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Abstract: Let U 0qðgÞ be a quantum affine algebra of untwisted affine ADE type, and C 0
g the

Hernandez-Leclerc category of finite-dimensional U 0qðgÞ-modules. For a suitable infinite sequencebw0 ¼ � � � si�1
si0si1 � � � of simple reflections, we introduce subcategories C ½a;b�g of C 0

g for all

a 6 b 2 Z t f�1g. Associated with a certain chain C of intervals in ½a; b�, we construct a real

simple commuting family MðCÞ in C ½a;b�g , which consists of Kirillov-Reshetikhin modules. The

category C ½a;b�g provides a monoidal categorification of the cluster algebra KðC ½a;b�g Þ, whose set of

initial cluster variables is ½MðCÞ�. In particular, this result gives an affirmative answer to the

monoidal categorification conjecture on C�g by Hernandez-Leclerc since it is C ½�1;0�g , and is also

applicable to C 0
g since it is C ½�1;1�g .

Key words: Monoidal categorification; quantum affine algebra; cluster algebra; Kirillov-
Reshetikhin module; T -system.

1. Introduction. Let U 0qðgÞ be a quantum

affine algebra. The category C g of finite-dimen-

sional integrable modules over U 0qðgÞ has been

intensively studied due to its rich structure. For

instances, every object M in C g has its left M� and

right dual �M, and the q-characters of Kirillov-

Reshetikhin modules in C g provide a solution of the

T -system, a system of differential equations appear-

ing in solvable lattice models ([3,5,18,19]).

On the other hand, the cluster algebras were

introduced by Fomin and Zelivinsky in [2] to

investigate upper global bases and total positivity

in an aspect of combinatorics.

Interestingly, it is proved in [6,7,9] that the

Grothendieck rings KðCÞ of monoidal subcategories

C ¼ CN ðN 2 Z>1Þ, CQ, C�g of C g have cluster

algebra structures A , and conjectured that every

cluster monomial corresponds to the isomorphism

class of a real simple module in C; that is, C is

expected to be a monoidal categorification of A .

The conjectures for CN ðN 2 Z>1Þ of untwisted

affine ADE types are proved in [6,8,20] and [23].

Also, the conjecture for the subcategory CQ � C g,

determined by a Q-data Q ¼ ðQ;�QÞ ([4,16]), is

proved in [11] via the quantum affine Weyl-Schur

duality functor FQ ([10,12,17,21]) from the cate-

gory CQH of finite-dimensional graded modules over

the symmetric quiver Hecke algebra to CQ. More

precisely, the category CQH provides a monoidal

categorification of the quantum cluster algebra

AqðnÞ, the quantum unipotent coordinate algebra

of finite simply-laced type ([1]). Since FQ is an

exact monoidal functor preserving simplicity, we

can prove the conjecture for CQ in an indirect way.

However, this method could not be applicable to

other C directly.

Recently, in [13], the authors of the present

paper (KKOP) developed Z-valued invariants

�;�1; ~�; d for pairs of modules in C g, which is

extracted from distinguished U 0qðgÞ-module homo-

morphisms, called R-matrices. Furthermore,

KKOP provided a criterion for a monoidal subca-

tegory C � C g to become a monoidal categorifica-

tion of a cluster algebra by using those invariants.

This paper can be understood as a continuation

of [13], since we will apply the above criterion to

various subcategories C of C g, including C 0
g, C�g
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and CN . We also give their initial monoidal seeds in

a uniform manner.

Let g0 be a finite-dimensional simple Lie

algebra of ADE type with a Cartan matrix A ¼
ðaijÞi;j2I0

, W the Weyl group generated by simple

reflections si ði 2 I0Þ, g the untwisted affine Kac-

Moody algebra associated with g0, and U 0qðgÞ the

quantum affine algebra associated with g. In [6],

Hernandez-Leclerc defined the full subcategory C 0
g

of C g. Since every simple modules in C g is a tensor

product of suitable parameter shifts of simple

modules in C 0
g, it is enough to consider subcatego-

ries of C 0
g.

