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Abstract. Existence of atime-periodic solution to a non-linear wave equation with resonance is established
by a variational method. We consider the 27 -periodic weak solution to awave equation Ou(x, t) = h(x,t, u(x,1))
of space dimension 1, where h(x, ¢, ) is asymptotically linear in & both as&é — 0or ¢ — oo, with the co-efficient
as& — oo belonging to o (O). Itis proved that there are some cases, where the difference of A (z, x, &) fromitslinear
approximation is not bounded, that guarantee the existence of a non-trivial weak solutions. The proof is based on
local linking theory and (WPS)* condition for the existence of anon-trivial critica point of afunctional.

1. Introduction

The purpose of this paper isto prove the existence of anon-trivial time-periodic solution
to the following non-linear wave equation (WE) with asymptotically linear non-linear term h
(O := 982/01% — 32/9x2):

Ou(x,t) = h(x,t,u(x, 1)), O<x<mteR),
(WE) u©,t) =u(r,t) =0 (t e R),
u(x,t+2r) =u(x,t) O<x<mteR).

Many authors treated this problem by variational methods under various conditions on
h(x,t,&). For example, Rabinowitz [13] dealt with i (x, ¢, &) = — f (&) where f (&) isstrictly
monotonically increasing in & and is super-linear both at 0 and co. (Here f (&) is said super-
linear at oo if [05 f(mdn < 0&f (&) for some constant 6 € [0, 1/2) and for & with sufficiently

large |£].) Tanaka[14] discussed in detail the case where h(x, 1, &) = +|£|P~1& for some
p > 1. [5] and [9] are also concerned with h(x, ¢, §) that is super-linear in & as |§] — oo.
(We would like to note that the authors of these papers investigated the existence of infinitely
many non-trivial solutionsin the super-linear case.)

On the other hand, as for the case of i (x, ¢, £) that satisfies |h(x, t, £)| < C1]&| + Co,
Brezis [3] gives a good survey of earlier fundamental results for this probrem. Chang, Wu
and Li [4] is the pioneering work on the multiple existence of solutions to such probrems. Li
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and Szulkin [8], Kryszewski and Szulkin [7] and Bartsch and Ding [2] considered the case
whereh(x, t, ) isasymptoticaly linear in £ bothasé — 0and |£] — oco. However, they all
assumethat if h(x,1,&) = b& + 0(§) as|&] — oo (uniformly in (x, 7)) and b € o (O), then
the “error” h(x,t, &) — b& is bounded. The main purpose of this paper is to show that this
boundedness condition can be relaxed so asto allow the caselike h(x, ¢, £) = b€ + |£|¥sgné
for 0 < o < 1. (To be rigorous, |£|*sgné should be deformed to a C? class function in a
neighbourhood of 0.) Although the method of proof in this paper owes very much to that in
[2], some generalizations and supplementations are necessary.

In thefollowing Section 2, we prepare an abstract result on theline of local linking theory
concerning the existence of anon-trivial critical point of aC* functional. Applying thisresult,
we prove our main theorem in Section 3.

Although our notations are standard, we would like to note here that B.X denotes
the closed r-ball of a Hilbert space X with center 0, while B(u, r) denotes the open r-
neighbourhood of «. 9.5 is used to designate the topological boundary of S.

2. Abstract theory

Throughout this section, E denotes a Hilbert space with inner product (-, -), and &
denotes a C! class functional on E. The gradient V& (u) (u € E) is considered to be
an element of E through the Riesz representation theorem. A subset E is defined by
E:={u€eE : V&) # 0}. Thenrecal that amapV: E — Eiscaled a pseudo-gradient
vector field for @ if V satisfies the following conditions on E:

{ IVl = %IIVGD(M)II,
(VO (), V) = %IIVGD(M)IIZ-
It iswell known that there exists alocally Lipschitz continuous pseudo-gradient vector field

V for every C1 class functional @ ([12, lemma 6.1]). For such V, the ordinary differential
equation

d -
Zi’) — V@), uw®=uo (uo < E)

hasthe unique solution which ismaximally defined in the positivedirection of . Thismaximal
solution will be called the pseudo-gradient flow defined by V and (starting from) ug.

2.1. A region enclosing pseudo-gradient flows. We start with the following ssmple
observation about pseudo-gradient flows.

PROPOSITION 1. Let f: E — R be another C?* class functional on E and let U :=
{x € E| f(x) < 0} be non-empty. Suppose that

(VO(u),Vfwm) >0 onalU. (@8]
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Then there exists a locally Lipschitz continuous pseudo-gradient vector field V for & for
which every pseudo-gradient flow starting from a point in U remainsin U aslong as it is
defined.

To prove this proposition we prepare the following

LEMMA 2. Let @, f satisfy (1). Then, there exists a locally Lipschitz continuous
pseudo-gradient vector field V for @ on E, for which

(Vw), VW) >0 ondU )

holds.

PROOF. Since @, f are C! classand satisfy (1), thereexistsay, > Ofor every u € dU
such that

IV®(u) — Ve )|l <1/2[Veu)l,

lu — vl <Vu=>{
(Vo (), V f(v)) > 0.

Set Y := U,eqy B, vu) D dU. Then the covering {B(u, y,) | u € dU} of Y possesses
a locally finite refinement {U, | @« € A} so that there exists u, € dU for each « € U,
satisfying Uy C B(tg, Yu,)- L€t {¢a}aea bealocaly Lipschitz continuous partition of unity
onY wrt {Uy | a € A}, and set Vi(u) 1= ) ,cp @a(u)VP(uy) foral u € Y. Then
V1 is alocally Lipschitz continuous pseudo-gradient vector field for @ on Y and satisfies
(2). On the other hand, since the functional @ is of C? class, there exists alocally Lipschitz
continuous pseudo-gradient vector field V, for @ on E. Let {81, B2} be alocally Lipschitz
continuous partition of unity subordinate to the open covering Y U (E \ aU) of E. Then
V(u) := B1(u) Va(u) + B2(u) Vo(u) (u € E) isalocally Lipschitz continuous pseudo-gradient
vector field for @ on E and satisfies (2). O

Now we begin with the

PROOF OF PROPOSITION 1. By the preceding Lemma, we may takealocally Lipschitz
continuous pseudo-gradient vector field V for @ on E, for which (2) holds. Suppose ug € U
and let u(r) be the gradient flow starting from ug and defined for ¢ € [0, T') (T may be c0).
If f(u(t)) = O0forsomet € (0, 7T), thereexistsary € (0, T) such that f(u(zg)) = 0 and
fu(t)) < Oforeveryr € (0,19). Sincer — f(u(z)) is differentiable at 7o, this implies
0 < (VA u(t0)), u'(to)) = —((Vf)(u(to)), V(u(to))). On the other hand, f (u(t0)) = 0
meansthat u(tg) € aU and hence (V (u(tg)) , V f (u(t0))) > 0by (2). Thus the existence of ¢
such that f(u(z)) = 0 leadsto acontradiction, so we are done. O

REMARK 3. After the authors finished this work, they noticed that P. Mgjer [11] con-
sidered a “repelling” condition that is more genera than (1). However, under this genera
condition, the existence of a pseudo-gradient vector field (in the sense defined above) as in
Lemma2 is not necessarily guaranteed.
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Although in Proposition 1 the region U is assumed to have a smooth boundary, similar
results will hold for regions with piecewise smooth boundaries. For later use, we record one
such occasion.

