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Abstract: Let k be a number field and p a prime number. It is conjectured by Greenberg

that the Iwasawa �- and �-invariants of the cyclotomic Zp-extension of k always vanish if k is

totally real. In this article, we will discuss a weak version of Greenberg’s conjecture, and give

results analogous to Greenberg’s and Ozaki’s results.
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1. Introduction. Let p be a prime number

and k=Q a finite extension, where denote by Q the

field of rational numbers. Let Zp be the ring of

p-adic integers. An algebraic extension K=k is

called a Zp-extension if K=k is a Galois extension

and GalðK=kÞ ’ Zp as topological groups. Let K=k

be a Zp-extension. For each non-negative integer n,

let kn denote the unique intermediate field of K=k

such that ½kn : k� ¼ pn. For a number field F , let AF

be the p-part of the ideal class group of F . Then, it

is shown by Iwasawa that there exist non-negative

integers �, � and an integer � depending only on

K=k such that the normalized additive p-adic

valuation of the order of Akn is described as �nþ
�pn þ � for all sufficiently large n. It is conjectured

by Greenberg [1] that � and � always vanish for the

cyclotomic Zp-extension k1=k of each totally real

field k (for short we say GC). In the same paper [1],

Greenberg showed the following

Theorem (Greenberg [1]). Let k be a totally

real field such that k1 has the unique prime lying

above p and that k1=k is totally ramified at the

ramified prime. Then the following two conditions

are equivalent.

(a) � ¼ � ¼ 0.

(b) The lifting mapping Ak ! Akn is trivial for

some n � 1.

For a Zp-extension K=k, let XK be the Galois

group of the maximal unramified abelian pro-p

extension LK=K, which is called the unramified

Iwasawa module of K=k. The module XK is also

defined to be the projective limit lim �
n

Akn with

respect to the norm maps. Then the complete

group ring Zp½½GalðK=kÞ�� with coefficients in Zp

acts on XK . Let X0
K be the maximal finite

Zp½½GalðK=kÞ��-submodule of XK . Then � ¼ � ¼ 0

if and only if XK ¼ X0
K . From this point of view,

we can consider a weak version of Greenberg’s

conjecture as follows: When k is a totally real field,

if Xk1 6¼ 0, then does it hold that X0
k1
6¼ 0? (for

short we say WGC). For a prime number p and a

totally real field k, if GC holds for p and k then

WGC holds for p and k. The author thinks that

the study of WGC is important to study GC.

Ozaki [3] obtained the following result concerning

WGC. We shall introduce a slightly modified

statement.

Theorem (Ozaki [3]). Let p be an odd prime

number and k a totally real field in which p splits

completely. Suppose that Leopoldt’s conjecture for p

and k holds. Then the following two conditions are

equivalent.

(a) X0
k1
6¼ 0.

(b) Lk1 6¼Mk1 .

Here, Mk1=k1 stands for the maximal abelian pro-p

extension unramified outside all primes lying above

p.

In this article, we will study WGC and give

analogous results to Greenberg’s and Ozaki’s the-

orems. From here to the end of this article, we

assume the following

Assumption (A). Let p be a prime number

and k a totally real field such that k1 has the unique
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prime lying above p and that k1=k is totally

ramified at the ramified prime.

The first result is a WGC analogue of

Greenberg’s theorem.

Theorem 1. Under the assumption (A), the

following two conditions are equivalent.

(a) X0
k1
6¼ 0.

(b) The lifting mapping Ak ! Akn is not injective

for some n � 1.

The second result is analogous to Ozaki’s result

when p does not split in k=Q.

Theorem 2. Suppose that the assumption

(A) is satisfied. Let U1 be the local principal unit

group of k with respect to the unique prime p lying

above p, and E1 the completion the group of units of

k congruent to 1 modulo p in U1. Suppose that

Leopoldt’s conjecture for p and k holds, and that

U1=E1 is free over Zp. Then the following two

conditions are equivalent.

(a) X0
k1
6¼ 0.

(b) Lk1 6¼Mk1 .

