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Abstract:

It has been proved by Koehler and Rosenthal [Studia Math. 36 (1970), 213—

216] that an linear isometry U € L£(X) preserves some semi-inner-product. Recently, similar
investigations have been carried out by Niemiec and Wéjcik for continuous representations of
amenable semigroups into £(X) (cf. [Studia Math. 252 (2020), 27-48]).

In this paper we generalize the result of Koehler and Rosenthal. Namely, we prove that if an
operator T € £(X) of norm one attains its norm then there is a semi-inner-product [-]o] : X x
X — F that the operator T preserves this semi-inner-product on the norm attaining set. More
precisely, we show that the equality [T'(-)|Tz] = [-|x] holds for all x € My := {y € Sx : || Ty|| = 1}.

Key words:

1. Introduction. Let (X,]‘||) be a normed
space over F € {R,C}. Lumer [5] and Giles [3]
proved that in a normed space X there always exists
a mapping [-[¢] : X x X — F satisfying the follow-
ing properties:

(Slpl) vx7y7zEXVaeF . [O(J? + ylZ] = a[a:|z] + [y|2’],

(sip2) Vaoyex Vaer ©  [z|ay] = alz|yl;

Esipi’)) Vogex : [zl < llzf| - [lyll;

sipd) Veex : [z|z] = ||z||”
Such a mapping is called a semi—inner—product in
X (generating the norm ||-]|). There may exist

infinitely many different semi-inner-products in
(X,]|-])- Indeed, non-smooth spaces furnish the
necessary examples. However, the above four con-
ditions say that semi-inner-products are perfect
generalizations of inner products.

Let £(X) be the space of all linear and bounded
operators on a normed space X. Koehler and
Rosenthal [4] gave the following characterization
of linear isometries in £(X).

Theorem 1.1 [4]. Let X be a normed space
(real or complex) and let U € L(X) be an iso-
metry. Then there is a semi-inner-product [-|o]
such that

(1) Vi yex

Recently, Niemiec and Wdjcik [6, Theorem
4.13.] provided some extension of Theorem 1.1.
Their result dealt with continuous representations

U

[Uy|Ux],, = [y|]

U v’
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of amenable semigroups into the algebra L£(X)
(see [6] for the definition of amenable semigroups
and amenability).

The main aim of this paper is to provide
another extension of the result of Koehler and
Rosenthal. Namely, we will consider an operator
T which attains its norm instead of an isometry U.
Then we will prove that a similar version of (1)
holds on the norm attainment set of T

This will not be only shallow change. We show
the proof for general operator which is more difficult
than in the case of isometries.

Moreover, it is worth mentioning that norm
attainment sets has been widely investigated.
Pioneering results, as well as more information on
normed attaining sets, can be found, e.g. in [7].

Let us fix our main notations and terminolo-
gies. The set {0,1,2,3,...} will be denoted by Nj.
X* denotes the dual space of X. Sy stands for the
unit sphere in X. For z € X let J(z) denote the set
of its supporting functionals:

(@) ={fe X" :fll =1, f(z)=[l=]}

The Hahn-Banach Theorem implies that J(x) # ()
for all x € X\ {0}.
For a given T € L(X), we denote

My :={z e Sx :||Tz| = ||T|},

i.e. the set of points on the unit sphere at which
T attains its norm. Generally, My may be empty;
however, if X is a reflexive Banach space, then
compactness of T implies My # ().
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Moreover, we have also the following constant
(2)  AT) == nf{||T| : x € Sx}
= sup{c > 0: Voex cllz| <|[Tz|},
and another subset of the unit sphere
myp = {x € Sx : | Tz|| =v(T)}.

It is easy to see that the inequality v(T') > 0 implies
the injectivity of 7.

2. Extension of the Koehler-Rosenthal
theorem. In this section we will prove a sharp-
ened version of the Koehler-Rosenthal result. We
start with an auxiliary result.

