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1. Introduction. In [9], Lepowsky and
Milne observed a similarity between the characters
of the level 3 standard modules of the affine Lie
algebra of type A"

gebra of type A
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ch V(3Ao) =
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and the infinite products of the Rogers-Ramanujan
identities

2

q" 1
(2) = [ )
; (9, (69%¢)
qn(n+1) B 1
= (9), (PP

Here, the g-Pochhammer symbols are defined for
n € Zso U {oo} as follows:

(a;q), = J] (1 —ag?),

0<j<n

(a1, ... a;q), = (a1;9), -~ (ar; q),,-

Later, Lepowsky and Wilson promoted the
observation to a vertex operator proof and gave a
Lie theoretic interpretation of the infinite sums in
the Rogers-Ramanujan identities [10]. The goal of
this paper is to show that a result of Kashiwara
crystals which is motivated by the representation
theory of Hecke algebras [1, Corollary 9.6] promotes
the equality (1) into a proof of the second Rogers-
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Ramanujan identity (2). Note that it is well-known
that the Rogers-Ramanujan identities and the
solvable lattice models from which the quantum
groups originated are related (see [3, Chapter 8]).
Several relationships between Rogers-Ramanujan
type identities and Kashiwara crystals are also
known (see [5] and the references therein). The
author was inspired by a recent work of Corteel
which gave a proof of (2) using the cylindric
partitions and the Robinson-Schensted-Knuth cor-
respondence [4].

2. The main result. A partition (resp.
strict partition) is a weakly (resp. strictly) decreas-
ing sequence A = (A1,...,Ar) of positive integers,
e, Ay > > >1(resp. Ay >---> XM >1). We
denote the set of partitions (resp. strict partitions)
by Par (resp. Str). We also denote the size A} +--- +
A¢ (resp. the length £) of A by |A| (resp. £(\)). When
A is empty (i.e., £(A) = 0), we put A\ = 0.

Theorem 2.1 ([1, (The transposed version of)
Proposition 9.7]). Let k> 1. Under the Agn—crys—
tal isomorphism Str =2 B(Ag) due to Misra-Miwa
[11], the canonical image B(kAg) in the tensor
product B(Ay)®" coincides with

Sp={x=(0W0 . A"
e Strf | LAD) > (WD), for 1 < i < k).
This result is credited to Mathas in [1,§9]. It
is also a Corollary of [7,Theorem 3.8] and
[8, Theorem 10.1]. An element of the connected
component Sy is called a Kleshchev multipartition
in the context of the representation theory of Hecke

algebras. For a generalization to Ag)—crystal, where
p > 2, see [1, Corollary 9.6]. For a different charac-
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terization, see [6].
Theorem 2.2.

T ofNg

For k> 1, we have

AESA,
ZZ: a(szr')+Z <a<b<k alaly k
_ q 1 2 1<a<b<k xz(Fl ai,, '
i1,ip>0 (CI; Q)il e (Q; Q)i,‘.
Here, for a k-tuple of strict partitions A=

(M., \) € Str¥) the size |A| and the length £(N)
are defined as follows:

A=Al 4+ el £A) =£(M) +

3. A proof of Theorem 2.2. As usual (see
[2, Definition 3.1]), we define the g¢-binomial coef-
(¢:9),

ﬁciellt
|: n :|
m q (q, q)m(q; Q)n—m

for n>m > 0. It is well-known (see [2, Theorem
3.1]) that we have

3) M— S,

A1<n—m

0.

For 4,5 >0, considering the staircase A; =

(,5—1,...,1) € Str, we see

(4) ST =gy g,
peStr AePar
Up)=j N <]
1 <i+j A <i

Proposition 3.1. Fork>1 and j1,...,Jr >
0, there is a size preserving bijection

Fivdi Visie = Wi
where
Ay == 00, . AB) e sk | g(AD)
=ji+ -+, for 1 <i <k},
Viiie = SE0V A e
Wi pw={Xx€4; il (()\(Z))j[+17 o
= Aypermy for 1< <k},

LA g0)

Proof. We prove the claim by induction on k.
The case k=1 is trivial.
Similarly to (4), for i,5 > 0 we see

[Vol. 99(A),

A +n w12
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(A)EVis et (¢ 9);y;
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1 <i+j
il Al
> T S
W, (a:9); (¢:9);

which are equal to each other thanks to (3) and (4).
This settled the case k = 2.
For k > 3, it is easily seen that the composite

A=Y By =D )
= (fj17j2+"'+jl.'(>\(1)’ >‘(2))7 )‘(3)7 SRRR) A(k))
= (.uu)v fjmu.,jk(#@)v e ,M(k)))
is a size preserving bijection from Vj, _; to Wj ;.
O
Theorem 2.2 is proved as follows: Clearly, we
have
Z 2N g = Z 2tk Z ™.
AES) J1seesJk =0 A€V

