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Abstract:

Stembridge characterized regular crystals associated with a simply-laced

generalized Cartan matrix (GCM) in terms of local graph-theoretic quantities. We give a similar
axiomatization for By regular crystals and thus for regular crystals associated with a finite GCM

except 9 and an affine GCM except Agn, G(Ql), Ag), D7,
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1. Introduction.

1.1. Kashiwara crystals. Let A = (a;;); s be
a symmetrizable GCM and fix a Cartan datum
(P, PY,II,11") [6,§2.1]. A Kashiwara crystal is a
6-tuple (B,wt, (€).crs (fi)icr> (€i)icrs (Pi)ics), where
B is a set and wt: B— P,e;,¢;: B— Z U {—00},
é.,fi: B— BU {0} are functions that satisfy the
axioms [6, (7.1)—(7.5)].

1.2. Highest weight crystals and regular
crystals. For a dominant integral weight X €
P*, Kashiwara proved the existence and uniqueness
of the crystal basis B()) (called the highest weight
crystal) of the integrable highest weight module
V(A) of the quantum group U,(A) [5]. Under a
condition [7,(2.4.1)], regular crystal is a disjoint
union of the highest weight crystals |7, Proposition
2.4.4].

1.3. Crystal graphs. A Kashiwara crystal
gives an I-colored directed graph (called the crystal
graph) by the rule: there is an i-colored arrow from
z to y if and only if fiz = y.

Definition 1.1. An [-colored directed graph
X is good if for any x € X and i € |
(G1) there is at most one i-colored arrow from z,
(G2) there is at most one i-colored arrow to z,
(G3) the length of the i-string through z is finite.

When there is an i-colored arrow from z to y in
a good I-colored directed graph X, we define as
fix =y and &y =x. fix =0 (resp. &z = 0) means
that there is no i-colored arrow from z (resp. to z).
Thanks to the axioms, ¢;(z) = max{m >0 | f"z #
0} and ¢;(x) = max{m > 0| &’z # 0} are well-de-
fined. The crystal graph of B()\) is good and the
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quantities €;, p; are the same as above [5, (2.4.1)].

Definition 1.2. Let X be a good I-colored
directed graph. We say that xy € X is mazimum if
(M1) for i € I we have &y =0 (i.e., g;(x9) = 0),
(M2) for x € X there exists s > 0 and (11, ,15) €

I? such that le fuxo =z.

Definition 1.3. Let X be a good I-colored
directed graph. For g € {e, f}, 8 € {¢,p} and z € X,
1,j € I with g;x # 0, we define

NS (i, . x) = By(Gi)

1.4. Stembridge crystals.
Theorem 1.4 ([9, Definition 1.1, Theorem
2.4]). Let A= (ay),cr be a symmetrizable GCM.
For a dominant integral weight X € P*, the highest
weight crystal B(\) is an A-regular graph (defined by
the azioms (S1)—(S5) below) having a mazimum by €
B(X) with ¢;(by) = (hi, A) for alli € I.
(S1) X is a good I-colored directed graph in the
sense of Definition 1.1.
(S2) Ve e X,Viel,ex £0=Vje I\ {i},
A;(Zvjv z) — Ag(lv.]a z) = Aji-
(S3) Vee X,Viel,ex £0=Vje I\ {i},
A (i, j,2) <0< AL, j,x).
(S4) Vi#VjelVz e X, eix#0# ¢z = (A7),
(B).
(S5) Vi#Vje Vo€ X, fix#0+# fiw= (A},
(B).
(Ar)
A,{;(E, k,z) =0.
B) (84,5, ), 820G ) = (1,
6,6]2611? = ¢;élé;w (Af(z J,2), A (j,z z)) =
Af(kéx)f0:>32—ff

— Bj(z).

A?(k‘, é, J?) =0=dz=¢x = éké[.%‘,

1=
(1, )

(AZ.[) kf/f
ALk, z) = 0.
B ~(éf(Z J,2), AL(j,4,2)) = (1,1) = 2 =

fili fix = [ i, (A, . 2), AL(G, 4, 2)

|
—

—

—
~—
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Fig. 1.

