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Abstract: Let G be a real reductive Lie group and H a closed subgroup. T. Kobayashi and

T. Oshima established a finiteness criterion of multiplicities of irreducible G-modules occurring

in the regular representation C1ðG=HÞ by a geometric condition, referred to as real sphericity,

namely, H has an open orbit on the real flag variety G=P . This note discusses a refinement of

their theorem by replacing a minimal parabolic subgroup P with a general parabolic subgroup Q

of G, where a careful analysis is required because the finiteness of the number of H-orbits on the

partial flag variety G=Q is not equivalent to the existence of H-open orbit on G=Q.
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1. Introduction. In the field of global anal-

ysis on homogeneous spaces, a rich theory has been

developed by the I. M. Gelfand school and Harish-

Chandra for group manifolds, by S. Helgason for

Riemannian symmetric spaces, and in the frame-

work of semisimple symmetric spaces by Flensted-

Jensen, T. Oshima and P. Delorme among others.

In the late 80s, T. Kobayashi raised a problem on

what is the ‘‘most general framework’’ in which

we could expect reasonable and detailed analysis

of function spaces on G=H. As a solution to this

problem, Kobayashi and Oshima established a

finiteness criterion for multiplicities of the regular

representation on a homogeneous space G=H.

Fact 1.1 ([10, Thm. A]). Let G be a real

reductive Lie group and H its closed subgroup.

Suppose that G and H are defined algebraically

over R. Then the following two conditions on the

pair (G;H) are equivalent:

(i) dim HomGð�; C1ðG=H; �ÞÞ <1 for any

ð�; �Þ 2 Ĝsmooth � Ĥalg;

(ii) G=H is real spherical.

Here Ĝsmooth denotes the set of equivalence

classes of irreducible smooth admissible Fréchet

representations of G with moderate growth, and

Ĥalg that of algebraic irreducible finite-dimensional

representations of H. Given � 2 Ĥalg, we write

C1ðG=H; �Þ for the Fréchet space of smooth

sections of the G-homogeneous vector bundle over

G=H associated to � . The terminology real spher-

icity was introduced by Kobayashi [8] in his study

of a broader framework for global analysis on

homogeneous spaces than the usual (e.g., semi-

simple symmetric spaces).

Definition 1.2. A homogeneous space G=H

is real spherical if a minimal parabolic subgroup P

of G has an open orbit on G=H.

The following is an equivalent definition of real

spherical homogeneous spaces. This is a conse-

quence of the rank one reduction of T. Matsuki [12]

and the classification of real spherical homogeneous

spaces of real rank one by B. Kimelfeld [4].

Fact 1.3 ([3]). For the pair ðG;HÞ, the fol-

lowing two conditions are equivalent:

(ii) G=H is real spherical;

(iii) #ðHnG=P Þ <1.

Therefore, for a minimal parabolic subgroup P ,

the three conditions (i), (ii), and (iii) are equivalent

by Facts 1.1 and 1.3 (see Figure 1.1 below).

Remark 1.4. The above condition (iii) is

not equivalent to the following analogous statement

for complexifications:

(iv) #ðHCnGC=PCÞ <1.

In this note, we consider a refinement of the

equivalence (i)() (ii)() (iii). We recall that
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the regular representation L2ðG=HÞ may be decom-

posed into irreducible tempered representations

when H is ‘‘small’’, but may need more singular

representations such as unitarily induced represen-

tations from general parabolic subgroups when H is

‘‘large’’, see [2] for the precise criterion. Thus we ask

a question what will happen to the relationship

among the three conditions, if we replace P by a

general parabolic subgroup Q of G. There is an

obvious extension of the conditions (ii) and (iii) to

a general parabolic subgroup Q (see Definition 1.6

below). In order to formulate a variant of (i) for a

parabolic subgroup Q of G, we review the notion of

Q-series.

Definition 1.5 ([9, Def. 6.6]). Let � 2
Ĝsmooth. We say that � belongs to Q-series if �

occurs as a subquotient of the degenerate principal

series representation C1ðG=Q; �Þ for some � 2 Q̂f .

