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Abstract:

We introduce an interpolation between Fuler integral and Laplace integral:

Euler-Laplace integral. We claim that, when parameters ¢ of the integrand are non-resonant, the
D-module corresponding to Euler-Laplace integral is naturally isomorphic to GKZ hyper-
geometric system My (6) where A is a generalization of Cayley configuration. As a topological
counterpart of this isomorphism, we establish an isomorphism between certain rapid decay
homology group and holomorphic solutions of M4(6).
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1. Introduction. GKZ hypergeometric sys-
tem My (6) is a system of linear partial differential
equations introduced by I. M. Gel’fand, M. I.
Graev, M. M. Kapranov, and A. V. Zelevinskii
in [GGZ87] and [GZK89]. This system is deter-
mined by two inputs: a d X n (d < n) integer matrix
A= (a(l)|---]a(n)) = (a;;) and a parameter vector
§ € C™1. GKZ system M, (6) is defined by

E-flz)=0 (i=1,...,n)
M {Du~f(z) =0 (u="u1,...,up) € Ly),

where L, = Ker(Ax : Z" — Z%1) and E; and
O, are differential operators defined by FE; =
>y @iz + 6 and Ou = ITu0()" -
Huj <0(3%)7“-" . Throughout this paper, we assume
an additional condition ZAdéfZa(l) + .-+ Za(n) =
Z>1, Writing Dy for the Weyl algebra on A" and
H4(6) for the left ideal of Dp» generated by the
differential operators (1), we also call the left
Dar-module M4(8) = Dar/Ha(6) GKZ system.
There have been discussed Euler and Laplace
integral representations of GKZ systems by several
authors ([GKZ90], [ET15]). In this paper, we
introduce an integral representation which general-
izes both Euler and Laplace integral representa-
tions: Kuler-Laplace integral representation. In the
language of D-modules, integral representations can
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be defined as direct images of integrable connec-
tions commonly referred to as Gaufl-Manin con-
nections. Therefore, we need to establish an iso-
morphism between GKZ system and a certain
GauB-Manin connection. This is formulated in §2.
In §3, we describe the space of rapid decay cycles
generalizing the argument of [ET15]. The detailed
argument is quite technical and we only outline
the construction of the toric compactification. The
readers can find proofs in [MHa, §2, §3].

2. Gauf-Manin connections and GKZ
D-modules. We follow the notation of [HTTO08].

N (1) _ab(;
Let  hy.o(z) =3z 2% W (1=0,1,...,k) Dbe
j=1

Laurent polynomials on the algebraic torus (Gy,)..

Here, the subindex = means that we use the symbol
x as a coordinate of the torus. The coefficients z =
(zy))j_’l are regarded as independent variables of
the affine space Aiv with N =Ny + -+ Ny.
We put Xg = AY x (G,)! \ {(z,2) € AY x (G,,)" |
hy o () - by w(z) = 0} and write m: Xo — AY for
the natural projection. The Euler-Laplace integral
representation is defined as a complex of D-modules
[ Ox o0 @hy ()7 hy. .o (x) " z¢ where v, €
C and ¢ € C™! are parameters.

The following theorem proves the equivalence
of Laplace integral representation and FEuler-
Laplace integral representation.

Theorem 2.1 (Cayley trick for Euler-Laplace
integrals). We put X, =AY x (Gm)Z X (Gp)h.
Let w: X} — AJZV be the natural projéction and
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v € C\ Z, § € C"™*! be parameters. Then, one has a
natural isomorphism

/ OX(JehO'zm) (CI;)hl.z(U (LL‘)7%
™

o~ / Ox,yzce-Wo)
w

where h.(y,x) = hy o () + Z yihy o ().

Corollary 2.2. Under the assumption of
Theorem 2.1, one has a natural isomorphism

. hk:,z(’“) (x)*wxc

/ OXU eho.z“‘) (l)hLZ(l) (1.)*’71 . hka(k_) (x)*’Ykl,c
!
' OXA‘ny“ehl(y’z).
We put &= d(z, sr:) = €00y oy (z) -

oo () a¢, @), = y?ace W) to simplify the nota-
tion. Let us formulate the main theorem of this
section. We define an n x N; matrix A; by A; =
(a®(1) | --- | a’(\;)). Then, we define the Cayley
configuration A as an (n + k) x N matrix by

0---0l1---11l0---0]---l0---0
0---0/0---0|1---1]---10---0

4) A= : : . o
0---0/0---0[l0---0]---]1---1
Ao Ay Ay || A

Combining Theorem 2.1 with the result of [SW09],
we can obtain the following main result of this
section.