By extending a reduced expression si1si2 � � � si‘
of the longest element w0 of the Weyl group W, we

obtain an infinite sequencebw0 ¼ � � � si�2
si�1

si0si1si2 � � �ð1:1Þ

of simple reflections satisfying properties (a) and

(b) in Section 2, and then we define fundamental

modules V ½k�bw0 (k 2 Z). For each interval ½a; b� ¼
fk 2 Z j a 6 k 6 bg with a 6 b 2 Z t f�1g, we de-

fine the subcategory C ½a;b�g of C 0
g which is the

smallest full monoidal subcategory containing

V ½k�bw0 for all k 2 ½a; b�. Then C 0
g is nothing but

C ½�1;þ1�g and the subcategory C�g introduced by

Hernandez-Leclerc ([9]) can be identified with

C ½�1;0�g (Remark 2.3).

We say that an interval ½a; b� is an i-box if

ia ¼ ib. For each i-box ½a; b�, we define a simple

module M½a; b�, which can be understood as a

quantum affine analogue of the determinantial

module (see Remark 3.2). In Theorem 3.1, we show

that M½a; b� is a Kirillov-Reshetikhin module and

give a sufficient condition for the simplicity of the

tensor product M½a; b� �M½a0; b0� for i-boxes ½a; b�
and ½a0; b0�. Then we define the notion of an

admissible chain C ¼ f½ak; bk� � ½a; b� j 1 6 k 6 b�
aþ 1; iak ¼ ibkg of i-boxes for an interval ½a; b�
satisfying certain properties (Definition 3.3). For

each admissible chain C, the family of Kirillov-

Reshetikhin modules MðCÞ ¼ fM½ak; bk�g16k6b�aþ1

in C ½a;b�g forms a commuting family of real simple

modules (Theorem 3.4).

The next step is to show that KðC ½a;b�g Þ has a

cluster algebra structure, C ½a;b�g provides a monoidal

categorification of KðC ½a;b�g Þ, and any admissible

chain C gives a monoidal seed MðCÞ (Theorem 4.3).

Based on the criterion in [13], we shall prove this by

showing the assertion for a special chain C, and then

by extending it to a general C. Namely, we proceed

by proving

(i) the existence of a �-admissible monoidal seed

S of KðC ½a;b�g Þ whose set of initial cluster

variable modules is MðCÞ for some admissible

chain C,

(ii) the existence of sequences of mutations among

the MðCÞ’s only employing T -systems,

which implies that any admissible chain C gives a

�-admissible monoidal seed for all C ½a;b�g . In partic-

ular, we prove that C is a monoidal categorification

of the cluster algebra KðC Þ for C ¼ C 0
g and

C ¼ C�g . Note that we need in step (i) above the

existence of the cluster algebra structure on KðC�g Þ
proved in [9].

This paper is an announcement whose details

will appear elsewhere.

2. Subcategories. We take the algebraic

closure k of CðqÞ inside
S
m>0 Cððq1=mÞÞ as the base

field for U 0qðgÞ. Recall that C g is the category of

finite-dimensional integrable modules over U 0qðgÞ.
There is a family fV ð$iÞc j i 2 I0; c 2 k	g in

C g of simple modules, called the fundamental

modules.

For simple modules M and N in C g, we say

that M and N strongly commute if M �N is

simple, and M is real if M�k is simple for all

k 2 Z>1.

Let us denote by � the quiver whose set of

vertices isbI0 :¼ fði; kÞ 2 I0 	 Z j k 
 dð1; iÞ mod 2g:

and the arrows of � consist of two types:

ðAÞ ði; tÞ ! ðj; sÞ with dði; jÞ ¼ 1 and

s� t ¼ 1,

ðBÞ ði; sþ 2Þ ! ði; sÞ.

8><>:ð2:1Þ

Here dði; jÞ denotes the distance between the

vertices i and j in the Dynkin diagram of g0 and

1 2 I0 is an arbitrary chosen element.

We say that an infinite sequencebw0 ¼ � � � si�1
si0si1 � � �

of simple reflections in the Braid group Bðg0Þ ([15])

of type g0 is admissible if

(a) there exists a sequence ftkgk2Z of integers such

that

(1) ðik; tkÞ 2 bI0,

(2) tkþ ¼ tk þ 2, and

(3) tk > tk0 if k > k0 and dðik; ik0 Þ ¼ 1.
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(b) sik � � � sikþ‘�1
¼ w0 for all k 2 Z, where ‘ denotes

the length of longest element w0 2 W.

