);
(3) (C4), b0 ≤ b and (C1) or (a1) of (C2);
(4) (C4), b0 > b and (a2) of (C2);
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3.2. Framework for variational method. For convenience sake, we state here the
standard setting for the variational treatment of the equation (WE).

3.2.1. The function space. By the Fourier series expansion, every real-valued u ∈
L2(Q) can be written as

u(x, t) =
∞∑

j=1

∞∑
k=−∞

ukj sin jx eikt

with ukj = u−kj for all j , k. Using this expansion, we set

‖u‖E :=
(

π2
∑
j 	=|k|

|j2 − k2||ukj |2 + π2
∑
j=|k|

|ukj |2
)1/2

and we define the space E by

E := {u ∈ L2(Q) | ‖u‖E < ∞} .

Then E is a Hilbert space with the inner-product

〈u, v〉E := π2
∑
j 	=|k|

|j2 − k2|ukjvkj + π2
∑
j=|k|

ukjvkj ,

where ukj , vkj are Fourier coefficients of u, v respectively. E has an orthogonal decomposition

E = E+ ⊕ E0 ⊕ E− where

E+ :=
{
u ∈ E : u(x, t) =

∑
j2>k2

ukj sin jxeikt

}
,

E0 :=
{
u ∈ E : u(x, t) =

∑
j2=k2

ukj sin jxeikt

}
,

and

E− :=
{
u ∈ E : u(x, t) =

∑
j2<k2

ukj sin jxeikt

}
.

The orthogonal projections onto E−, E0 and E+ are designated by P−, P 0 and P+, respec-
tively.

It is well known that the inclusions E± ↪→ L2(Q) are compact and E0 is a closed

subspace of L2(Q). Moreover, E± ↪→ Lp (1 ≤ p < 4) are continuous by the interpolation
theory [15, Proposition 2.2].

For each n ∈ N, we set

En := span {sin jx sin kt, sin jx cos kt : 0 < j ≤ n, |k| ≤ n} .
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Then {En}n is an increasing sequence of finite dimensional subspace of E with ∪∞
n=1En being

dense in E. Let us note that this sequence is compatible with the decomposition E = E− ⊕
E0 ⊕ E+, i.e., the orthogonal projection onto En commutes with P−, P 0 and P+ for every
n.

3.2.2. The functional and two decompositions of the space. Consider the functional
Φ defined on E by

Φ(u) := 1

2

∫
Q

(u2
x − u2

t )dxdt −
∫

Q

H(x, t, u)dxdt (16)

= 1

2
(‖P+u‖2 − ‖P−u‖2) − Ψ (u) , (17)

where H(x, t, ξ) := ∫ ξ

0 h(x, t, s)ds, Ψ (u) := ∫
Q

H(x, t, u)dxdt . Under the conditions (h1)

to (h3), it is clear that Φ(u) is a C1 class functional on E with 〈∇Φ(u), v〉E = 〈(P+ −
P−)u, v〉E − ∫

Q h(x, t, u(x, t))v(x, t)dxdt .

From now on, let G, G0, b0 and b be as defined in the statement of Theorem 21. Then
define Ψ1 ∈ C1(L2, R) by Ψ1(u) := ∫

Q
G(x, t, u)dxdt , and let S∞ : L2 → L2 be the

bounded self-adjoint operator defined by S∞ u := b u, let S : E → E be the bounded self-
adjoint operator defined by 〈S u, v〉E = 〈S∞ u, v〉L2 for all u, v ∈ E and define

L := P+ − P− − S . (18)

We observe that 0 is at most an isolated point in σ(L) and 0 ∈ σ(L) if and only if b ∈ σ(�).

The operator L = P+ − P− − S yields an orthogonal decomposition E = X+ ⊕ X0 ⊕ X−
with X0 = ker L and X± corresponding to σ(L) ∩ R± respectively. Here we have

X+ :=
{
u ∈ E : u(x, t) =

∑
j2−k2>b

ukj sin jxeikt

}
,

X0 :=
{
u ∈ E : u(x, t) =

∑
j2−k2=b

ukj sin jxeikt

}
,

X− :=
{
u ∈ E : u(x, t) =

∑
j2−k2<b

ukj sin jxeikt

}
.

We have dim X0 < ∞ (note that b > 0). Similarly we define the following operators:

L0 := P+ − P− − S0 ,

S0 : E → E , 〈 S0u, v 〉E :=
∫

Q

b0 u(x, t)v(x, t)dxdt (u, v ∈ E) .
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We also consider the decomposition E = X+
0 ⊕ X0

0 ⊕ X−
0 determined by the spectral projec-

tions related to L0 (X0 = ker L0 and X±
0 corresponds to σ(L) ∩ R±):

X+
0 :=

{
w ∈ E : w(x, t) =

∑
j2−k2>b0

ukj sin jxeikt

}
,

X0
0 :=

{
w ∈ E : w(x, t) =

∑
j2−k2=b0

ukj sin jxeikt

}
,

X−
0 :=

{
w ∈ E : w(x, t) =

∑
j2−k2<b0

ukj sin jxeikt

}
.