Remark 1.5. As in [9,p. 4810], (B™) (and
(Aj,)) has a redundancy in that some are forced.
However we will not consider minimization of
axioms and use abbreviations involving 3.

Theorem 1.6 ([9, Proposition 1.4, Theorem
3.3]). Let A= (ai), jc; be a simply-laced GCM and
let X be an A-regular graph with a maximum xy € X.
Then, there exists a unique I-colored directed graph
isomorphism between X and B()), where A € P*
satisfies (hi, A) = @;(x0) for alli € 1.

Example 1.7. The left (resp.right) figure
below is an As-crystal which gives a visualization
of (A7,) (resp.(B7)). Here, thick arrows are 1-
AIToOws.

1.5. The main result.

Theorem 1.8. Let A = (aij), jc; be a symme-
trizable GCM with Vi #£Vj € I,A|i,j =A@ Ay, Ay,
By,'By and let X be an A-regular graph with a
mazimum xg € X that further satisfies

Vi £Vj € I, Al,; = By = (S6),(S7),(S8),(S9).

Then, there exists a unique I-colored directed graph
isomorphism between X and B(\), where A € Pt
satisfies (hi, \) = pi(xo) for alli € 1.

(86) Vo € X,éx #0 # é;z, A(x) = (1,2) = (D).

(S7) Vz € X, fix #0 # fm, N(x) = (1,2) = (D*)

(S8) Vx € X, fix #0 # fix, Al(z) = (1,1), pi(z) >
2= (C).

(89) Vz € X, fix # 0 # fz, N(z) = (0,2),
f]f2x7£0 Af(]7z,f2 )=0= (Cf)

(D7) y:= ééju, Hy =eéretex, (Pr), (Qr), (R7),

.
(AL, 4,y), ALGL 4,y) # (1,0).

BQ crystals B(A1 + A2)7 B(?)Al)7

[Vol. 97(A),
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B(2A,) from left to right.

(DY) y:= f2fix, 3y = f2f2fix, (QF).

(Cf) Elz*fzfoQ‘T*fijfj ~

(Pr)  (ALG,4,9), ALG,4,)) = (1,1) = fiy) = éw,
INGRRTI

Q1) (AL, 4, 9), AL, 5,9) = (0,1) = 3z =
eiejeer = ¢ 626 vejx, N (z ) =(1,2). )

(R7) (Ai(i,j, y), AL(,5,9)) = (0,0) = f/ = &y,
Aé(jaiay,) =2, Al (],Z,f2 ,) =0.

Q1) (A (l 3:y), (AL, 4,y) = (0,1) = Fz =

L fi e = LT i

Here, we define A(z) = (A4, j,x), AL(F, 1, z))
and A'(w) = (A{;(i,j, w),Ai:(j,i,w)) for w=uz,z.
We adapt a convention for By that a; (resp.as) is
short (resp. long). Note that y in (D7) (resp.(DT))
is just defined. The existence is not a part of
the axiom because it follows from Af(j,i,x) =2
(resp.Aé(j,i,x) = 2). Note also that we have &y #
0 in (P7),(R7) by Af(j,4,z) = 2 and &;(x) > 1.

Example 1.9. We duplicate [9, Figure 5] as
Figure 1, where thick arrows are 1-arrows. We can
see an appearance of (Q7),(P7),(R7) from left to
right, (S7) (resp. (S8)) in the left (resp. middle)
graph at z, and (S9) in the right graph at y/.

1.6. Variants of axioms. By Proposition 2.1,
we can replace (Py), (Qy) with

(P7) (AL, 4iy), AL, 5,y) = (L1) = ¢ =
€iéjéié;6iw = €jeiex, Al (],z,y)—l
Q) (ALG, j, ), Al(i,,y)) = (0,1) = 3z =

€jE1E;6,6;6,x = 6J63€]2€ T =¢; e?ef’ejx = €,6;€,6;€2¢;1,
A = (1,2)

respectively (and independently). A reason why the
shorter version works is that Proposition 3.1 that is
used in the proof of Theorem 1.8 just needs weak
Church-Rosser (a.k.a. local confluence) property.
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Definition 1.10 (see [1, §2.7]). Let X be a
good I-colored directed graph. We say that X has a
homogeneous local confluence property if for x € X
and 7 # j € I with éx # 0 # €;x there exists s > 2
and (i1, -+, 4s), (4], -,1,) € I* such that

. . . - - - -
zs:uzs:j,ﬂz:eil---eisa?:eirl--eigx

and {i; | 1 <k <s}={i,|1<k<s} as multisets.