Here, for k 2 Z and j 2 I0, we set

kþ :¼ minfp j k < p; ik ¼ ipg;
k� :¼ maxfp j p < k; ik ¼ ipg;

kðjÞþ :¼ minfp j k 6 p; ip ¼ jg;
kðjÞ� :¼ maxfp j p 6 k; ip ¼ jg:

Remark 2.1.

(i) We have ikþ‘ ¼ i�k, where � denotes the invo-

lution on I0 induced by w0.

(ii) bw0 completely determines fðik; tkÞgk2Z up to an

even translation.

(iii) For every k 2 Z, the reduced expression

sik � � � sikþ‘�1
in (b) is adapted to some Dynkin

quiver Q of type g0. Conversely, for any

Dynkin quiver Q of type g0, there exists a

sequence bw0 satisfying (a) and (b) such that

si1 � � � si‘ is adapted to Q.

For each k 2 Z, we define the fundamental

module

V ½k�bw0 :¼ V ð$ikÞð�qÞtk :

Then we have

V ½k��bw0 ’ V ½k�bw0

ð�qÞ�2 ; V ½kþ ‘�bw0 ¼ DðV ½k�bw0Þ;

where D denotes the right dual functor.

Definition 2.2. For each interval ½a; b�, we

denote by C ½a;b�g the smallest full subcategory of C g

satisfying the following conditions:

(i) it is stable under taking subquotients, exten-

sions, tensor products and

(ii) it contains V ½k�bw0 for all a 6 k 6 b and the

trivial module 1.

Remark 2.3. Many of known subcategories

C of C g can be identified with C ½a;b�g by taking

suitable bw0 and ½a; b�:
(1) C ½�1;1�g coincides with the subcategory C 0

g.

(2) The subcategory CQ associated to a Q-data Q
coincides with C ½a;b�g for some interval ½a; b� with

j½a; b�j :¼ b� aþ 1 ¼ ‘.
(3) By taking si1 � � � si‘ in (b) as adapted to the

Dynkin quiver Q with f1; 2g 3 �QðkÞ 
 dð1; ikÞ
(mod 2Þ and tk ¼ �ðikÞ for 1 6 k 6 jI0j, CN

can be identified with C ½a;0�g where a ¼ 1�
ðN 	 jI0jÞ, and C�g can be identified with

C ½�1;0�g . Those subcategories CN , C�g of C 0
g

are introduced in [6,9].

3. Real simple commuting family associ-

ated to an admissible chain of i-boxes. Let us

fix an admissible sequence bw0 and ftkgk2Z. We write

V ½k� for V ½k�bw0 . We say that an interval c ¼ ½a; b� is

an i-box if ia ¼ ib. For each i-box ½a; b�, the module

M½a; b� in C 0
g is defined as follows:

M½a; b� :¼ hdðV ½b� � V ½b�� � � � � � V ½aþ� � V ½a�Þ;

where hdðMÞ for M 2 C g denotes the head of M. In

particular, V ½a� ¼M½a; a�.
Theorem 3.1.

(i) M½a; b� is a Kirillov-Reshetikhin module with

a dominant extremal weight s$ia where s ¼
jfk j a 6 k 6 b; ik ¼ iagj.

(ii) For i-boxes ½a; b� and ½c; d�, M½a; b� and M½c; d�
commutes if either

a� < c 6 d < bþ or c� < a 6 b < dþ:

(iii) For any i-box ½a; b�, there exists an exact

sequence in terms of M½a; b�’s as follows:

0! �
dðia;jÞ¼1

M½aðjÞþ; bðjÞ�� !M½aþ; b� �ð3:1Þ

M½a; b�� !M½a; b� �M½aþ; b�� ! 0;

We call it a T -system.

Remark 3.2. For any reduced expression

w0 ¼ sj1
� � � sj‘ of w0 (not necessarily adapted) and

½a; b� with ja ¼ jb and b� aþ 1 6 ‘, there exists a

real simple module D½a; b�w0 in CQH of type g0, called

the determinantial module, and there exists an

exact sequence (called the T -system)

0! �
dðia;jÞ¼1

D½aðjÞþ; bðjÞ�� ! D½aþ; b� �D½a; b��
! D½a; b� �D½aþ; b�� ! 0

in CQH , which is analogous to (3.1). More precisely,

when w0 is adapted to some Dynkin quiver Q of

type g0, quantum affine Weyl-Schur duality functor

FQ associated with some Q-data Q ¼ ðQ; �QÞ trans-

forms the above exact sequence in CQH to the

T -system (3.1). Thus M½a; b� can be understood as a

quantum affine analogue of the determinantial

module. (See [7, Proposition 4.1] and [11] for more

detail.)