PROPOSITION 4. Suppose that there exists an orthogonal decomposition E = V, @
W, and @ satisfies the following condition (R). Then there exists a locally Lipschitz contin-

uous pseudo-gradient vector field V for @ on E, for which the region
U = {(Voo: Woo) | lveoll < Max{Ry, 8lweol|*}} ©)

encloses pseudo-gradient flows starting from its elements.
(R) Thefollowing (i), (ii) hold for some A > 0, § > 0, and R > O, where

U= Weo+ Voo (Wxo € W, Vo € Vo).

w .
ﬁ> >0 (if [vooll = 8llweoll* . Vool = R1)
o0

(i) <Vq>(u), Voo — A82

(i) (VOW), veo) >0 (if lussll = Sllwall™, veoll = R1)

PrRoOF. Note that the condition (R) roughly says that the inner product of the gradient
vector V@ and the outward normal vector to U is positive on dU, hence dU “repels’ the
gradient flow starting from inside of U. (One should recognize that except for points with
lveoll = R1, AU is smooth).

We state only a sketch of proof. Asin the proof of Lemma 2, we can construct a pseudo-
gradient vector field V on E which satisfies the condition (R) with V& replaced by V. Then
supposeug € U and let u(t) bethe gradient flow determined by V that startsfrom ug. If there
existsas > 0 for which u(f) ¢ U, then there existsatg e (0, 7] such that u(tp) € U and
u(t) € U forevery ¢ € [0, 19). Recall that u(z) can bewritten uniquely asu(r) = v(t) + w(z),
by av(t) € Voo and aw(t) € Wx. According as §|w(to)||* > Ry or §|lw(to)||* < Ru,
consider £ (1) := lu(®)[1? — 82[lw(®)[|%* or f(t) := [lv(t)||> — RZ, respectively (the case of
Sllw(ro)||* = Ry will be treated later). Then f(f0) = Oand f(r) < 0if r < rg issufficiently
closeto rp. Hence f/(70) > 0O, which contradicts the condition (R) with « and V& (1) replaced
by u(t0) and V (u(to)), respectively. (Indeed, for example, if Ry < §|lw(to)||*, f'(to) =
—2(V (u(t0)), v(to) — A8%w(i0)/ |w(t0)I>~?*).)

In the case where Ry = §||w(fo)||*, use the fact that there exists an increasing sequence
{t}22, satisfying x < o and Ry < 8]lw(t)||* for all k or Ry > §|lw(x)||* for al k. By using
this sequence we are led to the same contradiction. ]

REMARK 5. Let y be a positive smooth functional on E and consider a differential
equation

d -
I:l(tt) =—yw®)Vu@), u@) =ug (uoe€kE) 4)
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instead of
du(t)
dt

Then by an essentially same argument, we can see that the conclusions of Propositions 1, 4
will still hold if the pseudo-gradient flow is replaced by the solution to (4).

=—V@@), u@ =uo (uoekE).

For later use, we note the following.

COROLLARY 6 (Homotopy to a constant map in the negative region). Suppose that
@ satisfies the condition (R) in Proposition 4 and let U be asin (3). In addition, assume that
the following conditions hold:

(@) @ ishounded on every bounded sets.

(b) Foreverye, M > 0withe < M < oo,

inf{|IVo )| | u e ® (M, —¢])} > 0.
(c) Under the notation that O isthe orthogonal projection onto W,

lim inf{®u) |u e U, |Qxul > R} = —00.
R—o00

Then for each r > 0, every continuousmap ¢: S" — U N{u € E|®w) <0, |[ul| <r)
withn < dimWy — 1 (§" :n-dimensional usual sphere) is homotopic to a constant map in
UN{ueckE|®@u)<0}.

PROOF. Let ¢ be as in the statement of the corollary. Then there exists a constant
& > 0 satisfying @ o ¢ < —e. On the other hand, from the assumption (c), there exists
aconstant R, > Osuchthat u € U, |Qcoul|l > R2 imply ®(u) < 0. By the definition
of U, wecanseethat u € U and ||Qcoul < Rz imply the boundedness of |lu||. Hence
Co :=inf{d(u) | u € U with || Qcout]] < R2} € R iswell-defined by the assumption (a) in
the Corollary. By Proposition 4, there exists a pseudo-gradient vector field V for @, for which
the maximd solution o (u, t) of the differential equation

do(u,1) _ V(o(u,1)
dt Ve, )’

starting from any point u of ¢(S") remainsin U aslong asit exists, and the value of @ on this
flow is strictly less than @ (¢(u)) < —e for t > 0. Moreover, by the assumption (a) and (b),
o(u,t) is defined for every u € ¢(S") and r > 0 with inf;>o @ (o (u, 1)) = —oo. Therefore,
by rescaling the time variable ¢, we may assume that o: ¢(S") x [0,1] > U N{u € E |
@ (u) < 0} iscontinuouswitho (1,0) = u and Co — 1 < @ (o (u, 1)) < Co (Vu € ¢(5")).
Hence || Qooo (1, 1)|| > R2 holdsfor all u € ¢(S5™). By virtue of the assumption (c), we may
also assume that the image o (¢(S") x [0, 1]) iscontained inaball {u € E | |u] < C} for
some constant C.
Next weset fort € [1, 2] andu € ¢(S"),

o(u,t): =2—-t)o(u,)+ (t —1) Q0 (u,1).

o(u,0)=u
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Thus we have defined o on ¢(S") x [0, 2] and it is easy to see that o is continuous there.
Moreover, since || Qooo (u, 1)|| = [|Qooo (1, D)|| > Ro fort € [1, 2], ®(o(u,t)) < 0 for
(u, 1) € (8™ x [1,2],and o (1, 2) € Wo, for u € ¢(5™).

Next, wedefineo (u, 1) := {(t — 2)R2/|lo (u, 2)|| + (3—1)}o (u, 2) for (u, t) € p(S") x
[2, 3]. Then o iscontinuous on ¢(S") x [0, 3], 0 (u, t) € Ws, @(o(u,t)) < Ofor (u,t) €
@(8") x [2,3],and [lo (u, 3)|| = R2.

Suppose now that dimW,, < oco. Then o (-, 3) o ¢ is a continuous map from S” to a
sphere of radius R in the finite dimensional Euclidean space W,. Since we have assumed
that n < dimWy — 1, this map is homotopic in this sphere to a constant map. (In the
terminology of algebraic topology, thisis expressed as the triviality of the homotopy group
7,(S%) (n < k). Seeeg., [6, Cor. 4.9].) Denoting this homotopy by H (x, 7) for (x,1) €
S" x [0, 1] with H(x, 0) = o (¢(x), 3) (x € §*) and H (x, 1) aconstant point in that sphere.
Collecting the parts we have made so far, we set

n) o(p(x),4r), (0=<t<3/9),
P Y Hoa—3), @a<t<1).

Then t givesthe desired homotopy.

If dim Wo, = 0o, we use the compactness of o (¢ (S5™), 3) to obtain afinite dimensional
subspace W of W, with dimW — 1 > n for which the orthogonal projection Py onto W
Makes SUP,,c, (o (sm),3) | Pww — w]| sufficiently small so that the segment joining o (u, 3) to
Pwo(u,3) iscontained in U N{u € E | |Qoou|l > R2}. Therefore we can construct a
homotopy inU N{u € E | @(u) < 0} from o (-, 3) to acontinuous map with valuesin afinite
dimensional subspace of W,,. Thuswe are led to the case already discussed. O

2.2. Local linking and the existence of a critical point. First let usrecall the defini-
tion of local linking.

DEFINITION 7. Let ® beaC? functional on E. Then we define as follows.
(i) If thereexist an orthogonal decomposition £ = Vo@Wp andanr > 0 satisfyingthe
following condition, @ issaid to havealocal linking at O with respect to (Vp, Wo):

{ &) >0 (Yue B Vp), -

dw) <0 (Vue B W),
where, B, Vo :={u € Vo : |lu|| <r}, B-Wo:={u€ Wo : |lull <r}.