Remark 1.11. In Q1) 2fiz= fif,
ffffﬁz = fgy (see Figure 1) and (S2) imply
(A:(i,j, f?f]Z), A:(iaja f?f?sz)) =(0,1).

1.7. Comparison with previous
Finding a local characterization of By regular crys-
tals has been a well-known open problem since [9].

Comparison with [10]. The confluence rela-
tions in (P7),(Q7) (and (R™) that implies éié?éia: =
¢;éré;r by (S4)) were observed in [9, p. 4822] and
were proved in [10]. To determine which occurs for
x with A(z) = (1,2) from the local structure of z,
existences of y and ¢ in (D7) are crucial.

Remark 1.12. In this paper, “local condi-
tion” for z € X is an axiom that involves only
A%(k,€,y), Br(y) and = between y’s, where k, £ € I,
ge{e f},Be{e, o} and y is “near” x. It means
that we can go back and forth between z and y
at most N arrows, where N is a constant. In
Stembridge’s axiom N = 4 and in ours N = 7. Note
that the existence of a (unique) maximum element
in Theorem 1.4 and Theorem 1.8 is not a local
condition.

Other missing axioms play the following role.
(S8) compensates the symmetry breaking in (P7)
in that A’(z) = (1, 1) instead of A'(2) = (1, 2),
where z = éZé3ex = ¢;eje;a(= ),
handles the fact ffszflz is “under” or “below”
z in (R7), where z = ¢él¢;x = ¢;e;¢;x not-
withstanding A’(z) = (1,2).

Remark 1.13. As [9, Remark 1.5], Theorem
1.6 gives an iterative algorithm that draws simply-
laced highest weight crystals (the proof of
[9, Proposition 1.4] provides an algorithm). Espe-
cially thanks to (S9), it is similarly applied to
Theorem 1.8 (the proof of Proposition 3.3 provides
an algorithm).

Comparison with [2]. In [2], they gave a set
of axioms and claimed that it characterizes B»
regular crystals (see the first paragraph of [2,§3].
In [3], they gave a set of axioms for graphs G =
(V, E) equipped with labels ¢(v) € {L,C, R} on the
vertices v € V). Their idea in [2] is different from [9]

studies.

(59)
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while this paper is a small modification of [9] as in
Remarks 1.12 and 1.13. For example, it is not clear
how the axioms of [2] are translated to an iterative
algorithm mentioned in Remark 1.13.

2. Proof of Theorem 1.8: B(\) satisfies
the axioms in Theorem 1.8.

2.1. A reduction to A = B,. Combined with
Theorem 1.4, to prove that B(\) satisfies the
axioms in Theorem 1.8, it is enough to prove that
By highest weight crystals satisfy (S6),(S7),(S8),
(S9) putting i =1, =2. In the rest of §2, we
assume A = By (indexed by I = {1,2}, where «; is
short) as §1.5 and prove Proposition 2.1, Proposi-
tion 2.2, Proposition 2.3 in §2.4, §2.5, §2.6 that
imply ((S6),(S7)),(S8),(S9) respectively thanks to
Proposition 2.4, which is a version of the Lusztig
involution.

Proposition 2.1. Fiz A € P* and take x €
B(X). If éx#0#éx and (AYL,2,x),
A%(2,1,z)) = (1,2), then Jy = élelé1x and we have
exactly (i.e., exclusively) one of the following 3
cases. Here A = (A£(1,2,z),A£(271,z)) and A" =
(AL(1,2,y),AL(1,2,)), y = élész.