Theorem 2.1. Suppose that z € myp, v(T) >
0 and g € J(2). Then there is a functional h, € J(T'z2)
such that y(T)g=h,oT.

Proof. It is easy to check that span{z}nN
ker g = {0}. Since v(T) > 0, T is injective. So, we
get span{T'z} N T (ker g) = {0}.

Now, we can define a linear functional h:
span{Tz} + T(kerg) = F by  h(aTz+Tk):=
ay(T), where a € F and k € ker g. Then we have

|h(aTz+Tk)| = ||y (T) = |a|y(T)| 2l
= |a[y(T)g(2) = v(T)|g(az)|
=(T)|g(az + k)|

]
<A(D)llaz+ k| < [loTz+ Tk|.

Thus |h]] <1. On the other hand |h(ﬁ)\ =
ﬁ’y(T) =1, therefore ||h|| =1. Now the Hahn-
Banach Theorem implies that there exists a linear
functional h,:X — F such that [h.||=1 and
Pelspan{T2) 47 (ker gy = - From this we obtain h.(Tz) =
WTz) =~(T) = ||T2|| thus h, € J(Tz). It is easily
seen that T'(kerg) C kerh,. It follows from this
inclusion that kerg C ker(h,oT). But h,oT #0.
This is proved by writing (h,oT)(z) = h,(Tz) =
+(T) > 0.

Observe that codimker g =1 = codimker(h, o
T). Therefore we obtain ker g = ker(h, oT). This
implies ag=h,oT with some o € F. From this
equality we deduce o = ag(z) = h,(T2) =~(T). O

We are in position to prove an extension of the
Koehler-Rosenthal theorem.

Theorem 2.2. Suppose that T € L(X) is an
operator such that |T|| =1 and Mr # 0. Then
there is a semi-inner-product [|o] : X x X — F such
that

(3) Veerr, Yyex  [TyTx], = [ylz]. ..
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Moreover, if T is not an isometry and mr # () and
Y(T) > 0, then there exists a semi-inner-product

[o],: X x X — F such that
(4)  Viemy Yuems vyEX[Ty|Tx]T = [y|x}T and
2
[Ty|Tu], = (1) [ylul,.-

Proof. Since the proofs are similar we present
only the second part of theorem. The first one is
easier. So, assume that Mp # mp and (T) > 0.
The proof is long, therefore we find it convenient

to write the six steps of the proof.
Step I. First, we define a subset

A:={x e My :Tx¢ Mr} C Mr.
Next, fix x € A and let us consider a subset
D,:={ye€ Mr: Fen, T"y =2} C M.
We see at once that AC D, and T(D,) C D, U
T(A). It is easy to check that
if z€ My and T"z € My,
then T"z € My for all k <n.

Therefore, one should be able to verify with little
effort that

(5) if z1,79 € A and x # x9, then D,, N D,, = 0.

The property (5) will be important later. Now we
define the next two subsets

K :={y € My :Vyen, T"y € My} and

K :={y € My : 3pen, T"y ¢ Mr}.
A moment’s reflection shows that

My=KUK=KU| ] D,.

zeA

For fixed z € Aand y € D, UT(A), we define a
constant

p(y, ) := min{n € Ny : T"y = Tz}.

In particular, p(z,z) =1 and p(Tz,z) =0 and
TPW2)y = Ta. Moreover, if Ty € D, UT(A), then
we obtain
(6) p(Ty,x) =min{n € Ny : T"(Ty) = Tx}
=min{n € Ny : 7"y = Tz}
= min{k € Ny : TFy = Tz}
= —1+min{k € Ng : T"y = Tz}
= -1+ p(y,x).
For each element x € A, using the axiom of
choice, we take an arbitrary fr, € J(Tx) such that
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(7) if x,2' € A, J(Tx) = J(T2'), then fr, = fry.