3.3. Proof of the main theorem. Since a non-zero critical point of the function Φ

defined by (16) is a weak solution to (WE), our main theorem will be obtained by applying
the abstract existence theorem (Theorem 12) to Φ. To do so, we shall verify step by step that
the assumptions in Theorem 12 are satisfied by our variational framework described in the
preceding subsection.

3.3.1. Preliminaries. For our purpose, we prepare the following technical, but
straightforward, lemmas.

LEMMA 22. Suppose that (h1) to (h3) hold. Then, Φ satisfies (Φ8) (hence (Φ5)),
with Φ1 = −Ψ1, H := L2(Q) and L in (18). Moreover, if (C1) holds in addition, then Φ

satisfies (Φ8′) (hence (Φ6)).

PROOF. The conditions (a) and (c) in (Φ7) are satisfied by our framework described in
Section 3.2. As to (b), our functional Φ defined in Section 3.2 is indeed of the form described
in (c) (cf. (17)). The convexity of Ψ follows from ∇H Ψ (u) = h(x, t, u) and the condition
(h2). Other conditions in (b) are also readily seen to be satisfied.

Next we verify the extra condition in (Φ8). Since Ψ1(u) = ∫
Q

G(x, t, u)dxdt , we have

∇H Ψ1(u) = g(x, t, u). On the other hand, the condition (h3) implies that for every ε > 0
there exists some constant Cε > 0 for which |g(x, t, ξ) | ≤ ε |ξ | + Cε holds for every ξ ∈ R
and (x, t) ∈ Q. Therefore we obtain ‖∇H Ψ1(u)‖H ≤ ε C ‖u‖H + C′

ε and so ∇HΨ1(u) =
o(‖u‖H) ( as ‖u‖H → ∞). Hence we have ‖∇Φ1(u)‖E = o(‖u‖E) ( as ‖u‖E → ∞).

Hereafter suppose that (C1) holds. Then ∇Φ1 and ∇HΨ1 are clearly bounded. Finally
we shall give a proof of |Ψ1(u)| → ∞ ( u ∈ ker L, ‖u‖E → ∞ ), since we could not find
a proof in the literature. Since dim ker L < ∞, we set m := dim ker L and take a complete
orthonormal system {ej }mj=1 in ker L. Let {un}n ⊂ ker L such that ‖un‖E → ∞ (as n →
∞). Then there exists {λn}n ⊂ Rm such that un(x, t) = λn · e(x, t) for (x, t) ∈ Q and |λn| =
‖un‖E → ∞ (n → ∞) where e(x, t) := t (e1(x, t), · · · , em(x, t)). We let {uk}k and {λk}k
are arbitrary subsequences of {un}n and {λn}n, respectively. Since λk/|λk| is bounded in Rm,
there exist a subsequence {λkl }l ⊂ {λk}k and 0 	= λ ∈ Rm such that λk/|λk| → λ as l → ∞.
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We define Q+ := {(x, t) ∈ Q : λ · e(x, t) > 0}, Q− := {(x, t) ∈ Q : λ · e(x, t) < 0}
and Q0 := {(x, t) ∈ Q : λ · e(x, t) = 0}. We can show meas(Q \ Q0) > 0. Indeed if
meas(Q \ Q0) = 0, then we obtain by Lebesgue’s theorem

lim
l→∞

‖ukl ‖L1

|λkl |
=

∫
Q0

lim
l→∞

∣∣∣∣ λkl

|λkl |
· e(x, t)

∣∣∣∣dxdt = 0 .

On the other hand, infl ‖ukl ‖L1/|λkl | > 0 because of dim ker L < ∞ and ‖ukl /|λkl |‖E = 1,
this yields a contradiction.

It is easy to see that G is uniformly bounded below by the assumption (C1). Therefore,
by Fatou’s lemma, we obtain

lim inf
l→∞

∫
Q+∪Q−

G(x, t, ukl )dxdt ≥
∫

Q+∪Q−
lim inf
l→∞ G(x, t, ukl )dxdt = +∞

since |ukl (x, t)| = ||λkl |[(λkl /|λkl |) · e(x, t)]| → ∞ as l → ∞ for every (x, t) ∈ Q+ ∪ Q−
and G(x, t, ξ) → +∞ as |ξ | → ∞. On the other hand we have

lim inf
l→∞

∫
Q

G(x, t, ukl )dxdt

≥ lim inf
l→∞

∫
Q0

G(x, t, ukl )dxdt + lim inf
l→∞

∫
Q+∪Q−

G(x, t, ukl )dxdt ,

and so we obtain liml→∞
∫
Q G(x, t, ukl )dxdt = +∞. Thus we have shown that every sub-

sequence of {un}n has a subsequence for which Ψ1 diverges to ∞. Hence we are done. �

LEMMA 23. If (a1) or (a2) of (C2) holds and h satisfies the conditions (h1) ∼ (h3),
then Φ satisfies (a) in Proposition 18 and (b1) or (b2) in Lemma 19, respectively.