(case A" = (1,1))

dz = éQé%éQé]éQélm = égé‘fégéll‘ = élé%é‘fégl‘ =

élézélégé%égl‘, A/ = (1, 2)
(case A" = (0,0))
.f?y/ = ey, A£(2’ L, y/) =2, A£(27 L, .ley/) =0.
Proposition 2.2. Fiz A € Pt and take x €
B(X). If éix # 0 # ésx and e(z) > 2, (AL(1,2,x),
A%(2,1,z)) = (1,1), then Jz =& ééix =
Proposition 2.3. Fiz A€ Pt and take x €
B(X). If éx#0#éx and (AYL,2,x),
AL(2,1,2)) = (0,2), éetr # 0,A%(2,1,élz) =0,
then Jz = égéfégz = égé%ézélx = élé%é%fﬂ
Proposition 2.4 (see [6, §7.4]). For ) € PT,
there is an involution w : B(\) — B()\) such that
(a) Vb e B(N\),Vi € I,e(b) = ¢;(w(b)),
(b) Vb e B(\),Vi e I,éb#0= w(b) = fi(wb)).
2.2. A realization of B; highest weight
crystals. The choice &= s;898182 (resp. j=
$9818281) of a reduced expression of the longest
element wy gives the convex order on the positive
roots. Lusztig’s PBW parameterization associated
with k € {i,5} gives a realization of B(co) on N*,
where 4 = £(wy). The function R switches the two
parameterizations [4, §3].
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Definition 2.5. Let R:N* - N%,
(a,b,¢,d) — (n1, u — ng,ng + ng — p,ng — 2ng + 1)
be a bijection with R1:N* - N*,
(a,b,c,d) — (p1,v — p2,2ps + ps — 2v,ps — p3 + V).

ny; = max(b, max(b,d) + ¢ — a),

p1 = max(b, max(b,d) 4+ 2(c — a)),

ny = max(a, ¢) + 2b,

n3 = min(c + d, a + min(b, d)),
ps = min(2¢ + d, 2a + min(b, d)),

ny = min(a,¢), py = min(a,c),
w=max(2ng,ny +ny), v = max(ps,p2 + ps).

In B(co) ® Ty, thanks to [6,Proposition 8.2],
B()) is isomorphic to

(b@tr | be B(oo),¥i € I,e5(b) < (hi, )},

pe = max(a,c) + b,

where T) is given as [6, Example 7.3]. Though we
do not explain the *-structure (see [6, §8.3]), we use
the fact €] (x) = x4 (resp. €3(a) = as) (see [8,§2.11])
for £ € N* (resp. a € N*) in the parameterization
associated with j (resp. ¢). Thus:

Proposition 2.6. For A € Pt, B(\) is real-

ized as (B(A),wt, (&)icp, (F)iers (60)ier (90)ier)-
B(\) = {(a,z) € N* x N* | R(a) = =,
ry < (h1,A), a0 < (ha, A) ),
=X — (29 + 223 + x4)oy — (21 + T2 + 23) 2,
eo(a, x) = a1,

vi(a,z) =¢;(a,z) + (h;,wt(a,x)),

é(a,z) = {((m —1,a9,a3,a4), R(a; — 1,a2,a3,a4)) ’
0

é(a, z) = {(Rl(ﬂm — 1,29, 23,24), (21 — 1,22, 23, 24)) ’
0

fQ( ) {(R_1($1+1,$2,CE3,$4),(3§'1 +17372,CL'3,I4))

Here, é(a,z) =0 (resp. f;(a,z)=0) if and
only if ;(a, ) =0 (resp. ¢;(a,x) =0) for i =1,2.

2.3. Auxiliary formulas.

Lemma 2.7. For a = (a1,a9,a3,a4) € N*
with az > a1, R(a) is given by (max(ag,as) + az —
a1, a1, min(az, a4), az + 2as — 2min(ag, ag)).

Corollary 2.8. For A€ P', take m=
((al,ag,ag,a4),($1,$2,$3,$4)) S B()\) If as > ap
and 1 > 1, then A%(2,1,m) = max(0,2 + a1 —ag +
2ay9 — 2max(as, a4)).

[Vol. 97(A),

For  x = (x1,20,23, 24) € N*
with x3 > x1, R™Y(x) is given by (max(z2,4)+
2(xzg — x1), 1, min(xse, x4), T3 + xo — min(xs, x4)).

