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Algebraic independence of certain infinite products involving
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Abstract:
formulae for the infinite products

n=1 n

Let {F,},~, be the Fibonacci sequence. The aim of this paper is to give explicit

II(1+5):

()

n=3

in terms of the values of the Jacobi theta functions. From this we deduce the algebraic
independence over Q of the above numbers by applying Bertrand’s theorem on the algebraic
independence of the values of the Jacobi theta functions.

Key words:

1. Introduction and main results. Let
{F.},>¢ be the Fibonacci sequence defined recur-
sively by

Fn+2:Fn+1+Ez7 n=>0

with Fy = 0 and F} = 1. Arithmetical properties of
infinite sums and products involving the Fibonacci
numbers have been investigated by several authors.
In 1989, André-Jeannin [1] proved that the sum of
the reciprocals of the Fibonacci numbers y | 1/F,
is irrational (see also [5,6]). Moreover, it is shown
in [7] that the number > 7 1/F, ; is transcen-
dental. On the other hand, some closed forms were
discovered in particular cases; for example,

O > 1 5-6

“— Iy 2

(cf. [10,p. 225]), which results from the use of
telescoping series. As for the infinite products, the
second author [12] derived that the numbers

T J o
(2) ’Yj-H(l+an), i=1,2,...

n=1

are all transcendental. The infinite products (2)
can be regarded as product analogues of (1). The
transcendence result on the 7’s was extended in [9]
to algebraic independence over Q of the numbers
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V1,2, -y Ym for any integer m > 1. Also in the
case of products, some closed forms can be obtained
through the telescoping method. For example, we
have

(3) ﬁ(1+Fi)=1+\/57

n=1 2n

> 1 1++5
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since
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where a := (1 + 1/5)/2 is the golden ratio. However,
it is not easy to find closed forms and to derive
arithmetical properties for given infinite sums and
products involving the Fibonacci numbers. For
instance, it is not known whether the numbers
S 1/F, and [[) (1 + 1/F3,) are transcendental.

In this paper, we give explicit formulae for the
two fundamental infinite products

> 1
II <1 + F) = 13.1509666577 . ..,

n=1 n
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o 1
1—— ) =0.1897891436.. ..
(- 7)

n=3 n
by means of the values of the Jacobi theta
functions. Moreover, by using the formulae we
prove that the above two numbers are algebraically
independent over Q. To state our results, we define
the Jacobi theta functions

D(q) = 2¢"* g™,
n=0
o0 2
(5) 9s(q) ::1+22q",
-1 + 92 Z 71 71

which converge for all complex numbers ¢ with
lg] < 1. Throughout this paper, let
1 V5-1

(6) ﬂiza: 9

Our main results are the following
Theorem 1. Let {F.},., be the Fibonacci

sequence. Then
1 0:(B)
. =9 5/4
+ ) B

&= ﬁ(l

=1 n (ﬂ4)
T 1\ V6 o 92(B)93(8)04(B)
. '_g(l_ﬁ> B R 7

Theorem 2. The numbers & and & are
algebraically independent over Q. In particular,
the numbers & and & are both transcendental.

2. Proofs of Theorems 1 and 2. We first
prove Theorem 1. Let 92(q),93(q),94(q) be the
Jacobi theta functions defined in (5). Using the
triple-product identities

_ q1/4H

27L 1+q2n 2)(1+q27z)
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194((1) — 10_0[(1 _ q2n)(1 _ q2n71)2

(cf. [4, Corollary 3.1]), we have
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(see [4, Proof of Proposition 3.1] for (8)). Hence, we
obtain by (7), (8), and (9)

00 1 B 00 (1+ﬂ2n72)(1+52n)
H(1+F2n1) _H

n=1 el 1+ ﬂ4n72
_ a1 200
-7 Da ()’
00 1 B 00 (1 _ ﬂ2n72)(1 _ ﬂQn)
g(l - F2n1) N n];[Z 1+ ﬁ4n—2
BTV B) 95(8)95(8)9(8)
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Therefore, Theorem 1 follows from the above for-
mulae and (3), (4), (6).

Next we show Theorem 2. Using the well-
known identities

(10) 93(q) = 202(¢%)93(¢),
(11) 3 (q*) = Vs(q)V4(q),
(cf. [4, Chapter 2, §2.1]), we obtain by Theorem 1
16
ge = \/_ BP93(5%),
52 \/’ 2/ 12
6 Eﬁ (B,

so that the numbers 9¥3(5?) and 9¥3(53°) belong to
the field Q(é1, &, 8). Hence, putting K = Q(&1, &)
and noting that (3 is an algebraic number, we have
2 > trans.degqK = trans.degqQ(&1, &2, B)
> trans.degQ(V3(8%), ¥3(6%)) = 2,
where at the last equality we used a result of
Bertrand [3, Theorem 4] (see also [8]) which is a
consequence of Nesterenko’s theorem [11] on the
algebraic independence of the values of Ramanujan

functions. This implies that trans.degqoK =2,
namely, the numbers & and & are algebraically
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independent over Q. The proof of Theorem 2 is
completed.

Remark 1. It should be noted that the tran-
scendence of & 1is an immediate consequence of a
result of Barré-Sirieix, Diaz, Gramain and Philibert
[2] (see also [3, Theorem 3]). Indeed, by Theorem 1
and the identities (10) and (11), we have

5/2 V2(6°)

V4(6%)
Thus, we find by [2, Théoreme (i)] that the number
9o(?)/04(B%) is transcendental, and hence, so is
&
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