By Proposition 3.1, the right hand side is equal

Z it 2tk Z g™,

J1yeendik=>0

to
Similarly to (5), we see

Using |Asyt| = |As] + |At| + st for s,t > 0, we have
| At = Z 1A, + Z JbJy
a<b<b'<k
and thus we have
Z | Aot = ZG|AJG| + Z bjvJy -
= 1<b<b/ <k

4. A proof of the second Rogers-
Ramanujan identity. In the proof, let

Flz,qg= Y12

s,t,u>0
s(s+1),.2s
q ( )

X
= (Gq),

(s;l) +2 (131) +3 (u;l) ettt st 3

)

(9,9 (¢q),
G(z,q) =

Proposition 4.1. We have the following

q-difference equation.
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G(z,q9) = (1 +2°¢ + 2°¢*)G(2q,q) — 2'q'G(z¢*, q).

Proof. 1t is easy to verify that for all M € Z we
have

(1= ¢"gu — "+ Q) gn—2 + g1 =0,

where gos = ¢***V/(q; q), for s € Z=p and gy = 0 for
M € Z\ 2Z,. O

Proposition 4.2. We have the following
q-difference equation.

F(z,q) = (1 +zq)(1 +2°¢° + 2%¢°) F(xq, q)
—2'q" (1 +2q)(1 + 2¢*) F(zq*, q)-
Proof. Our proof is a typical application of a
g-version of Wegschaider’s improvement of Sister
Celine’s technique (see [12]).
Let F(x) =), cz fa(g)z" and put

n=2t=3u+1 | 42 (++1 ) 43 (wtl ) +(n—2t—3u) (t+u)+2tu
St 42(50)45(p)

f(n,t,u) =

(6D 23,004 (g 9),,

for n,t,u € Z, where we regard —— =0 if v < 0.

(%9),
Because f(n,t,u) is g¢-proper hypergeometric

(see [12,§2.1]), one can automatically derive a
g-holonomic recurrence for f, thanks to f, =

Zt,u€Z2 f(n,t,u).

Let (Ng)(n,t,u) = g(n —1,t,u), (Tg)(n,t,u) =
gln,t —1,u), (Ug)(n,t,u) =g(n,t,u—1) be the
shift operators for g: Z> — Q(q) and let

A=(1-¢")—¢"'N—q"(1+q)(N*+N°)
+¢" N (14 )N+ N,
B=(¢"-¢"") +q"(-1+ ¢ +¢")N
4L TN 4 NG,
C=q"(1-¢)N+q""(1-q)N?
g1+ NG — 2N
(1 N+ N,
One can check that
(A+(1-T)B+(1-U)C)f(n,t,u) =0.
By this certificate recurrence operator (see [12,§3]
and [13,87.1]), we get
A =gV =q"for = "L+ Q) (faz + fus)
" fua + (L + Q) fas + fue) =0

for n € Z. This is equivalent to the g¢-difference
equation in the Proposition. O
Corollary 4.3. We have F(z,q) = (—xg;
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0).Glw,q).

Proof. By Proposition 4.1 and Proposition 4.2,
F(z,q) and (—z¢;q),,G(x,q) satisfy the same ¢-
difference equation presented in Proposition 4.2.
Then, the equality follows from the fact that both
the coefficients of 2° (resp. 2" for n < 0) in F(z,q)
and (—zq; q),G(x,q) are equal to 1 (resp. 0). O

Remark 4.4. After submission to arXiv of
the first version of this paper, we learned from Ole
Warnaar that Corollary 4.3 is easily deduced by a
trick to use f, = >, oz f(n,t — u,u) instead of f, =
> tuez f(n,t,u) noticing

ntl —n _ —(n—9t
UM (g i),
f(n,t —u,u) = .
(40)-2:(a: 9); (@:9).,
Thanks to the ¢Chu-Vandermonde identity

2¢1(a,q¢™;0;¢,9) = ™ for a nonnegative integer
m (see [3,(2.41)]), we have
[n/2] q(";l)ﬂ(t*n)ft(nf?t)

" (49, (@), (G0, (@G 9),

This is equivalent to Corollary 4.3 by FEuler’s
(m;»l)/m
q z

(%:9),n

[n/2] q(nf’gﬂ) +(t+1)

identity (—»TQ» q) = ZmZO

The second Rogers-Ramanujan identity (2) is
proved as follows: By Theorem 2.2, Lepowsky-
Milne’s observation (1) is translated to

1 1
(€% (¢%,6%0°)
By Corollary 4.3 and Euler’s
(g QQ)OO(_(E (Z)oc =1, we have

F(l,q) =

identity

1
G(l,q) = ———F—F—.
(€% 0% @)
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