Corollary 2.10. For M€ P", take m=
((a1,a2,a3,a4), (21, 22,23, 24)) € B(X).  If x3>x
and ay > 1, then AS(1,2,m) = max(0,1+ z; — x5+
X9 — max(zs2,x4)).

Lemma 2.11. For a= (aj,as,a3,a4) € N*
with ag < a1, R(a) is given by

Lemma 2.9.

(ag, as, ag, a1 + 2as — 2ay)
if ag > ag+ (a3 —a1)/2,

(as,2a3 + 2a4 — a1 — 2as, a1 + 2as — (a3 + a4), a3)
if ag+a3 — a1 < ay < ay+ (a3 —a1)/2,

(a4 + a3 — ay,a1,az,a3)

ifa,z < a4+ az—a.

Lemma 2.12. For x= (x1,29,x3,14) € N*
with 3 < x1, R™Y(x) is given by

(w2, 23, T4, 21 + T2 — T4)

if T3 > x4+ 23 — T71,

(1727 21‘3 + Ty — T1 — T2, 2561 + 21‘2 — 21‘3 — I4,$3)
if T4+ 2(x3 —x1) < 29 < 4 + 23 — T4,
(x4 + 2(x3 — 1), 21, X2, T3)

Zf ) S T4 + 2(I3 — 1‘1).

Corollary 2.13. For M€ P', take m=
((al,ag,ag,a4), ($1,$2,$3,$4)) < B()\) If a; > as
and x1 > 3, then A%(1,2,m)A%(2,1,m) = 0.

Proof. By Lemma 2.11, x; > z3 implies as >
a4+ (a3 —a1)/2 or as < aq + a3 — a1. In the former,
ag > aq+ (a3 — (ag — 1))/2 holds by as = x1 > a3 =
as and a; > a3. This implies A%(1,2,m) = as —as =
0. The latter is similar by Lemma 2.12. O

2.4. Proof of Proposition 2.1. Put

Y :={m € B(\) | e1(m),e2(m) >0,
(A:(la 2, m)? A:(27 1, m)) = (17 2)}a

X, :={((a,b,a,b),(b,a,b,a)) | a,b > 1} N B(}),

Xy :={((a,b,a,c),(b,a,c,a+2b—2c))

la>1,0<c<b}nB(N),

X3 :={((a,b,c,a+b—c),(b,a,b,c))

|b>1,0<c<a}nBN).

We show Y = X; U X5 U X3. Since the inclu-
sion DO is verified by direct calculation, take
m = ((ay1,a9,as3,a4), (x1, T2, x3,24)) €Y. By Corol-
laries 2.8 and 2.10, we have a; > az,x1 > o3
and thus we get a; = ag or x1 = z3 by Corollary
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2.13. By Corollaries 2.8 and 2.10, this implies
ag > ayq (ie., me X7 UXy) or zo >xy (ie., me
X1 (] Xg)

By direct calculation, one can check z € X;
satisfies the formula in case A” = (0,1),(1,1), (0,0)
depending on ¢ = 1,2, 3 respectively.

2.5. Proof of Proposition 2.2. Put

L={me B(\)|ei(m) > 2,e3(m) >0,
(A:(l, 2, m)v AE(Q, L, m)) = (1a 1)}7
M ={((a,b,a+1,¢),(b+1,a,c,a+2b—2c+ 1))
|a>2,0<c<b}NBN).
It is enough to show L = M since one can check

A direct calculation verifies L O M. To prove
L C M, it is enough to show a3z >a; for m=
((a1, a2, a3,a4), (21,22, 23,24)) € L by Corollary 2.8.
Assume a; > a3. Corollary 2.13 implies z; < x3 and
Corollary 2.10 implies =1 = x3, 2 > x4 that means
m € X; U X3. This contradicts A%(2,1,m) = 1.

2.6. Proof of Proposition 2.3. Put
S ={m € B(\) | e1(m) > 2,e9(m) > 0,&9(¢3m) > 0,
A:(27 L é?m) =0, (A:(la 2,m), Ag@v 1,m)) = (0,2)},
T={({(a,b,c,a+b—c—1),(bja—2,b+1,c¢))

|a>2b>1,0<c¢<a-2}NB\).