For an interval c :¼ ½a; b�, we introduce i-boxes

½a; bg :¼ ½a; bðiaÞ��; fa; b� :¼ ½aðibÞþ; b�;
LðcÞ :¼ ½a� 1; bg; RðcÞ :¼ fa; bþ 1�:

Definition 3.3. A chain C of i-boxes

ðck ¼ ½ak; bk�Þ16k6l ðl 2 Z>1 t f1gÞ

is called admissible if eck ¼ ½eak; ebk� :¼ S16j6k½aj; bj�
satisfies jeckj ¼ k and one of the following two

statements.
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(1) ck ¼ Lðeck�1Þ,
(2) ck ¼ Rðeck�1Þ.

(Please do not confuse l and ‘.) The sequence of

intervals feckg16k6l is called the envelope of the chain

C and ecl is called the range of C.

Thus, for an admissible chain C of i-boxes, we

can associate a pair ða;TÞ consisting of an integer a

and a sequence T ¼ ðT1; T2; . . . ; Tl�1Þ such that

(i) Ti 2 fL;Rg ð1 6 i 6 l� 1Þ;
(ii) a ¼ a1 ¼ b1; and

(iii) ½eak; ebk� ¼ ½eak�1 � 1; ebk�1� if Tk�1 ¼ L,

½eak�1; ebk�1 þ 1� if Tk�1 ¼ R.

(
Hence we have ck ¼ ½ak; bk� ¼ Tk�1½eak�1; ebk�1� ðk >
2Þ, and the interval eck is obtained from eck�1 by

adding an element from the left or from the right

according that Tk�1 ¼ L or Tk�1 ¼ R.

For an admissible chain C ¼ ðckÞ16k6l with the

associated pair ða;TÞ and for 1 6 s < l, we say

that an i-box cs is movable if s ¼ 1 or Ts�1 6¼ Ts
ðs > 2Þ. For a movable cs in C, we define a new

admissible chain BsðCÞ whose associated pair

ða0;T0Þ is given

(i)
a0 ¼ a� 1 if s ¼ 1 and T1 ¼ R (resp. L),

a0 ¼ a if s > 1,

�
(ii) T 0k ¼ Tk for k 62 fs� 1; sg, and

(iii) T 0k 6¼ Tk for k 2 fs� 1; sg:
That is, BsðCÞ is the admissible chain obtained from

C by moving ecs by 1 to the right or to the left insideecsþ1.

Theorem 3.4. Let C ¼ ðckÞ16k6l be an ad-

missible chain and set

MðCÞ :¼ fM½ak; bk� j 1 6 k 6 lg:

Then we have the followings

(a) MðCÞ is a real simple commuting family.

(b) If M½c; d� commutes with all M½ak; bk� and

½c; d� � ½eal; ebl�, then ½c; d� 2 C.

(c) For another admissible chain C0 ¼ ðc0kÞ16k6l
with the same range, there exists a finite

sequence ðt1; t2; . . . ; trÞ 2 f1; 2; . . . ; lgr such

that

Btrð� � � ðBt2ðBt1ðCÞÞ � � �Þ ¼ C
0:

4. Monoidal categorification. Let K ¼
Kex tKfr be a countable index set. Let C be a full

subcategory of C 0
g stable under taking subquotients,

extensions and tensor products.

A monoidal seed in C is a pair S ¼
ðfMigi2K; eBÞ consisting of a commuting family

fMigi2K of real simple objects in C and a Z-valued

K 	Kex-matrix eB ¼ ðbijÞði;jÞ2K	Kex
such that (i) for

each j 2 Kex, there exist finitely many i 2 K such

that bij 6¼ 0, (ii) the principal part B :¼ ðbijÞi;j2Kex
is

skew-symmetric. For i 2 K, we call Mi the i-th

cluster variable module of S .

