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On Lecacheux’s family of quintic polynomials
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Abstract:

Kida, Rikuna and Sato [6] developed a classification theory for Brumer’s

quintic polynomials via Kummer theory arising from associated elliptic curves. We generalize
their results to elliptic curves associated to Lecacheux’s quintic Fyp-polynomials instead of

Brumer’s quintic Ds-polynomials.

Key words:

1. Introduction. Let K be a field with
char K # 2, 5 and C,, be the cyclic group of order
n. Let D5~ C; x Cy be the dihedral group of
order 10 and Fyy ~ Cs x C4 be the Frobenius group
of order 20. Let K (s,t) be the rational function field
over K with two variables s,t. Brumer’s quintic
polynomial Bru(t, s; X) is defined to be

(1) Bru(t,s;X) =X+ (t—-3)X' - (t—s-3)X?3
+ (=t —2s—1)X? +sX +t € K(s,t)[X].

The polynomial Bru(t,s; X) is K-generic for
D5, namely (i) the Galois group of Bru(t, s; X) over
K (s,t) is isomorphic to Dy; and (ii) every Ds-Galois
extension L/ M, #M = oo, M D K, can be obtained
as L = Sply,(Bru(b,a; X)), the splitting field of
Bru(b, a; X) over M, for some a,b € M (see Jensen,
Ledet and Yui [4, Theorem 2.3.5]).

Kida, Rikuna and Sato [6] studied Brumer’s
quintic Bru(¢,s; X) via Kummer theory arising
from elliptic The splitting field
Splk (s (Bru(t, s; X)) contains the unique quadratic
subfield K(s,t)(y/dys) where
(2) dis = —48> + (12 — 30t +1)s?

+2t(3t+1)(4t — T)s
—t(4t" — 483 — 401> + 91t — 4) € K{(s,1).

In this paper, we study the case where K = Q.
We search elements « and § in Q(s, t) such that the
quadratic subfields of Splg,,)(Bru(3, a; X)) and of
Splg(s, (Bru(t, s; X)) coincide. According to Kida,
Rikuna and Sato [6, Section 2], we restrict ourselves
to treat the case § =t and consider the equation

curves.
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dmsUQ = dt,a-
Define
d=dis, x=—4do, y = 4d%u.

Then we obtain the associated elliptic curve
(3) Eig:9t =2 +d(t* — 30t + 1)a?

— 8d*t(3t + 1)(4t — )z

— 16d°t(4t* — 43 — 408> 4 91t — 4)
to Brumer’s quintic polynomial Bru(¢,s; X). This
elliptic curve E;, has an isogeny ¢ of degree 5
defined over Q(s,t). The 5-division polynomial of
E,; (see Silverman [8, Exercise 3.7]) has a quadratic
factor fo(z) (see [1,Section 1]). Take a root 6 of
fa(x) = 0. Then we obtain a point A € E;4(Q(s, 1))
of order 5 with z(A4) = 6. Apply the Vélu formu-
la [10] to (A) and take Ej, = E;/(A) as the image
of ¢ (see Kida, Rikuna and Sato [6, Section 2]):
(4) Ef, :y* =2 +d(t* — 30t + 1)2?

— 8d*(26t" — 310t° + 327t* + 315t + 26)x
+ 16d3(68t° — 1120¢° 4 3804t + 1760t

+ 6929¢* + 1380t + 68).
After the specialization Q(s,t)* 3 (s,t) — (s,t) €
Q?, we obtain that Bru(t,s’; X), Ey ¢ and E} , are
defined over Q. After the specialization, for s,t € Q,
we also write Bru(¢,s; X), Eis and E;, which are
defined over Q (not Q(s,t)). Let ¢* : E’fS — Ey 5 be
the dual isogeny of ¢. Then the quotient group
E;,(Q)/¢*(E;,(Q)) is finite by weak Mordel-Weil
theorem (see [8, Chapter VIII, Section 1]).

Definition 1.1 (Kida, Rikuna and Sato [6,

page 694]). Let s,¢t be rational numbers. For
each Q-rational point P = (z(P),y(P)) € E+(Q),
Brumer’s polynomial Bru(P; X) with respect to P is
defined to be
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Bru(P; X) := Bru (t, 2(P) ; X)

—4d

where Bru(t, s; X) is Brumer’s polynomial as in (1)
and d = d;; is given as in (2).

We remark that there exists a rational point
Py = (—4ds,4d?) € E;4(Q) and by the definition we
have Bru(Fp; X) = Bru(t, s; X).