It is enough to show S =T since one can check

é1é%é%m = égé%égélm = égé:{’égm formeT.

The inclusion S 2O T is verified by direct
calculation. To prove the inclusion S CT, it is
enough to show x3>zy,29 > x4 for any m =
((a1,a9,as3,a4), (x1,T2,x3,24)) € S because the fol-
lowing deduces x3 = z1 + 1.

(a) x3 =1, 2 > x4 implies m € X; U X3 and con-
tradicts AS(1,2,m) = 0.

(b) Let 23 = 1 + n and assume n > 2 (then, we get
a contradiction as (c)—(e)).

(¢) By Lemma 2.9, (a1,a9,a3,a4) = (x2+ 2n,z1,
T4, T1 + N+ T — X4).

(d) Because as — (as+a3— (a1 —2))= n—22>0
and as+ (a3 — (a1 — 2))/2 —az =1+ (z9 —
74)/2>0, we have é&m=((a1—2,a,as,
a4), (1,22 + 2,21 + 1 — 2,24)) by Lemma 2.11.

(e) Because 1 —1l,z1<z1+n—2 we see
A%(2,1,é3m) = 2 by Lemma 2.9.

In the rest, we show x3 > z1, 29 > 24.

First, we show a1 > a3 as follows: Corollary 2.8
and A%(2,1,m) =2 imply a3 < a1. If a1 = a3, then
as > a4 by Corollary 2.8. It means m € X; L X5 and
contradicts AS(1,2,m) = 0.
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Next, we show z3 > x1. For this purpose, we
assume z3 < z1 (and a1 > a3) to draw contradic-
tions. By Lemma 2.12, a; > a3 only happens when
To > Tyt w3 — 2 or xy < xy+2(x3—x1). In the
former case, x9 > x4 + x3 — (21 — 1) also holds be-
cause xy = a1 > a3 = 4 (and x1 > x3). Again, Lem-
ma 2.12 implies A%(2,1,m) =29 — 29 =0. In the
latter case, we may assume a; — 2 > ag because
otherwise

A(2,1,63m) = max(0,2 + (a; — 2) — a3
+ 2a9 — 2max(az,a4)) = a1 —az >0

follows from Corollary 2.8 and a4 = x3 < 1 = ao.

Thus, we know é&m = ((a1 —2,a2,a3,a4),
(x1,29,23,24 —2)) by Lemma 2.11 and a4+
(a3 — (a1 —2))/2—ag = (xg — 24+ 2)/2 <0. This

implies A%(2,1,eIm) =2 since x5 < (z4—2)+
2(z3 — (r1 — 1)) and Lemma 2.12. In both cases,
we arrived at contradictions.

Finally, we show z9 > z,. For this purpose, we
assume o < x4 (and x3 > 1,41 > a3) to draw
contradictions. Note that in Lemma 2.11 x5 < 24
only occurs when ay > a4 + (a3 — a1)/2. In each of
the following, we arrived at a contradiction.

Assume a7 — 2 > a3. Because as > a4 + (a3 —
(a1 —2))/2, again by Lemma 2.11, we have é&im =
((a1 —2,&2,@3,&4),(%1,1‘2,1‘3,%‘4—2)). Lemma 2.9
and z; — 1,71 < z3 imply A%(2,1,éIm) = 2. Assume
a1 —2 < az. This only happens when a; = a3 + 1.
Thanks to Lemma 2.9, m is of the form m =
((zo + 1,21, 29, 21), (21,22, 01,22 + 1)).  Then, we
can check A(2,1,é9m) =1 by Lemma 2.7.

3. Proof of Theorem 1.8: Unique-
ness. We denote by N[I| the free commutative
monoid generated by I. The following is a version
of [9,Proposition 1.2, Remark 1.3.(a)], which is
easily proved by induction on d = depth(z):=
min{s > 0| 3(iy,---,is) € ',z = fi, -~ fi.xo}.