Theorem 2.3. Suppose that the parameter
§="v,..., Y c) is non-resonant and v, & Z for
l=1,...,k. Then, one has a sequence of canonical
isomorphisms of D yv-modules

(5) M)~ /w Oy, By =~ / Oy,

Moreover, the regularization conditions

(6) /Oxqu)kﬁ IOqu)k
and

(7) / Ox,® = / O,
hold. |

In the proof of the last two isomorphisms of
Theorem 2.3, we use the proper direct image
description of Fourier transform of D-modules

[Vol. 96(A),

([Dai00, Proposition 2.2.3.2]).

3. Description of the rapid decay homol-
ogy groups of Euler-Laplace integrals. We
formulate the isomorphism between the space of
holomorphic solutions of GKZ system and a certain
rapid decay homology group. To begin with, let
us remark that there is a concrete version of the
isomorphism (5).

Theorem 3.1.

0 0
(8) /OXO(I)H/ OXk(blw

of D yy-modules which sends [4] to [dJ A d“”]

Here we realize f Ox,® and f Ox,®). in
terms of relative de Rham cohomology groups and
we set 4 = d“ Aeeo AN gnd W= B AL A D

Corollary 3.2. Jlf the p/amn[ibleter 6 zSUknon-
resonant and v ¢ Z for any l=1,...,k, M4(6)>
[1]— [Z] e fo Ox,® defines an isomorphism of
DAx modules

The proof of Theorem 3.1 is based on tedious
calculations of relative de Rham complexes.

Now we discuss the solutions of Laplace-Gauss-
Manin connection fﬂ Ox,®. We repeat the relevant
material from [ET15] and [Hie09] without proofs.
Let U be a smooth complex affine variety, let f:
U — A! be a non-constant morphism, and let M =
(E,V) be a regular integrable connection on U. We
consider an embedding of U into a smooth projec-
tive variety X with a meromorphic prolongation
f:X — P! of f. We assume that D=X\U is a
normal crossing divisor. Any projective variety X
with these conditions is called a good compactifica-
tion. We decompose D as D = f~*(0c0) U D;,,. Then,
we write X = X for the real oriented blow-up of X
along D and write 7x : X—X ~ for the associated
morphism ([Sab13,§8.2]). Let P' denote the real
oriented blow-up of P! at infinity and 7, : P* — P*
denote the associated morphism. Note that the
closure of the ray [0,00)e V=10 in P! and P! \ C has
a unique intersection point which we will denote by

eV, Now, a morphism f : X — X is naturally
induced so that it fits into a commutative diagram

There is an isomorphism

x—t.pi
9) l lm

X Hf Pl
We  set D= fl({e/ Moo |fe (5,2)})\
7 (Din) C X. We put L= (Ker(V*:
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Oxan (E™) — Q. (E™)))", where v stands for the
dual local system. We consider the natural inclusion
yen <, yany pr . Then, the rapid decay homology
group of M. Hien H"* (Ua”,(Mef) ) is defined in
this setting by

(10) HI* (U™, (Me!)") = H (U™ U D™, D . )

([Hie09], see also [ET15] and [MHDb]). Note that
U U D% is a topological manifold with boundary
and that j,£ is a local system on U™ U Dr4. We
set Hi ™Y (U, Mef) = H*(DRyyp (Mef)). The main
result of [Hie09] states that the period pairing
H4 (U, (Mef)") x Hip(U, Mef) — C is perfect.

Remark 3.3. We put 537 =

1{eV o | 6 € (5.25)}) and write j for the nat-
ural inclusion U*" — U‘”LUW'. It can easily be
seen that the inclusion (U™ U D Drd) e (U™ U
ﬁgﬂ', 553‘) is a homotopy equivalence ([MHb,
Lemma 2.3]). Therefore, the rapid decay homology
group can be computed by the formula
H:d.(Uan (Mef) ) H, (U™ U Egﬂ.’ Eg/d,j_*ﬁ) Note
that this realization is compatible with the period
pairing.