Theorem 1.2 (Kida, Rikuna and Sato [6,
Theorem 2.1]). Let s,t be rational numbers. Let
E,, be the elliptic curve as in (3). Let Bru(P; X) be
Brumer’s polynomial with respect to P as in Defi-
nition 1.1 with the splitting field Splg(Bru(P; X))
over Q.

(i) For any Q-rational point P € E; ,(Q), Bru(P; X)
is reducible over Q if and only if P € ¢*(E; (Q));
(ii) There exists a bijection between the following
two finite sets

{subgroup of order 5 in Efs(Q)/gZ)*(EfS(Q))}
and
Spl(Bru(P: X)) | P € B, (Q)\ 6" (5L Q).

The bijection is induced by the correspondence
E,4(Q) > P — Splg(Bru(P; X)).

The aim of this paper is to generalize Theo-
rem 1.2 to elliptic curves associated to Lecacheux’s
quintic  Fyp-polynomial Lec(p,r; X) instead of
Brumer’s quintic Ds-polynomial Bru(t, s; X).

Let Q(p,r) be the rational function field over Q

with two variables p,r. Lecacheux’s quintic poly-
nomial Lec(p,r; X) is defined to be

17
(5) Lec(p, 75 X) := X° + <7”2(p2 +4) —2p — 4>X4
2 2 13 3
+ 3T(p +4)+p +?p+5 X

11
— (r(p2+4)+?p—8)X2

+(p—6)X+1¢eQ(p,m)X].

The polynomial Lec(p,r; X) is known to be Q-ge-
neric for Fy (see [4, Theorem 2.3.6]).

We will define the elliptic curve &,, associated
to Lecacheux’s polynomial Lec(p,r; X). Define

(6) W, = 16(p* 4+ 4)r® + 4(p* + 4)r*
—4(19p + 41)r — 16p — 199,
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Wyr
D,, = —8p“' ((p" + 5p* + 4)

+ p(p* + 3)\V/p? + 4).

The splitting field Splg,,)(Lec(p,7; X)) con-
tains the unique quadratic (resp. quartic) subfield

Q(p,7)(\/p*> +4) (resp. Q(p,r)(\/D,,)) (see Hoshi

and Miyake [2, Lemma 7.3 and Lemma 7.4];
Lec(p,r; X) is gﬁ’ﬁ’(X) in [2]).

We search [ such that the quartic subfields of
Splg(Lec(p, 3; X)) and of Splg(Lec(p,r; X)) coin-
cide. We consider the equation

2
meu = Dp_ﬂ.

Write D= D,, and W =W,,. Then the above
equation becomes

Wu? = W, .
Define
z=A(p" + HYWB, y:=2(p* + )W u.

Then we get the associated elliptic curve
(7) Epr i =20+ (PP + 4 Wa?
—4(19p 4 41)(p* + )Wz
— 4(p* 4+ 4)*(16p + 199) W3
to Lecacheux’s quintic polynomial Lec(p,r; X).

The curve &£,, has an isogeny v of degree 5
defined over Q(p,r). We see that the 5-division
polynomial of &, (see Silverman [8, Exercise 3.7])
has the quadratic factor fa(x) (see [1,Section 1]).
Take a root 6 of fo(x) = 0. Then we obtain a point
A €& (Q(pr)) of order 5 with z(A) =6, &, =
Epr/(A) as the image of v and the dual isogeny v* :
&, — Epr of vasin (4) (see also Kida, Rikuna and
Sato [6, Section 2]):

5;,r syt =28 (PP A)Wa?

— 4(p* + 4)(52p® — 625p + 833) W2z

+ 4(p® + 4)*(272p* — 5000p + 21713)W*.
As in the case of Brumer’s quintic, after the
specialization Q(p, r)2 > (p,r) — (p,7) € Q%, we al-
so write Lec(p, r; X), &€, and c‘,’;r for p,r € Q which
are defined over Q (not Q(p,r)).

Definition 1.3. Let p,r be rational num-
bers. For each Q-rational point P = (z(P),y(P)) €
Epr(Q), Lecacheux’s polynomial Lec(P;X) with
respect to P is defined to be




No. 1]

z(P)
Lec(P; X) := Lec (p,i; )
4(p* +4)W
where Lec(p,r; X) is Lecacheux’s polynomial as in
(5) and W = W, is given as in (6).

We note that there exists the point Qg =
(4r(p* + YW, 2(p* + 4)W?) € £,,(Q) and we have
Lec(Qo; X) = Lec(p, r; X) by the definition.