(i) @ issaidto haveastronglocal linking at O w.r.t. (Vo, Wp) if thereexistsanr > 0
satisfying (5), and the following properties hold for some e > O:

{@(u) >¢ on 9B Vo, ©

D) <—e on J9BWy.

Needlessto say, O isacritical point of @ if it hasalocal linking at O.
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The notion generalizing the so-called Palais-Smale condition has been introduced to
obtain a useful conclusion from the local linking property.

DEFINITION 8. Suppose that a sequence {E,}, of finite dimensional subspaces of E
satisfies

00
Ei1CcE;Cc---CE,C---CE, EZUEn’ (7

n=1

and let P, denote the orthogonal projection from E onto E,,. Then,
(i) asequence {u;}; iscaled a(PS)} sequence (w.r.t. @ and {E,},) provided u; €
Ey;,nj— o0, ®(u;)— cand P, (V@ (u;)) — 0(asj — o0);
(i) @ issaid to satisfy the (WPS) condition if every (PS); sequence has a subse-
guence weakly convergent to acritical point u of @ with @ (u) = c.

Thefollowing easy paraphrase is useful in proving the existence of anon-trivial critical point.

LEMMA 9. Let{E,}, beasin Definition 8 and let ¢ satisfy the (WPS)* condition for
every ¢ € R. Moreover, suppose that O is the only critical value of @. Then for any ¢ > 0,
M > 0andng € N, thereexist ann1 > ng and b > 0 such that

IVO, )| = b, Yued, ([-M,—s]) U, (e, M]) ()

holds for everyn > n1, where @, := @|g,. (Notethat V&, (u) = P,(V®(u)) for u € E,.)

Now let us collect the conditions relevant to our abstract theory about the critical points.

(@1) With respect to a sequence {E, }, of finite dimensional subspaces satisfying (7),
@ satisfies (WPS)?: condition for every ¢ € R.

(®2) @ isbounded on every bounded set.

(@3) Thereexistsan orthogonal decomposition E = Vo @ Wy that satisfies one of the
following conditions:

(i) @ hasastronglocal linking at O w.r.t. (Vo, Wo).

(i) @ hasaloca linking at 0 w.r.t. (Vo, Wp), and for some r > 0 with the
property (5), every (PS)g sequencein By, E has astrongly convergent sub-
sequence.

(54) There exists an orthogonal decomposition £ = V. @ W that satisfies the

following (i)~(iii) for somex > 0,8 > 0, R1 > O:

(i) <Vq>(u), Voo — A2 —2
llwoo |22+
R1),
(i) (VOW), veo) >0, (i [lusoll = Sllwooll* . llveoll = Ru).
(iii) for every ¢ < O there existsan R > 0 such that @ () < ¢ provided
lvss |l < Sllweoll* and lweo|| = R, where

> >0, (if Jvoll = Sllweoll* s llvosll =

U= Woo+ Voo (Woo € Wso, Vo € Vo).
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REMARK 10. Theconditions (®1) to (&3) arethesame asthosein[2], while(&l) is
ageneralization of (®4) in[2]. (i) and (ii) in (4) is the same as in condition (R) appearing
in Proposition 4.

When we assume the conditions (& 1) and (& 3), we adopt the following notations:

@, =P, ,
& :={ueck,: Pu)=c}, (Pn), :={ueky: ®u)=ct,
E}:=E,NVo, E?2:=E,N W,

Bl :=B,ENE, (j=12, S,:=aB] (j=12).

We say that the sequence {E,}, in (®1) is compatible with the orthogonal decomposition
Vo® Wo [resp. Voo @ Weo] (@1) if

E, = (En N VO) @ (En N WO) [resp E, = (En N Voo) @ (En N Woo)] (9)

holdsfor every n.
The following lemma finishes the preparation for our main result in this section.

LEMMA 11. If & satisfies (@4) with {E,}, being compatible wr.t. (Vs & Wao), then
@ |, satisfies (®4) With (Voo N E,, Woo N E,,) instead of (Voo @ Wao) for everyn € N.

PROOF. We consider only the condition (i) of (@4), because the condition (i) can be
proved similarly. We set £ (1) = [|voo |2 — 82||wool|?* Where u = voo + Woo, Voo € Vo,
Weo € Woo. Wecanshow that V f (1) € E, foreveryn e Nifu € E,. Indeed, (V f(u), z) =
2001, Boo) — 2082wl [P ~2(wl, o) fOr every z € E;- whereu = v/ + w’, € E, and
Z = Voo + Woo. SINCE{E,}, in (D4) iscompatibleW.r.t. (Voo ® Wao), Py Poo = Pso P, Where
P,: E — E, and P : E — V4 areorthogonal projections. Hence we have (v, o) =
<PooPn”’Poo(1_ Py)z) = <P11Poou’(1_ Py) P 2) = <(1_ Py) Py P u, Pxoz) = 0 and
(wl, Woo) = O similarly. Therefore V f(u) € E, foreveryn e Nifu € E,.

On the other hand since (V@ (1), V f(u)) > 0if f(u) = 0and || Pou| > R1 by the
condition (i), we obtain (P, V® ), V f (1)) = (V& (u), P,V f(u)) = (VO ),V fu)) >0
ifu € E,, f(u) =0and || Psout| > R1. ]

Now we can state and prove our main abstract result. The line of argumentsis similar to
that for Theorem 2.1 of [2].

THEOREM 12. Let @ bea C! classfunctional on a Hilbert space E and let the condi-
tions(®1) to (54) besatisfiedwith { E,,},, in (@ 1) compatiblewith the decomposition Vo® Wo
in(®3) and Voo @ Woo in (54) (cf. (9)). Moreover, suppose that

limsup[dimE, N Weo —dimE, N Wp] > 0 (10)

n—o0

holds, and the set U defined by (3) contains By, E, where r isthe number appearing in (& 3).
Then @ has at least one non-zero critical point.
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PrRoOOF. We prove this theorem by contradiction. So suppose that there exist no critical
points other than the origin. First we consider the easier case where (i) of (@3) holds. Then
thereexistanr > Oandane > O satisfying (6). Supposedim Wp > 0. Thendim E,NWy > 0
holds for large n because of the compatibility of {E,}, with the orthogona decomposition
Vo® Wo. By the assumption (10), there existsanincreasing sequence {n ; } ; of natural numbers
satisfyingdim E,,; N Woo —dim E;,; N Wo > 0. We may also assumethat dim £,,; N Wo > 0.
Then, by virtue of Lemma 9 and Lemma 11, we may apply Corollary 6 with E replaced by
En; = (En; N Vo) @ (En; N Weo) and @ with Py for sufficiently large j. Therefore, by
considering a homeomorphism ¢ from a standard sphere to S,f/., we can obtain a homotopy
T Sfj x [0,1] — E,,; from the identity map S,fj — E,, to aconstant map. Note that
because of our assumption (@4) and the proof of Corollary 6, we may suppose that there
exists a constant C independent of j such that the image of each 7; is contained in the ball
{u € E| |lul| < C}andhence M := sup{®(u) | |lu|| < C} iswell defined. Indeed, first
choose an R> > O such that u € U with ||Qxoul| > R» satisfies @ (u) < 0, and then set
Co:=inf{@dw) | u € U, |Qcott| < R2} (theinfinum exists by (®2)). Finaly, by (iii) of
(&),thereexisisaconstant C1 > Osuchthatu € U and @ (1) > Co—1imply || Qsout|| < C1,
hence [lu|| < C1+ 8 C3.