PROOF. We only prove that Φ satisfies (a) and (b1) of Lemma 19 when (a1) of (C2)
holds, since we can similarly prove the other case. By Lemma 22, Φ satisfies (Φ8) with

Ψ1(u) = ∫
Q G(x, t, u)dxdt . Since dim X0 < ∞ and G(x, t, ξ) ≥ c2 |ξ |α+1 − d2 |ξ |, there

exists C1, C2 > 0 such that Ψ1(u
0) ≥ C1 ‖u0‖α+1

E − C2 ‖u0‖E . By the assumption α and β

satisfies (13), hence we can choose λ, p and q satisfying (14) and (15) in Lemma 19. Since

the inclusions E± ↪→ Lp (1 ≤ p < 4) are continuous and dim X0 < ∞, with the aid of
Hölder’s inequality and Young’s inequality, we have for every u, v ∈ E∫

Q

|u|β · |v|dxdt ≤ ‖u‖β

Lpβ ‖v‖Lq ≤ C‖u‖β
E ‖v‖E (19)

≤ C′(‖u‖pβ

E + ‖v‖q

E) (20)

where C and C′ are positive constants. (19) proves that the condition (a) in Proposition 18 is

satisfied. Next we set u = u0 + u− + u+ where u0 ∈ X0, u± ∈ X±. By the inequality (20)
and the condition |g(x, t, ξ)| ≤ c1|ξ |β + d1 , we obtain

|Ψ1(u
0 + u− + u+) − Ψ1(u

0)|
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≤
∫

Q

∫ 1

0
|g(x, t, u0 + s(u+ + u−))| · |u+ + u−|dsdxdt

≤ C(‖u− + u+‖β+1
Lβ+1 + ‖u− + u+‖L1) + C

∫
Q

|u0|β · |u− + u+|dxdt

≤ C(‖u− + u+‖β+1
E + ‖u− + u+‖E + ‖u0‖pβ

E + ‖u− + u+‖q
E)

and

|〈∇H Ψ1(u
0 + u− + u+), u+〉H |

≤
∫

Q

|g(x, t, u0 + u− + u+)| · |u+|dxdt

≤ C(‖u+‖β+1
Lβ+1 + ‖u+‖L1) + C

∫
Q

|u0 + u−|β · |u+|dxdt

≤ C(‖u+‖β+1
E + ‖u+‖E + ‖u0 + u−‖pβ

E + ‖u+‖q

E)

where C is a positive constant. Finally we similarly obtain

|〈∇H Ψ1(u
0 + u− + u+), u0 + u−〉H |

≤
∫

Q

|g(x, t, u0 + u− + u+)| · |u0 + u−|dxdt

≤ c1‖u0 + u−‖β+1
Lβ+1 + d1‖u0 + u−‖L1 + C

∫
Q

|u+|β · |u0 + u−|dxdt

≤ C(‖u0 + u−‖β+1
E + ‖u+‖β+1

E ) .

�

3.3.2. Proof of the main theorem. Now we begin with the proof of our main theorem,
Theorem 21. We concentrate on the part of cases of assumption (A3) and (A4) where the
condition (C2) is concerned. To this end, we verify that the functional Φ or −Φ satisfies the

condition (Φ1) to (Φ̃4) and the dimension condition (10). Once these conditions are verified,
then we can apply Theorem 12 to Φ or −Φ and obtain a non-zero critical point of Φ, which
yields a non-trivial weak solution to (WE).

In what follows, when we speak of the condition (A3) or (A4), we understand that either
(a1) or (a2) of (C2) holds.

1. Condition (Φ1). Under the conditions (h1), (h2), (h3) and (C2), Lemma 22 implies
Φ satisfies (Φ8) and (Φ5), while Lemma 23 shows that Φ satisfies the condition (a) in Propo-
sition 18 and (b1) or (b2) in Lemma 19, according as (a1) or (a2) of (C2) holds. Therefore,
noting that (b1) or (b2) in Lemma 19 implies the condition (b) in Proposition 18, Φ satisfies
(WPS)∗c for every c ∈ R by Proposition 18 and so −Φ satisfies (WPS)∗c for every c ∈ R
provided (A3) or (A4) holds.