The following is the main theorem of this
paper:

Theorem 1.4. Let p,r be rational numbers.
Let &,, be the elliptic curve as in (7). Let
Lec(P; X) be Lecacheuz’s polynomial with respect
to P as in Definition 1.3 with the splitting field
Splg(Lec(P; X)) over Q.

(i) For any Q-rational point P € £,,(Q), Lec(P; X)
is reducible over Q if and only if P € v*(€, ,(Q));
(ii) There exists a bijection between the following
two finite sets

{subgroup of order 5 in &,,(Q)/v*(E,,(Q))}
and
{Splg(Lec(P; X)) | P € £,,(Q) \ V"(£,,(Q))}-

The bijection is induced by the correspondence
Epr(Q) > P+ Splg(Lec(P; X)).

2. Constructions of Bru(t,s;X) and
Lec(p,r; X). We recall constructions of Brumer’s
polynomial Bru(t, s; X) and Lecacheux’s polynomial
Lec(p, r; X) in Lecacheux [7, pages 209-214].

2.1. Construction of Bru(t,s; X). We con-
sider the elliptic curve:

Byt + (1 -ty — ty = 2° — ta?
with 5-torsion points
A =(0,0), 24 = (t,t%), 34 = (t,0), 44 = (0,1).

The curve Ef is also called Tate normal form (see

Husemoller [3, page 93, Definition 4.1]). The j-in-
(t'—1263 41482412t +1)°
BE—111-1)
the elliptic curve E; = E;/(A) up to isomorphism
with the isogeny ¢:Ef - E,X=~1— X =

2 2
XX +2)§(t(§)_(f;§ —2XE2XH) of degree 5. Then by
solving this for X, we have X°+ (t—3)X*+
(1-3X =2t = 18) X3 + (4t + 3+ 5t +  X') X2 +
(=22 =2 -1 X' = 31)X + ¢t =0. Define s = —2t* —
— 41X’ —35t. Then the left-hand side of this

equation becomes

. There exists

variant of Ej is
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Bru(t,s;z) = 2° + (t — 3)z* — (t — s — 3)2®

+ (12—t —2s — 1)z? + sz + t.
We find that the elliptic curve E; and the elliptic
curve E;, associated to Bru(t,s; X) as in (3) are
isomorphic over some extension field (see also Kida,
Rikuna and Sato [6,page 695]). The j-invariants

t1+2281° +49442—228t+1)°
of By and of F;, are the same (+ i(t: ?n 1),,8 )

2.2. Construction of Lec(p,r; X). We con-
sider the elliptic curve
1
w2 2 2
&y —Z(p +4)(z° +1)
Loy
=5 (@ —pzr—1)(2z ~ p)
with 5-torsion points
A= (a,),24 = (——,E>
o«
1
3A = (—,—ﬂ>,4A— (o, =)
o «

where a and —1/a are roots of 2> — pr — 1 and 3
satisfies

3
2.

1 1
5221(192‘*‘4)(0424‘4):1(?24‘4)

9 3
The j-invariant of £ is (pzijg—[f{lb) There exists the

elliptic curve &, = £, /(A) up to isomorphism with
the isogeny
+ : 214)(pz+2
p:E —Epao :7;jf§+(p+z(-sz+ )

+ 2(p+2)+(p*—p+6) __5p
L 2(p>+4)

of degree 5 where L =x>—pr—1. Define =
—L/(p* + 4). Solving the equation for [, we have

P+ (P(p*+4) —2p— O
+Br(*+4)+p* +Ep+5)P°
—(r(P*+4)+p—8)P+(p—6)+1=0.
The left-hand side of this equation yields Lec(p, r;1).
The elliptic curve &, and the associated elliptic

curve &,, to Lec(p,r; X) as in (7) are isomorphic

over some extension field with the j-invariant
(p®+228p+496)*

(p—11)°
3. Proof of Theorem 1.4. The idea of the

proof of Theorem 1.4 is to combine the results given
in Hoshi and Miyake [2] and Kida, Rikuna and
Sato [6]. According to [2, page 1078, Equation (25)],
for p,r € Q, we define k = Q(y/p? +4) and
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1
=-1 (5p 4 87+ 2p°r + (2pr + 5)/p? + 4),