Now, since a(B,fj x [0,1]) = (B,%j x {0}) U (ng x (0,1)) U (B,fj x {1}), the map ;
determines a continuous map y; : B(B,fj x [0,1]) = Ey; by the following definition, where

a; denotes the constant value 7 (u, 1) (u € Sfj):

u (uEB,f/,,IZO),
yiu,t) =4 tju,t) (e Sfj, 1 €(0,1),
aj (ueBEj, r=1).

Setlj:={plpe C(B,%j x [0, 1], Ey)), p|3(3rgix[o’l]) = y;}. Note that by the well known

Dugundij extension theorem, there existsa p € I'; with valuesinthebal {u € E;; | [lu] <
C}. Therefore,

c:= inf sup{@) | u € p(B? x[0,1])} <M
pel’; J

holds by the definition of M. By a standard argument (cf. [2, Lemma 3.2]), it can be proved
that p(B,f/, x [0, 1)) N S,}/. # W forany p € I'j. (Notethat dim E,,; N Wo < dimE,,; N Woo <
dimE,; impliesdimE,, N Vo > 0.) Hence ¢ > ¢. On the other hand, co := sup{®(u) |
u € yj(a(ij x [0,1]))} < 0 holds by construction. So, by Ekeland’s mini-max theorem
([12, Theorem 4.3]), there exists a point u; < Ey; such that ¢ < Pp(uj) < M+1 and
V®y, (u;)ll < 1/j. However, this contradicts Lemma.
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In the case where Wy = {0}, then #(0) = 0 and @ (u) > ¢ for u with ||u]| = r.
Therefore, together with (iii) of (54), applying Ekeland’s mini-max theorem ([12, Theorem
4.3]) (in the situation of mountain pass Theorem), we obtain a point u; € E,; such that
& < Py (uj), SUp; Py, (uj) < 00 and IV®n; )l < 1/j. Hence the same contradiction
occurs.

The case where (ii) of assumption (@ 3) holds could be treated similarly asin the proof
of Theorem 1in [10] (cf. also [2, Lemma 3.2]) by using a deformation. In more detail, due
to (@1), (®2) and the assumption that O is the only critical point, there exists a continuous
deformation 7 : E,}/, x [0,1] — Ej; for large j, possessing the following properties where
&> Oisindependeht of j (cf. Lemma9, [10, Lemma 2], [2, Lemma 3.1]):

— lnjGu, ) —ull < r/2foral (u,1) € B EF, x [0, 1];

— For some constant & > 0, @ (n;(u, 1)) > e foral u € B,E,fj \ By 3E.

Then, instead of S,}/_ in the proof above, we obtain p(B,f/ x [0, 1) N7 j(S,}/_, 1) # ¢ for any
p € I';, and the proof similarly goes on. ]

2.3. Almost quadratic, hyperbolicfunctional. In this subsection, we prepare an ab-
stract framework suitable for the treatment of wave equations. The following conditions stat-
ing that @ is*“nearly hyperbolic” are of our primary concern:

(#5) There exist a self-adjoint bounded linear operator L : E — E and a C?! func-

tional @1 on E:

@ @) = 3(Lu,u)+ P1(u),

(0) VOl = o(llul) (as [lull - o0), and [[VP1(u)]| is bounded on ev-
ery bounded set.

(c) 0¢o(L)or0eo(L)isanisolated point of the spectrum.

(®6) Inadditionto (®5), V&, isbounded.

The following two lemmas show that the conditions (@5) and (©6) are nearly sufficient
for (@4).

LEMMA 13. Suppose that @ satisfies (#5) with 0 ¢ o (L) and o (L) N R # ¢.
Then @ satisfies (@4) with A = 1, Vo := X+, and Wa := X, where X¥ is the spectral
subspace w.r.t. L and o (L) N R*. Moreover, —® satisfies(q%f) withA =1, Vo := X~ and
Woo := XT.

ProOF. In correspondence with the decomposition E = X* @& X, we write u =
ut +u foru € E. Since0 ¢ o (L), thereexistsy > Osuch that +( Lu™, u™) > y ||u™||2
for every u* € X*. Letusfixas > Owith0 < 8% < Ty < 1 andlet & = 1. Then by

(b) of (&5), for every e with0 < g1 < l‘s—js thereexistsan R1 > O such that |V&1(u)|| <

1 |lu| for every u € E with ||u|| > Ry. Therefore, if u satisfies ||u™| = 8|lu~| and ||u™|| >
R4, it holdsthat

(VO W), ut —8%u~) > (Lut,u™) — 8% (Lu~,u") + (VO1(u), u™ — 8%u™)
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2 2 =112 2, -
> yllut 1=+ y 8 a1 — eallull Qu | + 82w~ 1)

1
> 2y |lut|? — e1(1 4 a)<1+ 5)||u+||2

1
> 2||u+||2<y - sl<1+ 5)) .

Similarly for u with |[u™| > 8|ju~| and |lu™|| > Ry,

(Vo). ut)y = (Lu™, u™) + (VO1), u™) = ylut |12 — exflullu™|

1 1
=yt ) - el<1+ g)nbﬁu2 > ||u+||2(y - 81(1+ 5)) .

Hence
(VO@), u™ —8%u) >0 if Jut|=58lu"|. [ut|= R
(VO @), u™) >0 if lut|=8u"ll, lu*l=Ra,
and hence the condition (i) and (ii) of (®4) hold.
Next for every e, satisfying 0 < e < %ZBHZL” thereexistsa C> > 0 such that

1
1) = / (Vs(su), wds = o+ Zlul?
0
because of (b) of (@5) and ®1(0) = 0. Thusif |lu™| < §|u"||

D (u) = %(Lu, u) + P1(u)

1 Y. &2
< ULt = 2 24 Zul?+cC
< 2|| el 2||M -+ > lull“+ C2

1 _ Y. _ &2 _
§§||L||82||u ||2—§||u ||2+5(1+32>||u 12+ C2

< %uu—uz{nLnaz — v + 621+ 89} + C2.
Hence for every ¢ < O thereexistsan R > 0 such that @ (u) < ¢ provided [|u™|| < §llu"|,
lu™ll = R. O
The following condition deals with a special casetreated in [2].
LEMMA 14 ([2, Theorem 2.4]). Supposethat @ satisfies (#6),0 € o (L) and
®1(u) > —oo0 (uekerL, |u|| — 00).

Then, @ satisfies(54) witha =0, Voo = X1, and Wao = X~ @ X©, where X+ isthe spectral
subspacewrr.t. L and o (L) NR*, X0 := ker L.
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Now we look into the structure of @ more closely. Specifically, we consider the follow-
ing situations:

(@7)

(@8)

(@8)

The Hilbert space E is densely and continuously embedded in another Hilbert

space H and there exists an orthogonal decomposition E = Et @ E9@® E~ so

that the following conditions hold:

(@ The embeddings of E* into H are compact, and EC is a closed subspace
of H.

(b) By using the orthogonal projections P* from E onto E*, & can be written
as

1
D) = §(||P+u||2 — 1P ull®) — W@, (uekE)

where ¥ is a convex C1 functiona on the Hilbert space H, and Vy V¥ is
bounded on every bounded subset of H ( Vi ¥ denotes the gradient of ¥
on H).