2. Condition (Φ2). This condition is clearly satisfied under the condition (h3).
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3. Condition (Φ3). Since the behavior of h(x, t, ξ) as ξ → 0 is solely concerned with
the local linking property of Φ, the condition (Φ3) is already proved in [2]. For convenience
sake, we quote here the relevant results.

LEMMA 24 ([2, Lemma 5.4]). If h satisfies the conditions (h1) ∼ (h3) and b0 = 0,
then Φ has a strong local linking at 0 w.r.t. (V0,W0) with V0 := E+ ,W0 := E0 ⊕ E−.

LEMMA 25 ([2, Lemma 5.6]). If h satisfies the conditions (h1) ∼ (h3), b0 > 0 and
b0 	∈ σ(�) or (C3) or (C4) holds, then Φ has a local linking at 0 w.r.t. the following (V0,W0)

in each of the cases below:
V0 := X+

0 , W0 := X−
0 if b0 	∈ σ(�)

V0 := X+
0 , W0 := X0

0 ⊕ X−
0 if (C3)

V0 := X+
0 ⊕ X0

0, W0 := X−
0 if (C4)

Moreover, Φ satisfies the condition (ii) of (Φ3).

Note that the last assertion of Lemma 25 follows from Lemma 17 and the fact that there exists
a constant a > 0 such that H(x, t, ξ) ≥ a|ξ |2 for all (x, t, ξ).

4. Condition (Φ̃4). By Lemma 22 and Lemma 23, the assumptions in Lemma 19

are satisfied and hence Φ or −Φ satisfies (Φ̃4) with (W∞, V∞) = (X0 ⊕ X−,X+) or
(W∞, V∞) = (X0 ⊕ X+,X−), respectively according as (a1) or (a2) of (C2) holds.

5. Dimension condition. In each of the cases in (A3) and (A4), we can verify that
the condition (10) holds by using Lemma 5.7 in [2], which seems too lengthy to be quoted.
Here we shall deal with only two cases since the other cases would be similarly handled.
First assume that case (1) of (A3) holds. Namely, suppose that b0 < b and (a1) of (C2)

hold. Then Φ has a local linking at 0 w.r.t. (W0, V0) = (X−
0 ,X+

0 ) and satisfies (Φ̃4) w.r.t.

(W∞, V∞) = (X0 ⊕ X−,X+) (see above). Since we are assuming b ∈ σ(�), the eigenspace

E(b) of � pertaining to b is contained in X0. On the other hand, the definition of X0
0, X−

0

and the assumption b0 < b imply X0
0 ⊕ X−

0 ⊂ X−. Moreover, E(b) ⊂ En for large n ∈ N.
Therefore, if n is large enough, we obtain

En ∩ (X0
0 ⊕ X−

0 ) ⊂ En ∩ X− � (En ∩ X−) ⊕ E(b) = En ∩ (X− ⊕ X0) .

Hence

lim inf
n→∞

[
dim En ∩ W∞ − dim En ∩ W0

] ≥ dim E(b) > 0 ,

and hence (10) holds in this case.
As another case, consider the case (3) of (A4). Namely assume that (C4), b0 ≤ b and

(a1) of (C2) hold. Then Φ has a local linking at 0 w.r.t. (W0, V0) = (X−
0 ,X0

0 ⊕ X+
0 ) and

satisfies (Φ̃4) w.r.t. (W∞, V∞) = (X0 ⊕ X−,X+). Since we are assuming b ∈ σ(�), the

eigenspace E(b) of � pertaining to b is contained in X0. On the other hand, the definition of

X0
0, X−

0 and the assumption b0 ≤ b imply X−
0 ⊂ X−. Moreover, E(b) ⊂ En for large n ∈ N.
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Therefore, if n is large enough, we obtain

En ∩ X−
0 ⊂ En ∩ X− � (En ∩ X−) ⊕ E(b) = En ∩ (X− ⊕ X0) .

Hence

lim inf
n→∞

[
dim En ∩ W∞ − dim En ∩ W0

] ≥ dim E(b) > 0 ,

and hence (10) holds in this case.
In other cases, the dimension condition can be similarly verified by considering −Φ

instead of Φ if (a2) of (C2) is assumed.

3.3.3. Supplement. Here we sketch a proof for the case of (A1) and (A2), since the
condition (Φ4) in [2] seems insufficient for the proof of Proposition 2.3 in [2]. In the case
of (A1) and (A2), it is already proved in [2] that Φ or −Φ satisfies (Φ1), (Φ2), (Φ3) and
the dimension condition. Moreover, Lemma 13 yields (Φ̃4) (with λ = 1) because b 	∈ σ(�)

and so Φ satisfies (Φ5). Hence we can apply our abstract theorem to Φ or −Φ to obtain a
non-trivial weak solution to (WE).
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