Here Q̂f is the set of equivalence classes of

irreducible finite-dimensional representations of Q.

Set ĜQ
smooth :¼ f� 2 Ĝsmooth j � belongs to Q-series.g.

Obviously, ĜQ
smooth � Ĝ

Q0

smooth if Q � Q0. Moreover,

ĜQ
smooth is equal to Ĝsmooth if Q ¼ P (minimal para-

bolic) by Harish-Chandra’s subquotient theorem [5]

and to Ĝf if Q ¼ G.

Definition 1.6. For a parabolic subgroup Q

of G, we define three conditions (iQ), (iiQ), and

(iiiQ) as follows:

(iQ) dim HomGð�; C1ðG=H; �ÞÞ <1 for any

ð�; �Þ 2 ĜQ
smooth � Ĥalg.

(iiQ) Q has an open orbit on G=H.

(iiiQ) #ðHnG=QÞ <1.

Then we consider the following question.

Question. Determine whether or not there is

an implication among (iQ), (iiQ) and (iiiQ).

The conditions (iQ), (iiQ), and (iiiQ) reduce to

(i), (ii), and (iii), respectively, if Q ¼ P (minimal

parabolic), and we have seen in Facts 1.1 and 1.3

that the following equivalences hold for Q ¼ P ,

ðiP Þ () ðiiP Þ () ðiiiP Þ:

Furthermore, if Q ¼ G, the condition (iQ) automat-

ically holds by the Frobenius reciprocity, while (iiQ)

and (iiiQ) are obvious. Hence

ðiGÞ () ðiiGÞ () ðiiiGÞ:

For a general parabolic subgroup Q, clearly, (iiiQ)

implies (iiQ). However there is an easy counter-

example for the implication (iiQ) ) (iiiQ) as

follows:

Example 1.7. The projective space RP2 ¼
SLð3;RÞ=Q splits into an open orbit and continu-

ously many fixed points of the unipotent radical H

of Q.

On the other hand, the implication (iQ) ) (iiQ)

holds for a general parabolic Q. To see this, we

define a subset ĤfðGÞ of Ĥf by

ĤfðGÞ :¼ f� 2 Ĥf j � appears as a quotient

of some element of Ĝfg:
The implication (iQ) ) (iiQ) is derived from the

following stronger assertion.

Fact 1.8 ([9, Cor. 6.8]). If there exists � 2
ĤfðGÞ such that for all � 2 ĜQ

smooth,

dim HomGð�; C1ðG=H; �ÞÞ <1, then Q has an

open orbit on G=Q, namely, (iiQ) holds.

Figures 1.1 and 1.2 summarize the known

relationship among the three conditions.

2. Main Theorems. Figure 1.2 indicates

that the relationship between the conditions (iQ)

and (iiiQ) is unsettled for a general parabolic Q of G.

This note discusses the remaining implication in the

following two theorems. Theorem 2.2 below shows

that the implication (iiiQ) ) (iQ) does not hold,

hence the implication (iiQ) ) (iQ) does not always

hold, too.

Definition 2.1. Let � be a one-dimensional

representation of Q. We say � is a class-one

character if � is trivial on a maximal compact

subgroup of Q.

Theorem 2.2. Let Q be a maximal parabolic

subgroup of G ¼ SLð2n;RÞ such that G=Q ’

P : minimal parabolic

(i)

Fact 1.1

(ii)
Fact 1.3

(iii)

Figure 1.1.

Q : general parabolic

(iQ)

Fact 1.8

(iiQ)

No

(iiiQ)No

Figure 1.2.
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RP2n�1. Then if n � 2, there exists an algebraic

subgroup H of G satisfying the following two

conditions:

(I) #ðHnG=QÞ <1,

(II) dim HomGðC1ðG=Q; �Þ; C1ðG=HÞÞ ¼ 1 for

some class-one character � of Q.

Furthermore, if n � 3, H satisfies the following

condition:

(II0) dim HomGðC1ðG=Q; �Þ; C1ðG=HÞÞ ¼ 1 for

any class-one character � of Q.