(c) Thereexists a sequence {E,}, of finite dimensional subspaces of E satis-
fying (7) and P* P, = P, P* (Vn), where P, is the orthogonal projection
onto E,,.

In addition to (®7), for a self-adjoint bounded linear operator Soc On H, ¥ is

written as

() = %(Soou, u)y +wvi(u), (ueH), (12)

where ¥ isa C?! functional on H satisfying
VaW¥i(u) = o(lulln) (aslullp — 00). (12)
Moreover, the bounded self-adjoint operator L on E defined by L := P+ —
P~ — § satisfies the following conditions (a) and (b), where S: E — E isthe
self-adjoint operator on E determined by
(Su, v)g := (Seott, V)yg (u,v € E).

(-, YE, (-, -y denotetheinner product in E and H, respectively.)
(@ L(E,) C E, (neN)holdsforthesequence{E,},in(®7),
(b) O0¢o(L)or0eo(L)isanisolated point of the spectrum,

In additionto (®8), Vi ¥1 isbounded on H and

[W1(u)] - 00 (uekerL, |lullg — 00).

Let usrecall the following facts concerning the (WPS)* condition.

LEMMA 15 ([2, Proposition 2.5]). Let @ satisfy (¢7), and suppose that {u;} jen iSa
bounded (P S); sequence for @. Then, there exist a critical point » of @ with @ (1) = ¢ and
a subsequence {u j, }ren Of {u;}jen such that

+ +

wj, —>u (k— o00) in E,
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u?k—\uo (k— o0) in E,
— .t 0 — + + .0 0 R 0 — + + 0
whereu =ut 4+ u”+u (u™ € E=, u’ € EY), wjy =uj +u; +uj (ujkeE Juj, €
E9)

LEMMA 16 ([2, Proposition 2.6]). Let @ satisfy (@8), andif O € o (L) assumefurther
that @ satisfies the additional condition (#8). Then @ fulfills the (W PS)} condition for
everyc € R.

Let usalso recall the following result concerning the verification of (ii) in (©3).

LEMMA 17 ([2, Remark 3.3]). Supposethat @ satisfies (@7) and there exist no criti-
cal pointsin By, E other than 0 € E. In addition, let

Y() zalvlly (Vv e H)

hold for some constantsa > 0, @ > 0. Then every (PS); sequence in By, E has a strongly
convergent subsequence.

The following proposition deals with a sufficient condition for (WPS)* condition, which
is not covered by Lemma 16.

PROPOSITION 18. Supposethat @ satisfies (@8) and there exist some constants «, 8
satisfying0 <o < 8 < land 8 —a/2 < 1/2, for which the following conditions (a) and (b)
hold.

(@) For some constant ¢cg > O, ||[VEY1(u)] < co(lul® +1) (Yu € E). (Here we

consider V¥1(u) € H* C E*))
(b) For some constants ¢1 and d, one of the following conditions hold where X9 :=
ker L:
(i) vulex® v > cllul*tt — d|ju®,
(i) vu®e x° wu® < —cy)lu)*t + d)|u®.
Then ¢ satisfiesthe (WPS)}: condition for every ¢ € R (w.r.t. {E,}, in (£8)).

ProOF. We first treat the case where (i) of the condition (b) holds. By Lemma 15,
it remains to show that any (PS); sequence is bounded. We assume that {u;}; isa (PS)}
sequence. According to the spectral decomposition of o (L) wehave E = X+ & X% @ X~
where X+ and X© correspond to o (L) " R* and ker L, respectively. Wewriteu = ut +u%+
u~ foru € E corresponding to this decomposition. By the condition (b) in (©8), there exists
y > Osuchthat +( Lu®, u®)g > y|lu®||2 for Vu* e X*.

If j is sufficiently large, the first inequality of the following formula holds, and the
assumption (@) yields

e = (u] , Po,VOW))e = (u}, Luj)g — (u] , V1) E

> yllul 13 — I eIV le = ylluf 1% — colluf £ lu;lf +1).
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Henceco + 1 > yllu;-rIIE - CO”M]’”IZ for j largeenough. Similarly ¢cp + 1 > ylujlle—
CO”MJ'”/Z for j largeenough. Therefore 2(co + 1) > y(llu;rllE + llujlle) — 2||uj||’z
for j largeenough. Let y; := ||qu||5 + llu7 llg, if {y;} is not bounded, then we may as-
sume, going if necessary to asubsequence, y; — oo (asj — 00). Since2(co+1) > y y; —
2C0||Mj||f;: for j large enough, thereexistsaC > 0 such that C||u?||ﬂ > y; for j large enough.
Hence by using the condition (a) and (i) of (b), we obtain for sufficiently large j

DPuj)=(Luj,uj)p —¥i(u;)

NIl NI

1 -
(Luf uf e + 5(Luj . uj ) g = Yauf)

1
0 - + -
—/O(Vllll(uj—i-s(uj—i-uj)), u; +u; YEdS

=<

NI =

V., -
ILleluf 1 = S0y 0 = el IE™ + d e
! 0
+ (IIM;FIIE + IIM;IIE)/0 IV¥1(u; + S(u}r +u;))leds.
2
2 2 1
< SILIENSIE = etlu§IE +dludle +caludly + sl
where c; > 0 and c3 > 0 are constants independent of j. Since (B + 1) < 28 < a + 1,
D(uj) - —oo as j — oo. Thuswe obtain the contradiction. Next if ||u9||E is not bounded,
then similarly we may assume, going if necessary to a subsequence, IIM(}IIE — oo (a8sj —
00) and @ (uj) < ca — c1||u§?||‘;g+1 +dlulle + C5||u§?||f, for j large enough. Therefore
D(uj) — —ooasj — oo, and thisisacontradiction.

Similar argument also proves the assertion of the theorem in the case (ii) in (b).
The following technical Lemmais for the verification of (q%f).

LEMMA 19. Supposethat @ satisfies (#8) and let «, 8, A, p and ¢ be constant num-
bers satisfying

1
O<a<p<1, ﬂ<“;, (13)
1 1
max{é,ﬁ}<l<a;r , (1)
1 2% 1 1
maX{Z,—}<p<—, —+—=1. (15)
B B P q

Moreover, let X© := ker L and let X* bethe spectral subspace for L wir.t. o (L) NR*. Thenif
there exist positive constants C1, C2 and C3 for which one of the following conditions (b1) or
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(b2) holds, @ or —& satisfies (@4) withs = 1, » asabove, and (Weo, Vo) = (X°®X~, XT)
or (Weo, Vo) = (X0 @ X, X7), respectively. Moreover for every r > 0, the set U defined
by (3) can be madeto satisfy U O By;.
(Inthesequel, u® € X°, u™ € X andu~ € X~ denote arbitrary elementsin respective
subspaces.)
(0l) () v1® = Colu®IE™ — Collu® .
(i) 1@+ u™ +ut) — w1 O]
< Ca(llu™ +ut 5™+ a4+ utle + 161 + lu= + ut)9).
(i) [(Vevr@®+u= +ut), ut)py|
< Ca(lut 15 4 g + 16® 4+ w12 + 1),
(V) HVea@®+u +ut), u® +u")y| < Calut |5 4 110+ w21
02) () w1 < —Celu®|%™ + Collu® k.
(i) (w1 +u= +ut) — O]
< Ca(lu™ + w15 + = + utlle 4+ 161 + u +ut)9).
(i) VP +u~ +ub), u")ul
< Calu 15 4+l llg + 16® 4+ w12+ 1),