=St VE D),

Then it follows that  Spl,(Bru(t,s; X)) =
Splg(Lec(p,r; X)). The associated elliptic curves
E,s and Ef, given as in (3) and (4) are defined
over k. According to [6, Section 3], we take elliptic
curves I and E} defined over k by
By — (t— Doy — ty = 2° — ta?
—5t(t* + 2t — 1)z
— t(t" + 108> — 5¢> 4+ 15t — 1),
Ef iy — (t— Doy — ty = 2 — ta”.
The curves Eis (resp. E; ) and E; (vesp. Ef) are
isomorphic over F = k(\/d,s) where d;s is given
in (2) and we take an isogeny ¢ : Eys — Ej and the
dual isogeny ¢":Ef — E;;. We also take an
isogeny \*: Ef — E; of degree 5. By [6, Theorem
3.1], there exists an injective homomorphism
BB/ (B ()
— Homeopt (Gal(F/F), Ker \*(k)).
We will prove that there exists an injective
homomorphism

e (Q)/V'(E,,.(Q))

— Homeon (Gal(F/F), Ker \*(k)).
We see that the elliptic curves &,, and Ej are
isomorphic over k with j-invariant %
Indeed, we may find an isomorphism f : Efr — B
which is given explicitly as

(z,y) — (ax + b,uy)

where a,b,u € k are given by

1
= g(p4 +4p* + 2+ p(p* + 2)Vp? + 4),

) 2
b—z@@

+ (p* +4p* + 2)VP2 + H W,
1

u = 16((1) +2)(p" +4p* + 1)

+p(p* + 1)(* +3)Vp? +4)

with W, = 16(p® +4)r° + 4(p* + 4)r* — 4(19p +
41)r — 16p — 199 given as in (6).

We obtain an isomorphism f*:

+2)(p* +4)

* *
gp,r - Et,s

[Vol. 97(A),

defined over k such that the diagram

0 —— Kerv* Enr / Epr 0
f/*kl J/f/k
0 —— Ker¢* £} By, 0
S
97Fl JQ/F
0 —— Ker \* £y E, 0
YA
commutes with exact rows. The j-invariants of &
and Ef, are the same (;27’316). Therefore the

isomorphism f induces an injection
[ Epuk) /v (&, (K) — Eps(k)/ ¢ (B (K))-
By [6, Theorem 3.1] (see also Kida [5, Remark
4.3]), there exists an injective homomorphism
9: Eis(k)/ 9" (E; (k)
— Homeon (Gal(F/F), Ker \*(k)).
Then we also obtain an injective homomorphism

go f:Ep(k)/v'(E,,(K))
— Homeon (Gal(F/F), Ker \*(k)).

Because the isogeny v* is defined over Q, we get

»r(Q)/V(E,,(Q))
— Homeon (Gal(F/F), Ker \*(k)).

Every point P = (z(P),y(P)) € £,,(Q) defines

a Kummer extension

Lp=F((\) (g0 f(P)))

over F. In particular, via (8), we observe that

Lp = Sp1k<BI‘u( p+ \/p +4 4(] 7 ))
= Splq(Lec(P; X))

where Lec(P; X) = Lec(p, 4<p2<+4>)w; X) as in Defini-
tion 1.3. Hence the group &,,(Q)/v*(€,,(Q)) clas-
sifies the isomorphism classes of Splg(Lec(P; X))
with quartic subfield F (see also [6, Section 3]). O

By Theorem 1.4, we have the following result
by the multiplication-by-2 map of the elliptic curve
Epr

Corollary 3.1. For a Q-rational point P €
Epr(Q) and integer n  with ged(n,5) =1,
Splg(Lec(P; X)) = Splg(Lec([n]P; X)) where
Lec(P; X) =

Lec(p, e ﬁ))w ; X) as in Definition 1.3.
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In particular, for P = Q= (4r(p* +4)W,2(p* +
4HYW?) and n =2, we have Splg(Lec(p,r; X)) =
Splg(Lec(p, R; X)) where

W = 16(p* + 4)r* + 4(p* + 4)r*
—4(19p +41)r — 16p — 199,
2([2]1Qo) = 16(p* + 4)°r* + 8(p* + 4)(19p + 41)r?
+ 4(32p° + 398p” + 128p + 1592)r
+ 16p® 4+ 560p” + 1622p + 2477.

Remark 3.2. We can also verify that
Splg(Lec(p, r; X)) = Splg(Lec(p, R; X)) in  Corol-
lary 3.1 by Hoshi and Miyake [2] via multi-resol-
vent polynomials. We take multi-resolvent poly-
nomials F! , and Ff’a, as in [2,page 1071] where
a = (s,t), ) = (',t'). Using [2, page 1078, Method
2], via (8), we obtain that Splg(Lec(p,r; X)) =
Splg(Lec(p, R; X)) if and only if F}, or F2, has a
linear factor over k= Q(/p? + 4). Indeed, we see
that F2, has a linear factor 4+ 552 \/p? + 4 + 1.