We must mention here that, on Theorem 2, the

oddness of p is not needed.

We shall set some notations of this article. For

a Zp-module A, let TorZp
A be the submodule of A

which consists of all Zp-torsion elements of A. For

a topological group G and a topological G-module

M, let MG and MG be the maximal submodule

and the maximal quotient module of M on which G

acts trivially.

2. Preliminaries. We need the following

lemmas.

Lemma 3 (Ozaki [2]). Let K=k be a Zp-ex-

tension which is totally ramified at all ramified

primes. Then we have KerðAkn ! lim�!
m

AkmÞ ¼

ImðX0
K ! AknÞ.

Lemma 4 (See Lemma 13.15 of [4]). Let k be

a number field and K=k a Zp-extension such that

K=k is ramified at only one prime p and is totally

ramified at p. Then ðXKÞGalðK=kÞ ’ Ak.

3. Proof of Theorem 1. Let � ¼
Galðk1=kÞ, X ¼ Xk1 and X0 ¼ X0

k1
for simplicity.

By lemma 4, we have X� ’ Ak, and hence ðX=X0Þ�
is finite. It follows from the exact sequence

0! ðX=X0Þ� ! X=X0 ! X=X0 ! ðX=X0Þ� ! 0

that the characteristic ideal of ðX=X0Þ� is trivial.

Thus, since X=X0 has no non-trivial finite submod-

ule, it holds that ðX=X0Þ� ¼ 0. Hence we have the

following exact sequence and commutative diagram

0 ! X0
� ! X� ! ðX=X0Þ� ! 0

" ’

X0 ! Ak

:

By Nakayama’s lemma, we find that X0 6¼ 0 if and

only if X0
� 6¼ 0. By Lemma 3 and the above exact

sequence, X0 6¼ 0 if and only if Ak ! Akn is not

injective for some n � 1. �

Greenberg’s theorem is also shown from the

above arguments. In fact, we know that � ¼ � ¼ 0 if

and only if X0 ¼ X. By Nakayama’s lemma, X0 ¼
X if and only if X0

� ¼ X� ’ Ak. This assertion is

equivalent to that Ak ! Akn is trivial for some n �
1 by Lemma 3.

4. Proof of Theorem 2. For a number field

F , let MF=F be the maximal abelian pro-p exten-

sion unramified outside all primes lying above p

and XF its Galois group. Since Leopoldt’s conjec-

ture holds for p and k, k1 is the unique Zp-extension

of k. Thus, it holds that X
�
k1
¼ 0 and that ðXk1Þ� is

finite. Then it also holds that ðXk1Þ� ’ TorZp
Xk

since Galðk1=kÞ is Zp-free. By class field theory,

we have an exact sequence 0! U1=E1 ! Xk !
Ak ! 0. Similarly, there is a natural surjective

map Xk1 ! X of Zp½½Galðk1=kÞ��-modules. Since

there exist surjective and isomorphic mappings

ðXk1Þ� � X� ’ Ak;

and since ðXk1Þ� ¼ TorZp
Xk, we have the following

exact sequence

0! TorZp
ðU1=E1Þ ! ðXk1Þ� ! Ak ! 0

of finite abelian groups. By our assumption, it holds

that TorZp
ðU1=E1Þ ¼ 0, and hence ðXk1Þ� ’ X� ’

Ak. Put I ¼ GalðMk1=Lk1Þ. Then we have the

following exact sequence

0! I ! X1 ! X ! 0

of Zp½½Galðk1Þ=k��-modules. By taking the invariant

and the co-invariant sequence, we have an exact

sequence

X
�
k1
! X� ! I� ! ðXk1Þ� ! X� ! 0:

Since we have checked that X
�
k1
¼ 0 and ðXk1Þ� ’

X�, and since X� is finite, it holds that X� ’ I� and

X� ¼ ðX0Þ�. This shows that X0 6¼ 0 if and only if

I 6¼ 0 by a property of finite p-groups and by

Nakayama’s lemma. This completes the proof of

Theorem 2. �
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