(V) HVaPL@O+u™ +ut),u +ut) ) < Callu™ 157 + 1u® + ut 157,

PrRoOOF. We treat only the case of (bl), since we can similarly show that — & satisfies
(@4) in the case of (b2). So we assume that the condition (b1) holds and shall show that @
satisfies (¢4) with § = 1. First note that there exists y > 0 such that +( Lu® , u®)p >
ylut|2 for Yut e X*, since 0 € o(L) is an isolated point of the spectrum. Utilizing
these inequalities, we shall show (iii) of (54) for @. From (i) and (ii) of (b1), for u with
lutlle < lu® + u~|l%, we obtain

D (u) =%(Lu,u)5 — W¥1(u)
< %nLnnu*n% — %nu*n% — Callu®% + Collu)
+ Ca(llu™ +ut 5 e+ u g+ 1P+ e +ut %)
< Ca(uP) 2 + u 117 — %nu*n% — Cellu®I5™ + Callu®ll
+ Callu™ 15 4 1P a1 4+ 1P+ 16+ e )
1L A 1O+ e 15

where C4 > Oisconstant. Now since A(8 + 1), Aq and p < 2i < o + 1 from (13) and (14),
@ (u) — —ocoas|lu” +uOg goto oo with lut|g < [|u®+ u~|%. Thuswe have proved
that & satisfies (iii) of ($4).
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Next we prove that @ satisfies (ii) of (D). By (iii) of (b1), we obtain for u with [|u® +
u < lutle
(VO @), ut)p = (Lu*,u)g — (Vy¥i(u), u™ )

+1 -

> yllut )12 = Calut 115+ ut )+ 16® + w12+ ut)9)
+1 4

>y lut 1% — Cs(lut 115 + b + et 112 + Jut )9,

where Cs > 0 is aconstant. Since 8 + 1, ”A—’s and ¢ < 2 from (13) and (14), and so
(VO (u), ut)g > Ofor [ut|| g large enough with [[u® + u~ |12 < [lut| .

Finally we show that @ satisfies (i) of (D4). By (iii) and (iv) of (bl), the following
inequality holds for u with [[u® + u~ |1 = lu™||g:

0 —
16 4+ w122 [
= (Lu" u) g = (VW) u) i+ —s—— (Vg ¥, u® +u )y
U + u—||%
1 _
> yllut )2 = Calu 15+ Jut e + e + w12 + uts)

AC3 B+1 0, —. B+l
- (TN P+ u )
Ju® + w3 :

_ —A(B+L _
>y u® + w12 — Ca(lu® + w15+ 1u® + w1}

— Ca(lu® + u™ 12 + u® + w3

= 2Ca(lu® +u I TEE Y.
Since pB, A(B + 1) and Lg < 2x from (13) and (14), we can show that (V® (1), u™ — A+
u™)/Iu® +u= |15 E > 0as|lut|| g large enough with u® + u™ |} = u™ | £.
The last statement of the Lemmais easily verified. m]

REMARK 20. Under the assumptions (13) to (15), 1 < 8 + 1 < ¢ holds, and so we
can omit theterm |lu~ + ut||#T1 in (ii) of (b1), for example.

3. Statement and proof of the main theorem

3.1. Statement of theresult. Let usreturnto the nonlinear wave equation (WE):

Ou(x,t) = h(x,t,u(x,t)) O<x<m teR),
(WE) u,t) =u(mr,t) =0 (teR),
u(x,t+2r) =u(x,t) O<x<m teR).
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The nonlinear term 72 : [0, 7] x R? — R is assumed to satisfy the following conditions (h1)
to (h3).
(h1) hiscontinuousand h(x,t + 27, &) = h(x,t, &) ((x,1,&) € [0, 7] x R?).
(h2) hisnon-decreasinginé& and h(x,t, &) # 0 (& # 0).
(h3) Thereexist constantsbg > 0, b > 0 that satisfy the following properties:
go(x,1,8) == h(x,t,&) —boE = o(|€]) as& — Ouniformly in (x, 1),
g(x,1,8) :=h(x,t,&) — b& = 0(|&]) as|&| — oo uniformly in (x, ).
Let O := (0, ) x (0, 27) and define

by :=min{A | L €o(0), bo <A}, by :=max{i|reo(d), r<bo},

where O (D’ Alembertian) mean the self-adjoint operator in L2(Q) obtained as the closure of
92/91%2 — 32/9x2 with domain {u € C%([0,7] x R) | u(x,t + 2n) = u(x, 1), u(0,1) =
u(m,t) = 0}.

Now we state and prove the main theorem of this paper, of which the part of cases (A3)
and (A4) referring to (C2) are new.

THEOREM 21. Asto theequation (WE), assumethat the non-linear term satisfiesthe
conditions (h1) ~ (h3) and let b, go, b and g beasin (h3). Set G(x, 1, &) := fg g(x,t,s)ds,

Go(x,t, &) = fos go(x, t, s)ds and consider the following conditions:
(C1) gisbounded, and G(x,t, &) — +oo (as |&] — oo) uniformlyin (x, t),
(C2) the following condition (al) or (a2) holds for some constants0 < @ < B < 1,

B—3< %,cl,cz>0,andd1,d2202

@ |gx. 0.8 <cilElf +d1. Gx.1,8) = cal€*TL — dolg],
@) lgx, 1,8 <clElf +d1, Gx,1,8) < —c2E|T + do)g] .

(C3) Thereexistsas > Osuchthat Go(x,t, &) > 0if |§] <4,
(C4) Thereexistsas > Osuchthat Go(x,t, &) < 0if |§] <.
Then (WE) has a non-trivial weak solution in each of the following cases:

(A1) bo¢o(D),b¢o(@andb ¢ [by, bg):

(A2) bg € o(0),b ¢ o(0), and one of the following conditions holds:
(1) b ¢ [bo, bd) and (C3);
(2) b ¢ by bo) and (C4);

(A3) bo ¢ o(0O), b € o(O), and one of the following conditions holds:
(1) bo < band(Cl) or (al) of (C2);
(2) bo > b and(a2) of (C2);

(Ad) b € o(0), b € o(O), and one of the following conditions holds:
(1) (C3), by < b and (C1) or (al) of (C2);
(2) (C3), bo = b and (a2) of (C2);
(3) (C4),bg < band(C1) or (al) of (C2);
(4) (C4),bo > b and (a2) of (C2);
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3.2. Framework for variational method. For convenience sake, we state here the
standard setting for the variational treatment of the equation (WE).

3.2.1. The function space. By the Fourier series expansion, every real-vaued u €
L?(Q) can bewritten as

o o
u(x,t) = Z Z uej Sinjx etk
j=lk=—00

withug; = u_y; foral j, k. Using this expansion, we set

1/2
Il = (nz 13— Kol P+ 7% ) |Mkj|2>

J#IK] J=lk|
and we define the space E by
E:={ueL*Q) | |lulls < oo}.
Then E isaHilbert space with the inner-product
(, ) =72 Y 17— KO + 77 ) g
J#IK] J=lk|

whereuy;, vi; are Fourier coefficients of u, v respectively. E hasan orthogonal decomposition
E=E"® E°® E~ where

ET .= {u eE :ulx,t)= Z Uugj Sinjxeik’},
j2>k2

EV = {u eE :ulx,t)= Z ug; Sinjxeik’},
j2=k2

and

E™ = {u eE :ulx,t) = Z Ukj Sinjxeik’}.

j2<k2

The orthogonal projectionsonto E~, E® and E+ are designated by P—, P? and P+, respec-
tively.