We construct a family of good compactifica-
tions X associated to the Laplace-Gauss-Manin
connection f: Ox,®. First, we write Ay for the
convex hull of the set {a®(1),...,a"(Ny)} and
the origin and write A; for the convex hull of the
set {a®(1),...,a9(N)} (I=1,...,k). For any
covector & € (R”)*, we set Af = {ve A/| (€)=
min{¢,w)} and hl o@= > zjxa(l)( ). Now, we
weh, a0 )EA{
consider the dual fan ¥ of the Minkowski sum
Ao+ Ay +---+ Ay, By taking a refinement if
necessary, we may assume that ¥ is a smooth fan.
Then, the associated toric variety X = X(X) is
sufficiently full for any A; in the sense of [Hov77].
We write {D;},.; for the set of torus invariant
divisors of X.

Definition 3.4. We say that a point z=
(29,20, .. 2®") e CV is nonsingular if the follow-
ing two conditions are both satisfied:

(a) For any 1<l <---<ly <k, the Laurent
polynomials Ay, .a)(x),...,h . (x) are non-
singular in the sense of [Hov77], i.e.,
for any covector fe (R")", the s-form
dy hl @) ANy h . (z) mever vanishes
on the set {ze€ (CX)" | hl (@) ==
hy ) (x) =0},

Euler and Laplace integral representations of GKZ hypergeometric functions I 7

(b) For any covector & € (R")" such that 0¢ A§
and for any 1 <l <--- <l; <k (s can be 0),
the (s+ 1)-form dhgz( (z) A dhl5 L (@) A A

dhi Z(m(x) never vaﬁishes on the set {z¢€

(C)" [ By (@) = - =B} () = 0},

Remark 3.5. If k=0, the nonsingularity
condition is equivalent to the non-degenerate con-
dition of [Ado94, p.274]. In general, nonsingularity
condition is stronger than non-degenerate condi-
tion. Nevertheless, it is still a Zariski open dense
condition. Note that this is proved in the case when
ho .o =1 in [Hov77] (see also [Oka97, Chapter V,
COROLLARY (3.2.1)]).

In the following, we fix a nonsingular z and a
small positive real number e. Let A(z;¢) denote the
disk with center at z and with radius €. By abuse
of notation, we write D; for the product
A(ze) x Dj. For any 1=0,...,k, we set Z =
{(2,2) € A(z;6) x (C7);; | hyo(@) = 0} C A(z€) X
X.

Now we take a small positive real number £ and
consider the canonical projection p : A(z;e) x X —
A(z;€). Following [ET15], we consider a sequence of
blow-ups along codimension 2 divisors Zy N D; for
Dj contained in the pole divisor of hg o (). If the
pole order of hy (x) along Dj is m; € Z~(, one
needs at most m; blow-ups along Zy N D;. Repeat-
ing this process finitely many times, we obtain a
non-singular complex manifold X. We write p:
X — A(ze) for the composition of the natural
morphism X — A(z;e) x X with the canonical
projection A(z;e) x X — A(z;¢). We also write Z;
and D; for the proper transforms of Z; and D;. We
equip X with the Whitney stratification coming
from the normal crossing divisor D = {Zl}le U
{Dj} jc; U {exceptional divisors of blow-ups}. We

R 10

have a diagram A(z;e) & X = P'. Let us consid-
er a real oriented blow-up X = XD of X along D.
We naturally have the following commutative
diagram

~ 0 ZI(U) —

X —
> 0 2"

We can show that ;5’1(2') is a good compactification
of 771(¢) for any 2 € A(z;¢). We define Dri-c X

by the formula Drd :hazm)((i’%) o0), put p=

(1)
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powyx and put DFI- = Drd Np~t(z). For any
7 e AN, let ®. denote the multivalued function
on 7 (7) defined by 7 1(¢) 3 x — ®(¢,z). Writ-
ing j.: 7 1(2)" < 771 (2)™ U D4 for the natural
inclusion, we set

(12) HIY =H.(x '(2)" U D, Did; . (C.)).

Theorem 3.6. Suppose the parameter vector
6 is non-resonant and v ¢ Z for any l=1,... k.
Suppose that z€ CV is nonsingular. Then the
morphism

rd. |
13) L Homp,, (Ma(6), 0c).
given by
d
(14) e [ o™
T x

is an isomorphism of C-vector spaces.

Remark 3.7. Let Q denote the Zariski open
dense subset of AY consisting of nonsingular
points. It is straightforward to construct a local

system H:'l‘d‘ = U H;‘i — Q% and an isomorphism
" zeQn
- J, Homp_, (M4(6), Ogx)gm whose stalks are

identical with (13). See [HROS].
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