The above remark will play a significant role in this
proof. Since ||Tz| =1, we see that fry(Tz) =1. If
y€ D, and Ty € D, UT(A), then

(8) me(Tp(Ty’z)Hy) = fT:t(Tp(y’I)y) = fr.(Tz) = 1.

It is obvious that ||fp, o TPT¥2)+1|| < 1. So, apply-
ing (8) we obtain

(9) e 0 TPT# | =1

Step II. Before defining a semi-inner-product
[[],, it is convenient to introduce a mapping [-[o]_:
X x Sx — F. First we define it on

X x (U DxUT(A)>.

reA
Solety e | D, UT(A). It is convenient and, more
€A
importantly, helpful to recall that D, NT(A) = 0.

If ye U D,, then we conclude from (5) that
T€EA
there is a unique x € A such that y € D,. On the

other hand, if y € T(A), there is a unique (by the
injectivity of T') vector « € A such that y = Tz.

These remarks allow us to introduce the
following definition

(10)  [wlyl, = (fro o T*))(w) for w € X.

Before returning into the proof, a few words are
appropriate. More precisely: if y(T") > 0 were not
assumed, we would prove only (3). But then 7" need
not be injective. Therefore it is necessary to check
that [-[o], is well defined on T'(4). To do this we
assume that x,2’ € A and y = Tx = T2'. Then

" (fra o TP (w) = (fr 0 T)(w)

D (Fr o Ty (w) © w T

(10
[w|Tz], =

Thus [|o], is well defined on T'(A) in each case. To
end this step, we fix a vector y € D, such that Ty €
D, UT(A) and we write

Y fr (TPWo)y) 9 Fra(TPT00 )

= Fro(TT0) (Tw) 2

(11)  [w]y],

[Tw|Ty],.

Step III. From now on, the set my plays a main
role. Since T is not an isometry, My # myp. It is
easy to see that ﬁT(mT) C Sx. Now we define a
mapping [o], on the set X x (mTUﬁT(mT)).
Note that
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and

(12) mr = (mT n T(MT)) U (mT \ T(MT))

0= (mT n T(MT)) n (mT \ T(MT))

First we consider the subset mpr NT(Mr). Fix x €
My such that Tz € mp, ie. Tax € mpNT(My).
Then z € A and the functional fr, € J(Tx) is
defined as above.

So, for each element = € A, using the axiom of
choice and Theorem 2.1, we take an arbitrary hp, €
J(T?z) such that

13) if x,2' € Aand Tz = T2/, then hp, = hyy,
Tx

and

(14) ATV fro = hro o T,

Now fix w € X. Since Tz € mr,
consider the next definition:

T(Tx)
(15) [w' 17(Tx)

It follows from (13) that the equality (15) is well
defined. Furthermore: since Tx € mp, Tx ¢ My.
However, we know that x € Mp. Thus we conclude
that x € D,. Therefore, we obtain

16) [m T(Tﬂ 9 by (Tw) & (T i ()

[ T(T)||

= 7(T)sz(T0w)

= (1) fra (TP )

(10)

= (1) [w|Tx].

Now we investigate the subset mr \ T(Mr7). So,

for each x € my \ T(My), using, again, the axiom
of choice, we take an arbitrary g, € J(z). Now

Theorem 2.1 and the axiom of choice imply that
there is a functional h, € J(Tx) such that

and if z,2’ € A and Tz = T2/, then h, = hy.
Now fix w € X. Clearly, H%H € Sx. Then we
introduce another definition:

HT(TL s Sx. Let us

H] = hry(w) for we X.

(in particular, ||h, o T|| =~(T))

1
[w]z], = Whl(Tw) and

& ﬁnl - )

In the same manner as before we can see that the
second part of (17) is well defined. So, we get

(17)
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Tx (17) (17)
(18) [Tw } = hy(Tw) = ~(T)[wlz],.
1Tz
Since ||y o T|| = v(T), (17) implies [-|z], € X* and
Llal,| < 1| and [zlz], = =k hy(T2) = go(z) = 1.