It is well known that the inclusions E* < L2(Q) are compact and E° is a closed
subspace of L2(Q). Moreover, E* < L? (1 < p < 4) are continuous by the interpolation
theory [15, Proposition 2.2].

For eachn € N, we set

E, := span{sinjxsinkt,sinjxcoskt : 0 < j <n, |k| <n}.
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Then {E,}, isan increasing sequence of finite dimensional subspace of E with U>? ; E;, being
densein E. Let us note that this sequence is compatible with the decomposition £ = E~ @
E%@ Et, i.e, the orthogonal projection onto E, commutes with P—, PO and P+ for every
n.

3.2.2. The functiona and two decompositions of the space. Consider the functional
@ defined on E by

D(u) = }/ (u)zc — utz)dxdt —/ H(x,t,u)dxdt (16)
2Jo 0
1
= 5(||P+u||2 — 1P~ ul?®) — @), (17)

where H (x, 1, &) i= [5 h(x, 1, $)ds, ¥ (u) := Jo H(x, 1, u)dxdt. Under the conditions (h1)
to (h3), it is clear that @ (u) is a C! class functiona on E with (V@ (1), v)g = (P —
Pu,v)g — fQ h(x,t,u(x,t))v(x, t)dxdt.

From now on, let G, Gg, bg and b be as defined in the statement of Theorem 21. Then
define ¥1 € CL(L2, R) by ¥1(u) := Jo G(x, t,wydxdt, and let Se: L? — L2 bethe
bounded self-adjoint operator defined by Seo u# := bu, let S: E — E be the bounded self-
adjoint operator defined by (Su, v)g = (Soo u, v);2 foral u, v € E and define

L:=Pt—pP —5§. (18)
We observethat O is at most anisolated pointino (L) and0 € o (L) if and only if b € o (0O).
The operator L = Pt — P~ — § yields an orthogonal decomposition £ = X+ @ X% @ X~
with X0 = ker L and X corresponding to o (L) N RT respectively. Here we have

Xt .= {u eE :ulx,t)= Z Ukj Sinjxeikt},
j2—k2>b

X0 .= {u €eE :ulx,t) = Z Ukj Sinjxeik’},
j2—k2=b

X = {u cE :ulx,t)= Z Uj Sinjxeikt}.
j2—k2<b

We have dim X° < oo (notethat » > 0). Similarly we define the following operators:

Lo:=PT—P -5,

So: E— E, (Sou,v)g :=/ bou(x,t)v(x,t)dxdt (u,v e kE).
0
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We also consider the decomposition £ = X/ @& X3 @ X, determined by the spectral projec-
tionsrelated to Lo (X° = ker Lo and X(ﬂ; correspondsto o (L) N RT):

. . H— ikt
Xar = {wEE swx,t) = Z ug; Sin jxe' },
J3=k?>bo

X8 = {w eE : wkx,t) = Z Ukj Sinjxeik’},
Jj2—k?=bg

- . . in oo Ik
Xy = {wEE Dw(x,t) = Z ug; Sin jxe' ’}.
jz—k2<bo

3.3. Proof of the main theorem. Since a non-zero critical point of the function @
defined by (16) is aweak solution to (WE), our main theorem will be obtained by applying
the abstract existence theorem (Theorem 12) to @. To do so, we shall verify step by step that
the assumptions in Theorem 12 are satisfied by our variational framework described in the
preceding subsection.

3.3.1. Preliminaries. For our purpose, we prepare the following technical, but
straightforward, lemmas.

LEMMA 22, Suppose that (hl) to (h3) hold. Then, @ satisfies (#8) (hence (®5)),
with @1 = —¥y, H := L2(Q) and L in (18). Moreover, if (C1) holds in addition, then @
satisfies (9 8') (hence (®6)).

PROOF. The conditions (a) and (c) in (&7) are satisfied by our framework described in
Section 3.2. Asto (b), our functional @ defined in Section 3.2 isindeed of the form described
in (c) (cf. (17)). The convexity of ¥ follows from Vg ¥ (u) = h(x, t, u) and the condition
(h2). Other conditionsin (b) are also readily seen to be satisfied.

Next we verify the extracondition in (©8). Since ¥ (u) = fQ G(x,t,u)dxdt, we have
VyWi(u) = g(x,t,u). On the other hand, the condition (h3) implies that for every ¢ > 0
there exists some constant C, > O for which |g(x,,&)| < ¢|&] + C. holdsfor every & € R
and (x, 1) € Q. Therefore we obtain |[VygW¥1(u)llg < e C |lullg + C, and SO Vg¥i(u) =
o(lullg) (as|lullg — oo). Hencewe have V@1 (u)llg = o([lullg) (s |ullg — 00).

Hereafter suppose that (C1) holds. Then V@1 and V¥ are clearly bounded. Finally
we shall give a proof of [W1(u)] — oo (u € kerL, |lullg — o00), since we could not find
aproof in the literature. Since dimker L < oo, we set m := dimker L and take a complete
orthonormal system {ej}']?'zl inker L. Let {u,}, C ker L suchthat ||lu,||g — oo (asn —
00). Thenthereexists {A,}, € R™ suchthat u, (x,t) = A, -e(x, t) for (x,1) € Q and |A,| =
lunllE — 00 (n — oo) wheree(x, t) := "(e1(x, 1), -+, em(x, 1)). Welet {uilx and {Ai}x
are arbitrary subsequences of {u,}, and {A,},, respectively. Since A, /|| is bounded in R™,
there exist a subsequence {Ay, }; C {Ax}x and 0 # A € R™ suchthat Ay /|Ax| — A asl — oo.
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We define 07 :={(x,t) € O : A-e(x,t) >0},0 :={(x,1) € Q : A-e(x,t) <O}
and Q0 := {(x,71) € Q : A-e(x,1) = 0}. We can show meas(Q \ 0° > 0. Indeed if
meas(Q \ 0% = 0, then we obtain by L ebesgue's theorem

A
lim 1iallz2 =/ lim |22 e(x, 1)
I>o00  |Agl 00 =00 | [Ag |
On the other hand, inf; [lug, || 1/|Ak | > O because of dimker L < oo and |jux, /|y |l = 1,
thisyields a contradiction.

Itiseasy to seethat G isuniformly bounded below by the assumption (C1). Therefore,
by Fatou’'s lemma, we obtain

dxdt =0.

Iiminf/ G(x,t,ug)dxdt > / liminf G (x, t, ug,)dxdt = 400
l—o0 Jo+up- otuQ- l—oo
since |ug, (x, 1)| = ||Ak [[(Ak, /1A, ]) - e(x, 1)]] = oo asl — oo for every (x,1) € otuoQ-

and G(x,t,&) - +o0 as|&] — oo. On the other hand we have

[—o00

liminf | G(x,t, uy)dxdt
o

> Iiminf/ G(x,t,ukl)dxdt+|iminf/ G(x,t,ug)dxdt,
Q0 ! 0+ruQ-

[—o00 —00

and so we obtain lim;_, o fQ G(x,t,uy)dxdt = +o00. Thus we have shown that every sub-
sequence of {u,}, has a subsegquence for which ¥ divergesto co. Hence we are done. O

LEmMMA 23. If (al) or (a2) of (C2) holds and & satisfies the conditions (h1) ~ (h3),
then @ satisfies (@) in Proposition 18 and (b1) or (b2) in Lemma 19, respectively.