Remark 2.3. Let GC; QC and HC be com-

plexifications of G;Q and H, respectively. In

our setting, #ðHnG=QÞ <1 (Theorem 2.2), but

#ðHCnGC=QCÞ ¼ 1. The latter claim could be

verified directly, but is derived also from the

comparison of Theorem 2.2 with the general theory

of holomorphic systems [7]. In fact, if

#ðHCnGC=QCÞ were finite, then the space

D0ðG=Q; �ÞH of H-invariant distribution sections

would be finite-dimensional by [7, Thms. 5.1.7 and

5.1.12], contradicting to Theorem 2.2.

On the other hand, the implication (iQ) )
(iiiQ) (See Figure 1.2) holds under a mild assump-

tion as follows.

Theorem 2.4. Let G be a real reductive

algebraic group, and H a real algebraic subgroup,

and Q a parabolic subgroup of G.

(1) If the number of orientable p-dimensional

H-orbits on G=Q is infinite for some p, then

HomGðC1ðG=Q;^pðg=qÞ_Þ; C1ðG=HÞÞ

is infinite-dimensional.

(2) If the number of transverse orientable p-dimen-

sional H-orbits on G=Q is infinite for some p,

then

HomGðC1ðG=Q;^pðg=qÞ_ � orÞ; C1ðG=HÞÞ

is infinite-dimensional.

Here ðg=qÞ_ is the contragredient representa-

tion of g=q and or is the one-dimensional represen-

tation of Q defined as the composition of the

ðdimG=QÞ-th exterior power representation Q!
GLð^dimG=Qðg=qÞ_Þ ’ GLð1;RÞ and the signature

GLð1;RÞ ! f�1g.
Figure 2.1 below summarizes a consequence of

Theorems 2.2 and 2.4 on the relationship among the

three conditions (iQ), (iiQ), and (iiiQ) for a general

parabolic subgroup Q. In Figure 2.1, the symbol �

on the arrow means that the implication is proved

under an additional assumption of orientation.

3. Outline of the proof. A key fact of the

proof of Theorems 2.2 and 2.4 is Fact 3.2 below. We

construct intertwining operators by using Fact 3.2.

In what follows, our normalization of the parame-

ters is based on the interpretation of distributions

as generalized functions, namely, functionals on

smooth compactly supported density as in [11].

Definition 3.1. Let G be a real Lie group

and H a closed subgroup of G. For � 2 Ĥf , we define

the finite-dimensional representation of H by �_2� :¼
�_ �C2� where C2� denotes the one-dimensional

representation of H given by h 7! jdetðAdðhÞ :

g=h! g=hÞj�1.

Fact 3.2 ([11, Prop. 3.2]). Let G be a real

Lie group. Suppose that G0 and H are closed

subgroups of G and that H 0 is a closed subgroup

of G0 \H. Let � and � 0 be finite-dimensional

representations of H and H 0, respectively.

(1) There is a natural injective map:

HomG0 ðC1ðG=H; �Þ; C1ðG0=H 0; � 0ÞÞð1Þ
,! ðD0ðG=H; �_2�Þ � � 0Þ

H 0 :

Here D0ðG=H; �_2�Þ denotes the space of distri-

bution sections of the G-homogeneous vector

bundle over G=H associated to the H-module

�_2� and ðD0ðG=H; �_2�Þ � � 0Þ
H 0 is the space of

H 0-fixed vectors under the diagonal action.

(2) If H is cocompact in G (e.g., a parabolic

subgroup of G or a uniform lattice), then the

injective map (1) is surjective.

Outline of the proof of Theorem 2.2. We

only sketch the proof of Theorem 2.2 in the case

n ¼ 2. We define a three-dimensional subgroup H of

SLð4;RÞ by

H :¼

cos � sin � a b

�sin � cos � b �a
cos � sin �

�sin � cos �

0
BBB@

1
CCCA

���������
� 2 R

a; b 2 R

8>>><
>>>:

9>>>=
>>>;
:

Q : general parabolic

(iQ)

No
Thm. 2.2

(iiQ)

No

(iiiQ)No

Δ
Thm. 2.4

Figure 2.1.
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Then one can easily check that H satisfies the

condition (I) in Theorem 2.2.