Step IV. The above parts will be summarized.
Define a subset 9t C Sx by the formula

M := K Umyp UT(K)U T(mr).

1
(1)
Combining the end of Step III, (9), (10) and (15),
we immediately get
(19)  [fz], € X" and |[]z] | < [|- || for z € 9N,
and moreover

(20) [z]z] =1 for all x € M.

S

So, we may consider the mapping [-o] : X x M — F
as well defined.

Step V. Now fix a semi-inner-product [-]|o],:

X x X — F. A trivial verification shows that ([77b]
T"a),:n €{0,1,2,...}) is a bounded sequence for
each fixed a,b € X. Fix a Banach limit L:[* — F.

Now, we are able to extend the mapping
[fo],: X x 9 — F to the set X x Sx by the formula

(1) [w]al

[w]a] ; if a € M,
L([wla),, [Tw|Ta),, [T*w|T%d],,...)
ifa € K,
[wla], if a € Sx \ MU K).
If a € K, then the shift property of the Banach limit
shows that
(22) [wla], = L([T"w|T"a], : n € {0,1,2,...})
= L([T" ' w|T"a), : n € {0,1,2,...})
= [Tw|Ta]S.

Step VI. Finally, we extend the mapping [-|o]
to [-]o];: X x X — F by the formulas

blaly = ol o W] and

s

we put [blal; :==0if a =0.

It is easy to see that [-|o] satisfies (sip2). It follows
from (19) and (21) that [-|o] satisfies (sipl) and
(sip3).

Furthermore, the conditions (20) and (21)
say that [[o] satisfies (sip4), thus it is a semi-
inner-product.
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Combining (11), (16), (18) and (22), we imme-
diately get (4). O

To end this section we present some applica-
tion of Theorem 2.2. The next two theorems con-
cern the Birkhoff orthogonality and the semi-
orthogonality.

Theorem 2.3 ([2, Theorem 57, p. 140]). Let
(X, |l 1) be a normed space, E its linear subspace
and x, € X\ E. Then the following statements are
equivalent:

(a) zLlpE, i.e. Veer |20l < |20 + el
(b) There exists a semi-inner-product [-|o] which

generates the norm || - || and for which xz, L E,

i.e. Veer [e|zo) = 0.

The above theorem can be strengthen as
follows:

Theorem 2.4. Let (X,|-||) be a normed
space. Let C,E C X be nontrivial closed linear
subspaces such that X = C' 4+ E. Then the following
statements are equivalent:

(a) CLpE, i.e. Veeo Yeer ||| < |lc+ell;
(b) There exists a semi-inner-product [-|o] which

generates the norm || - || and for which C L E,

i.e. Veeo Veer [e|c] = 0;

Proof. Assuming (a) we obtain C'NE = {0}.
For each vector ¢+ e € C'+ E = X (unique decom-
position) we define P(c + e) := c. It is obvious that
P is linear. Applying (a) yields

[1P(c+e)ll = llell < [le+ el

Thus we get [P|| <1. But [|[P(z5p)ll =I5l =1
Hence | P|| = 1.

Theorem 2.2 now shows that there exists a
semi-inner-product [[o] ~such that [P(-)|Pz], =
[|z], for all z € Mp. We check at once that Mp 2
SxNC. It means that, for any ce€ C\ {0} and
ec E, we have 0= [O|P(ﬁ)]P = [Pe\P(ﬁ)]

[e] H_ZH]P = HTlH [e|c]. Hence 0 = [e|c]. So the implica-

P

tion (a) = (b) is proved. The reverse is true, since
1, C Lg (see e.g. [2]). O

3. Norm derivatives on norm attaint-
ment set. From now on, we assume that the
considered normed spaces are real. This section is
in spirit to Theorem 2.2. Namely, instead of
semi-inner-product, we consider norm derivatives,
which are defined by the formulas o (z,y):=
lim Lzt =l [
[2,1] for the background and properties of these

functionals). In particular, we have

and gl (z,y) = li
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(ndl) Vo Yaer : 0 (2, ax +y)