PROOF. We only prove that @ satisfies (a) and (b1) of Lemma 19 when (al) of (C2)
holds, since we can similarly prove the other case. By Lemma 22, & sdtisfies (@8) with
Y1(u) = fQ G(x,t,u)dxdt. SincedmX® < oo and G(x,1,&) > c2|&1*1L — d |&|, there
exists C1, C2 > 0 such that ¥1(u®) > C1||u®|%™ — C2 |u®) . By the assumption « and 8
satisfies (13), hence we can choose 1, p and ¢ satisfying (14) and (15) in Lemma 19. Since

theinclusions E* < L? (1 < p < 4) are continuous and dimX° < oo, with the aid of
Holder’sinequality and Young's inequality, we havefor every u, v € E

/QW Nvldxdt < [ull? 5 [vliLe < Cllully vl (19)

< C'(ul? + Jol%) (20)

where C and C’ are positive constants. (19) proves that the condition (a) in Proposition 18 is
satisfied. Next we set u = u® + u~ + u™ whereu® € X0, u* € X*. By theinequaity (20)
and the condition |g(x, 1, £)| < c1|€|P + d1 , we obtain

W1l +u™ +ut) — O
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1
= / / lg(x,t, u® +s@T +u )| lut +u"|dsdxdt
0Jo

<C(lu + u+||'z§}l +llu” +ut))+C / (O - |u™ + uT|dxdt
0

_ 1 _ _
<Clu™ +ut 1Bl +ut e+ 16002 + Ju +ut D)

and
(Vav@® +u™ +ut), ut)yl

5/ lgGx, 1, u® +u™ +u™)| - |ut|dxdt
0

1 —
sC(||u+||§;+1+||u+||L1)+C/ 0+ u~ 1P - jut|dxdt
9]

+1 -
< CUut 1B 1t e + 1u® + w12+ )
where C is apositive constant. Finally we similarly obtain

(Ve ® +u™ +u™), u® +u" )y
5/ |9(X,t,u0+u_+u+)|-|u0+u_|dxdt
0

< cq)lu® + u_lli;;ll +dp|u® w4 C/ lu 1P |u® 4 u”dxdr
Q

_ 1 1
< C(u® +u™ 1B+ Y

O

3.3.2.  Proof of the main theorem. Now we begin with the proof of our main theorem,
Theorem 21. We concentrate on the part of cases of assumption (A3) and (A4) where the
condition (C2) is concerned. To this end, we verify that the functional @ or —@ satisfies the
condition (@1) to (54) and the dimension condition (10). Once these conditions are verified,
then we can apply Theorem 12 to @ or —¢@ and obtain a non-zero critical point of @, which
yields a non-trivial weak solution to (WE).

In what follows, when we speak of the condition (A3) or (A4), we understand that either
(al) or (a2) of (C2) holds.

1. Condition (@1). Under the conditions (h1), (h2), (h3) and (C2), Lemma 22 implies
@ satisfies (@8) and (@5), while Lemma 23 showsthat @ satisfies the condition (&) in Propo-
sition 18 and (b1) or (b2) in Lemma 19, according as (al) or (a2) of (C2) holds. Therefore,
noting that (b1) or (b2) in Lemma 19 implies the condition (b) in Proposition 18, & satisfies
(WPS)# for every ¢ € R by Proposition 18 and so —¢@ sdtisfies (WPS)* for every ¢ € R
provided (A3) or (A4) holds.

2. Condition (¢2). Thisconditionisclearly satisfied under the condition (h3).
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3. Condition (@3). Sincethebehavior of h(x, ¢, &) asé — 0issolely concerned with
the local linking property of @, the condition (@ 3) isalready proved in [2]. For convenience
sake, we quote here the relevant results.

LEMMA 24 ([2,Lemmab.4]). If h satisfies the conditions (hl) ~ (h3) and bg = O,
then @ hasa strong local linking at O wir.t. (Vo, Wo) with Vo := ET, Wo:= E°® E~.

LEMMA 25 ([2, Lemmab.6]). If i satisfies the conditions (hl) ~ (h3), bp > 0 and
bo € o(O) or (C3) or (C4) holds, then @ hasalocal linking at O w.r.t. the following (Vo, Wo)
in each of the cases below:

Vo:=Xg. Wo:=Xg if bo & o(D)

Vo= X{, Woi= X3 & Xg if (C3)

Vo= Xd ® X3, Wo:=X,  if (C4
Moreover, @ satisfies the condition (ii) of ($3).

Notethat the last assertion of Lemma 25 follows from Lemma 17 and the fact that there exists
aconstanta > Osuchthat H(x, t, &) > alg|?foral (x, 1, £).

4. Condition (&4). By Lemma 22 and Lemma 23, the assumptions in Lemma 19
are satisfied and hence @ or —@ satisfies (®4) with (Weo, Vo) = (X% @ X, XT) or
(Woo, Vao) = (X @ X, X ), respectively according as (al) or (a2) of (C2) holds.

5. Dimension condition. In each of the cases in (A3) and (A4), we can verify that
the condition (10) holds by using Lemma 5.7 in [2], which seems too lengthy to be quoted.
Here we shall deal with only two cases since the other cases would be similarly handled.
First assume that case (1) of (A3) holds. Namely, suppose that b < b and (al) of (C2)
hold. Then @ hasalocal linking at O w.r.t. (Wo, Vo) = (X, Xar) and satisfies (5/4) w.r.t.
(Weo, Vo) = (XO@® X—, X1) (see above). Since we are assuming b € o (0), the eigenspace
E(b) of O pertaining to b is contained in X°. On the other hand, the definition of X3, X;
and the assumption bg < b imply X8 ® X, C X~. Moreover, E(b) C E, forlargen € N.
Therefore, if n islarge enough, we obtain

E.N(X§® X)) CE,NX" C(E,NX)®E®D) =E,N (X" ®XO.
Hence

liminf [ dim E, N Wee — dimE, N Wo] > dimE(b) > 0,

n—oo

and hence (10) holds in this case.

As another case, consider the case (3) of (A4). Namely assume that (C4), bg < b and
(al) of (C2) hold. Then @ has alocal linking at 0 w.r.t. (Wop, Vo) = (X, X8 &) X(J{) and
satisfies (®4) W.rt. (Weo, Vao) = (X0 @ X, X1). Since we are assuming b € o (0), the
eigenspace E (b) of O pertaining to b is contained in X°. On the other hand, the definition of
X3, X, and the assumption bo < b imply X, C X~. Moreover, E(b) C E, forlargen € N.
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Therefore, if n islarge enough, we obtain
E.NXy CE,NX" C(E,NX)BEDB) =E,N(X" @X%.
Hence

liminf [ dimE, N Weo —dimE, N Wo] > dimE(b) > 0,

n— oo

and hence (10) holdsin this case.
In other cases, the dimension condition can be similarly verified by considering —®
instead of @ if (a2) of (C2) is assumed.

3.3.3. Supplement. Here we sketch a proof for the case of (A1) and (A2), since the
condition (®4) in [2] seems insufficient for the proof of Proposition 2.3 in [2]. In the case
of (Al) and (A2), it is dready proved in [2] that @ or —@ sdtisfies (@1), (©2), (@3) and
the dimension condition. Moreover, Lemma 13 yields (¢4) (with A = 1) because b ¢ o ()
and so @ satisfies (@5). Hence we can apply our abstract theorem to @ or —@ to obtain a
non-trivial weak solution to (WE).
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