For a monoidal seed S ¼ ðfMigi2K; eBÞ, let

�S ¼ ð�S
ij Þi;j2K be the skew-symmetric matrix

given by �S
ij ¼ �ðMi;MjÞ (see [14]).

A monoidal seed S ¼ ðfMigi2K; eBÞ is called

�-admissible if

(i) ð�S eBÞjk ¼ �2�jk for ðj; kÞ 2 K 	Kex, and

(ii) for each k 2 Kex, there exist a simple object M 0
k

of C commuting with Mi for any i 6¼ k and an exact

sequence in C

0!
O
bik>0

M�bik
i !Mk �M 0

kð4:1Þ

!
O
bik<0

M
�ð�bikÞ
i ! 0:

Under the following two assumptions

(a) there exists a �-admissible monoidal seedð4:2Þ
S ¼ ðfMigi2K; eBÞ in C ;

(b) KðC Þ is isomorphic to the cluster algebra

A ð½S �Þ;
KKOP ([13, Theorem 6.10]) proved that C

provides a monoidal categorification of A ð½S �Þ.
Here ½S � :¼ ð½fMi�gi2K; eBÞ is a seed in KðC Þ, and

A ð½S �Þ denotes the cluster algebra with the initial

seed ½S �.
Set bI�0 :¼ bI0 \ ðI0 	 Z60Þ and let �� be the full

subquiver of � whose set of vertices is bI�0 . In [9],

Hernandez-Leclerc proved that A � :¼ KðC�g Þ has a

cluster algebra structure whose initial cluster var-

iable modules fMði;tÞgði;tÞ2bI�0 consist of certain KR-

modules. For a suitable choice of bw0 (Remark 2.3),

we have C�g ¼ C ½�1;0�g and fMði;tÞgði;tÞ2bI�0 can be

described as MðC�Þ for the following admissible

chain C� of i-boxes:

C
� ¼ ð0;T ¼ ðL;L;L; . . .ÞÞ:

More precisely, for ði; tÞ ¼ ðia; taÞ (a 6 0), we have

Mði;tÞ ¼M½a; 0g:

The following theorem gives an affirmative

answer for the conjecture on C�g :

Theorem 4.1. The monoidal seed
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S� :¼ ðMðC�Þ; eB�Þ is �-admissible;

where eB� is the matrix associated to ��. Hence C�g
provides a monoidal categorification of A �.

Now we shall generalize the above theorem to

an arbitrary C ½a;b�g .

Proposition 4.2. Let C ¼ ðckÞ16k6l be an

admissible chain of i-boxes with the range ½a; b� and

the envelope feckg16k6l. Assume that C :¼ C ½a;b�g

provides a monoidal categorification of KðC Þ with

a �-admissible monoidal seed ðMðCÞ; eBÞ. Let cs be a

movable i-box of C and set C0 ¼ BsðCÞ. If ecsþ1 6¼ csþ1,

then MðC0Þ is equal to MðCÞ up to a permutation. Ifecsþ1 ¼ csþ1, then MðC0Þ is the monoidal mutation of

MðCÞ at s. Moreover the corresponding exact

sequence (4.1) is given by the T -system (3.1).

The above proposition and Theorem 3.4 show

that all MðCÞ with the same range are mutation

equivalent.

Now we state our main theorem:

Theorem 4.3. For any admissible chain C ¼
ðckÞ16k6l for l 2 Z>1 t f1g with the rangeecl ¼ ½a; b� for a 6 b 2 Z t f�1g;

there exists a �-admissible monoidal seed S of C ½a;b�g

such that

(i) its set of cluster variable modules is MðCÞ,
(ii) its set of frozen variable modules is

fM½aðiÞþ; bðiÞ�� j i 2 I0;�1 < aðiÞþ 6 bðiÞ� <
þ1g, and

(iii) KðC ½a;b�g Þ has a cluster algebra structure with

the initial seed ½S �, and C ½a;b�g provides a

monoidal categorification of A ð½S �Þ ’
KðC ½a;b�g Þ.

By Remark 2.3, we have the following

Corollary 4.4. The Grothendieck ring

KðC 0
gÞ has a cluster algebra structure, and C 0

g

provides a monoidal categorification of KðC 0
gÞ.

Remark 4.5. We can generalize the above

results to an arbitrary quantum affine algebra U 0qðgÞ
by applying a similar framework with the results

in [12,17,21,22].
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