Proposition 3.1. Let X be a good I-colored
directed graph with a maximum xy € X and with
homogeneous local confluence property (see Defini-
tion1.1, 1.2, 1.10). Then, for z= [ --- f;.x0,
wto(x) =D, ix € N[I] is well-defined.

Remark 3.2. In Proposition 3.1 and assume
that X satisfies (S2) further. Fix A € P such that
Vi e I,{h;,\) = ¢i(xp). By induction on depth(zx),
Proposition 3.1 implies ¢;(x) = &;(z) + (h;, wt(x))
for i € I,z € X by defining wt(z) = A — U(wto(z))
for x € X, where U : N[I| — P,> . i, — Y, .

The following is similar to [9, Proposition 1.4].
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Proposition 3.3. For a symmetrizable GCM
A= (a,;]-)i"jd with Vi # Vj S I7A|i,j =A P A17A27
By,'By, let X, X' be A-regular graphs satisfying

Vi#Vje I, Al;; = By = (86),(57),(58),(S9)

with mazimum =z € X, ), € X' respectively. If
wi(xo) = pi(zf) for all i € I, there exists a unique
I-colored directed graph isomorphism X — X'.
Proof. Uniqueness is obvious because x exists.
To prove existence, by induction on k, we will
construct a bijection hy : Xj = X}, such that
(1x) |_|;f:0 he |_|2”":0 X, — |_|]g:0 X} is an I-colored
directed graph isomorphism,

(21) wi(@) = @i(hi(z)), ei(z) = €i(hi(z)) for all z €
X,and 1€ 1.

Here, X}, = {z € X | depth(z) = k} for X = X, X'

For k=0, the only choice is hy(zg) = xj. For
k> 1, we define hy(z) = fihk,l(éix) if ;x #£0. It is
well-defined by (X),(Y),(Z) below.

(X) for any z € X, there exists i € I such that

e;x € Xy_1 by Proposition 3.1.
(Y) fihg_1(é;x) #0  because

@i(€x) > 0 by (24-1).

(Z) For i#jel with éx # 0 # é;x, we show
ﬁ-hk,l(éi:c) = f]-hk,l(éjx) as follows:

When A, ; = A1 & Ay, Ay, (Z) is in the proof
of [9, Proposition 1.4] (or similar to the arguments
below). So let us A|; ; = By. By (52),(S3), possibil-
ities of A(x) = (AL(4,4,x), A(j,4,x)) are A(z) =
(0,0),(1,0),(0,1),(1,1),(0,2),(1,2). Among them,
cases A(z) =(0,0),(1,0),(0,1),(1,1),(0,2), (Z) is
again the same as in the proof of [9, Proposition 1.4]
(or similar to the arguments below). Thus, we
assume A(z)=(1,2). By (D7) in (S6), Jy=
é?éjl‘ € X3, Hy, = é?éjzébl‘ € Xj_s. Again (82),(83)
imply A" = (Ai(lvjv Y)s A[p(l’j7 yl)) = (07 0), (17 0>7
(0,1),(1,1). Assume A” =(0,1). By (Q7) in (D7)
in (S6), we have IFz=e¢leien =e¢eieie e
Xp-7,A(2)=(1,2) and as in Remark 1.11
(A%, f2,2), A (5,4, 22 i) = (0,1). Then, by
induction  hypothesis and (S7), we have
LB 1} fihi—(2) = fif} £} filw—(2). Since hy_(éx) =
f?fffjhk_7(z) and hk_l(éjx) = f?f]zfihk_7(z)7 we
are done. The case A” =(0,0) (resp. A" =(1,1))
is similar using (R™) (resp.(P;)) in (D7) in (S6) and
(S9) (resp.(S8)). Because A” # (1,0) by (D7) in

pi(hi-1(&w)) =

[Vol. 97(A),

(S6), (Z) is proved.

Finally, we show (1;) and (2;). h is epi by X’
version of (X). By symmetry h; is bijective. For
(2r), by (1z) we have Vo€ Xj,Viel,g(x)=
i(hp(x)). Then, Vo € X, Vi€ I, p;(x) = @;(hi(z))
follows from Remark 3.2 because h; preserves wtg.

|
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