= apl, (2, 2) + p' (2,9);
(nd2) V) Voor : p(, ay) = apl(z,y) = pl(ax,y);
(nd3) Vz,y Vo<R pli ((L’, ay) = OZP;(CE, y) = p/i(cm, y);
(ndd) V.., |l (2, 9)| < [l - lyll, ple, @) = ||z
(nd5) Vay @ pL(z,y) < pl(2,9).
Let us recall a useful connection between norm
derivatives and the semi-inner-products (cf. [2, The-
orem 15, p. 36]). Let SIPx denote the set of all
semi-inner-products in the normed space (X, |-||)
which generate the norm ||-||. Then

Pl (. y) = ||z]| - sup{e(y) : ¢ € J(2)}
= sup{[y|z] : [-|o] € STPx}.

Note that, if x € Sx then p’ (z,y) < p(y) < 0 (z,y),
for every ¢ € J(x). It is convenient and, more
importantly, helpful to prove the following lemma.

Lemma 3.1. Suppose that X is a real
normed space. Let x,y € X. Then

Py (x,y) = ||lz|| - max{p(y) : ¢ € J(2)}
= max{[y|z] : [|¢] € STPx},

p(x,y) = llz| - min{e(y) : ¢ € J(z)}
= min{[y|z] : [|¢] € STPx}.

Proof. It is easy to check that the function
J(x) 2 p— p(y) € R is weak*-continuous. More-
over, the set J(x) is weak*-compact. Therefore the
function J(z) 3 ¢ — ¢(y) € R attains its maximum
and minimum. So, the first equality is proved. Since
o (z,—y) = —p"(z,y), we get the second one. [

Theorem 3.2. Let T € L(X,Y) be a linear
operator between two real normed spaces. Suppose
that ||T|| =1. Then the following inequalities are
true:

Voerr Vyex
p(z,y) < p_(Tz,Ty) < p/ (Tx, Ty) < pl, (z,y).

Proof. By (nd5) the middle inequality holds
true in general, so it remains to prove the outer
ones. Fix x € My and y € X. Choose arbitrarily
f € J(Tzx). By the definition of the set J(Tx), we
have that 1 = (o 7)(x) < ||f o Tl < ]| - |7 = 1.
Therefore ||foT| =1. Thus foT € J(z). So we
conclude from Lemma 3.1 that we have

p(z,y) < (foT)(y) <4\ (z,y).
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This proves that the inequalities
p_(@,y) < f(Ty) < pl(z,y)

are true for all f € J(T'z). Passing to the infimum
and to the supremum over J(7'z), and using Lemma
3.1, we get p' (2,y) < p' (Tx,Ty) and o, (Tx,Ty) <
¢, (x,y), respectively. The proof is complete. O

Theorem 3.3. Let T € L(X,Y) be a linear
operator with |T|| =1 and mr #0. Then the
following inequalities are true:

szmT VyeX PL (Tx,Ty) < ’)/(T)2PL <$, y) and

V(D) (2,y) < 9 (T, Ty).

Proof. If v(T) = 0, then Tz = 0 for all z in my
and o/, (Tz,T(-)) =0. Assume now that y(T) >0,
and think of T as a mapping from X to T'(X). From
this point of view, T € £(X,T(X)) is invertible
and it follows that ~(T)T7!e L(T(X),X) and
|v(T)T~!|| = 1. It is not hard to show

%T(mﬂ C Myryr-1-
Applying Theorem 3.2 we get that
P (u,w) < pL(y(T) T u, /()T w)
<P (DT u, /(1) T w) < Py (u,w)
for all uw € My and we T(X); and we may

consider Theorem 3.3 as shown. O
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