4. Examples of Theorem 1.4. We will
give two examples of Theorem 1.4.

Example 4.1 (p=1 and r=-3 with
&1-3(Q) /v (€] 3(Q)) ~Z/5Z). We consider the
case where p=1 and r= —3. The associated
isogenous curves are

&3 y° = 2 — 73752% — 2610750000z
+ 68994507812500,
& 3yt =a® — 73752% — 11313250000
— 5450566117187500
with j-invariants — %93 ,— 5—22 respectively. Their

Mordell-Weil groups are

&1-3(Q) = (P, P) ~ Z%,
& _5(Q) = (Q1, Q) = 277
where
P, = (—53100,6091750),
— (88500, 21756250),
Q (678500, 543906250),
Q2 = (1452875, 1740500000).
We see P, = Qy where Qy= (4r(p> +4)W,2(p* +

4)W?) which corresponds to Lec(1,—3;X).
isogeny v* : £] 3 — &1 -3 is given by

vi(Q1) =P — 2P,

I/*(QQ) = —P1 - 3P2

The
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Hence the image of v* is given by
V*((‘;i_g) = <P1 — 2P2, 5P2>

We conclude that & _3(Q)/v* (€7 _3(Q)) = (Py) =~
Z/5Z. Thus there exists exactly one isomorphism
class of Lecachux’s polynomials. We have

Splg(Lec(1, =3; X)) = Splg(Lec([n] P»; X))

= Splg(Lec(1, 775 X))

where ged(n,5) = 1. For example, for n =1, 2, 3, 4,
we have
e(nlP)
4(p* + )W ’

—263 4849 2034016227
236 39605’ 1036798976

respectively. We can check this example by Sage [9]
as in the arXiv version of this paper [1, Example
4.1].

Example 4.2 (p=2 and r=-15 with
E215(Q)/V (€ _15(Q)) = (Z/52)™). We consid-
er the case where p =2, r = —15. The associated
isogenous curves are
Ey 15 y* = 2 — 336232827 — 446557358393568x

+4390381057572915584256,
& 151y = a® — 33623282” + 1181398581066528x

— 243295532112514685688576

with j-invariants — 26132393 ,g—i respectively. Their
Mordell-Weil groups are
&.-15(Q) = (Pior) & (P, Py, Py) ~ Z/2Z & Z%,
& _15(Q) = (Qror) ® (Q1,Q2,Qs) ~ Z/2Z & Z%°
where
P, = (—23536296,0),
1213850592 32104365187824
b= ( 21 1331 );
P, = (12954852, 14669441496),
Py = (24185016, 75959770464),
Qior = (57159576, 0),
__ (9662338144 26786536642000
Q= ()bb 1691 — 21;9(7) );
Q- = (58184676, 105083001000),
Qs = (10400097490 1841022732064000)
3= 21 1331

The isogeny v* : 5* 15 — €215 1s given by

(Qtor) ]Dtora

v (Q1) = —P1 + 2P + 2P5,

V' (Q2) = Poor — 2P — P, — P,
V' (Qs) = —2P, + 4P, — Py,

Hence we obtain the image
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(Pior, PL + 2P, + 2P3,5P5,5P3)

and conclude that & 15(Q)/v" (&5 15(Q)) =
(Py, P3) ~ (Z/5Z)%*. There exist 6 subgroups of
order5 in £ 15(Q)/v (€ 15(Q) = (2/52)"
which correspond to the 6 1som0rphlsm classes

2 (55,715) =

Lec(Py — 2Py; X) = Lec(2, 618122;148048255299238628588874061863; )

Lec(Py — Py; X) = Lec(2, ~3328515: X),
Lec(Py; X) = Lec(2, -5t X),

Lec(Py + Py; X) = Lec(2, 57 X),

Lec(P; + 2Py; X) = Lec(2, Z0ITES00L )
Lec(Ps; X) = Lec(2, —1952%: X)

with the quartic subfield

F= Q<\/—233495 —28,/5),

Since Lec(2, —15; X) corresponds to the point
Qo = (4r(p* + AW, 2(p* + 4)W?)

= (201739680, 2826312394896) = P,oy — P — P
and (Qo) = (P2 — 2Py) in €2,15(Q)/v" (€5 _15(Q)),

Splg(Lec(Qu; X)) = Splg(Lec(2, —15; X))

= Splg (Lec(P — 2P3; X)).

We can check this example by Sage [9] as in the
arXiv version of this paper [1, Example 4.2].

Two examples of the degenerate cases G, ~

D; and C5 where G,, = Gal(Lec(p,7;X)/Q) are
also given in [1, Section 5].
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