On the other hand, we have

HomGðC1ðG=Q; ��Þ; C1ðG=HÞÞð2Þ

’ D0ðG=Q; �4��ÞH

’ D0ðR4nf0gÞHeven;��4;

where �� is a class-one character of Q defined

by g 7! jdetðAdðgÞ : g=q! g=qÞj
��
4 and

D0ðR4nf0gÞeven;��4 is the space of even homogeneous

distributions of degree �� 4 on R4nf0g. This

follows from Fact 3.2 because C2� ¼ �4 as

representations of Q and D0ðG=Q; ��Þ ’
D0ðR4nf0gÞeven;�� in the setting of Theorem 2.2.

We define a nonzero distribution on R4 by

T l2ðx; y; z; wÞ

:¼ ðxþ
ffiffiffiffiffiffiffi
�1
p

yÞ
@

@z
�

ffiffiffiffiffiffiffi
�1
p @

@w

� �� �l
�ðzÞ�ðwÞ

for l 2 N. Here ðx; y; z; wÞ are coordinates of R4 and

�ðzÞ and �ðwÞ are the Dirac delta functions on R4

supported on the hyperplanes z ¼ 0 and w ¼ 0,

respectively. Then the restriction of T l2 to R4nf0g is

an element of D0ðR4nf0gÞHeven;�2 for every l 2 N and

the operators T l2 ðl 2 NÞ are linearly independent.

Thus we have dimD0ðR4nf0gÞHeven;��4 ¼ 1. This

implies that H satisfies the condition (II) of

Theorem 2.2 via the isomorphism (2). �

Remark 3.3. The support of the distribu-

tion kernel T l2 is of codimension two in three-

dimensional manifold G=Q (when n ¼ 2) if we

regard T l2 2 D0ðG=Q; �2ÞH via the isomorphism (2).

Outline of the proof of Theorem 2.4. We

sketch the proof only for Theorem 2.4 (1). Let n be

the dimension of the real partial flag variety G=Q.

By Fact 3.2, we have

HomGðC1ðG=Q;^pðg=qÞ_Þ; C1ðG=HÞÞð3Þ

’ D0ðG=Q;^pðg=qÞ � ^nðg=qÞ_ � orÞH

’ D0ðG=Q;^n�pðg=qÞ_ � orÞH;

by the Q-isomorphism C2� ’ ^nðg=qÞ_ � or. The

right-hand side of (3) is nothing but the space of

impair currents as below.

Definition 3.4. Let X be a manifold. Then

we write DpðXÞ for the space of compactly support-

ed p-forms, and we write D0pðXÞ for the topological

dual space of DpðXÞ and call its elements p-dimen-

sional impair currents on X.

In our setting, we have a natural G-isomor-

phism:

D0pðG=QÞ ’ D0ðG=Q;^n�pðg=qÞ
_ � orÞ:

Therefore, (3) shows that the space of intertwining

operators

HomGðC1ðG=Q;^pðg=qÞ_Þ; C1ðG=HÞÞ

is isomorphic to D0pðG=QÞ
H . Hence Theorem 2.4 (1)

is derived from the following proposition.

Proposition 3.5. Let H be a real algebraic

subgroup of a real reductive algebraic group G.

Suppose that the number of orientable p-dimensional

H-orbits on a generalized flag variety G=Q is

infinite. Then we have

dimD0pðG=QÞ
H ¼ 1:

Because each H-orbits on G=Q is a regular

semianalytic set of G=Q, Proposition 3.5 follows

from Fact 3.6 below. �

Fact 3.6 ([6, Thm. 2.1]). Let X be a real

analytic manifold and Y an orientable regular

p-dimensional semianalytic set of X. Then for any

	 2 DpðXÞ, TY ð	Þ :¼
R
Y 	 converges, giving rise to

a nonzero element TY in D0pðXÞ.
A part of the results is given in [13], and

detailed proof of the other part will appear else-

where.
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