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Abstract:
weight k for T'j (p) to be non-vanishing.

Key words:

1. Introduction. The  Poincaré series
Pi.(z,m) of weight k for I'y(N) for positive integers
N have played an important role in number theory.
For example, it is known that the forms Py(z,m)
span the space of cusp forms of weight &, and also,
it is known that the Petersson inner product of
Pi(z,m) by a cusp form f(z) of weight k determines
the Fourier coefficients of f(z). In fact, the coef-
ficients of Py(z,m) are defined in terms of Bessel
functions and Kloosterman sums. Nevertheless, not
much is known of the properties of coefficients of the
Poincaré series. For example, it is not known
whether they are zero or not, they are algebraic or
transcendental, etc. In particular, there is no known
efficient way to determine whether poincaré series
is identically zero or not, which we call “the non-
vanishing property”, and there are a few results on
the non-vanishing property of the Poincaré series
Py(z,m) for some congruent groups. As some of the
known results on this, Rankin [4] and Mozzochi [3]
have given upper bounds of m for non-vanishing
Pi(z,m) for Ty(1) and Ty(N), respectively. More
precisely, they have showed that there exist posi-
tive constants kg and B (independent of N), where
B > 4log?2 such that for all k > ky and all positive
integers m such that

k < m < K exp(—Blogk/loglog k),

Pi(z,m) # 0 for T'y(N). In [5] Rhoades found linear
relations among the Poincaré series of weight k for
I'y(N) given by weakly holomorphic modular forms
of weight 2 — k for I'o(NN). This result implies that
the non-vanishing problem is related to the exis-
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For each prime p, we give an upper bound in m for Poincaré series P, (z,m) of

Weakly holomorphic modular form.

tence of a weakly holomorphic modular form of
weight 2 — k for I'o(IV) with a certain given princi-
pal part.

In this paper, for a prime p, we consider the
Poincaré series P, (z,m) for the Fricke group I'j (p),
where T'j (p) is generated by the Hecke congruence
group I'o(p) and the Fricke involution W, =
(\3}5 _1{)@) and P/ (z,m) is given by the
following;

(D) P (zm) = >

a b
=\ . d €L\ (p)

where e(z) = ™ and I'y, is the stabilizer of the
cusp oo in I'j (p). Generalizing the result for I'(N)
of Rhoades [5], the first author and Kim [1] have
obtained all linear relations among P, (z,m) for
Iy (N) which give a necessary and sufficient con-
dition related to the non-vanishing of the Poincaré
series P (z,m).

The purpose of this paper is to extend results
given by Rankin and Mozzochi to non-vanishing of
the Poincaré series P, (z,m) for the Fricke group
I'j (p) for a prime p, in which case the only cusp is at
infinity.

The main idea of the proof is based on ones in
Rankin and Mozzochi ([3,4]), but in the case of
L' (p), we have to compute the bounds of two kinds
of the product of the Bassel function and the
Kloosterman sums, while Rankin and Mozzochi
have one product of them. So emphasizing this, we
give the details of the proof of our main theorem,
which is now ready to be stated:

Theorem 1.1. Let P (z,m) be the Poincaré
series of weight k for the Fricke groups T'j(p) for
primes p. Then, there exist positive constants ky(p)
(depending on p) and C where C > 8log2 is a
constant such that for all k > ko(p) and all positive
integers m such that

(cz+d) "e(myz),
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k< m < p*?k? exp(—C'log k/loglog k),

Pl (z,m) £ 0.

2. The Fourier expansion of the Poincaré
series for I'J(p). Throughout this paper, for a
given prime p, we let P (z,m) be the Poincaré
series of weight k attached to I'J(p). Recall (1),

P (z,m) = Z

a b
=\, 4 €L\ (p)

where e(z) = ¥ and T'y, is the stabilizer of the
cusp oo in I'{ (p).

By [2,Ch.3 (3.18), (3.19)], P;f(z,m) has the
following Fourier expansion at the cusp oo,

(cz+d) Fe(m2),

o0

P]:—(Z7 m) = Z-Poooo(ma ’I’L)e(TLZ)7

n=1

where

el

—1

M|

@ Prslin) = (2

m

Soooo (M, 1; my/
X <6mn + 2771.7'&: Z M'}k—l < i mn)>7

c>0 ¢ ¢

for the Bessel function of the first kind J,_; and

Seose (M, n; ) defined by
(ma + nd)
E el — .
c

(3)Sxcc(m,mn;c) =
a x
= ¢ d €N\ T

Recalling (2) and (3), in order to express the
Fourier expansion explicitly, we need to find
representatives of the double coset I'so \ T (p)/
I'w. Consequently, by considering I'j(p) as the
union of T'y(p) and T'y(p)W, we get the following
representatives of ', \ I'§ (p)/Twc-

Proposition 2.1. For I'j(p), we have the
disjoint union of double cosets,

Lo \ T (P)/ T

J U o
=BU B( >B
S g d
(d, pg)=1
ad=1 (mod pq)
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S Q B(_qli/\/; c*p>B ’

—bep=1 (mod q)

e fef} 1) mes)

Z) €To(p) with a,b,

if ¢=0,

where

Proof. For ~ = (:p

¢,d €Z such that ad—bep=1, then
v € Band ByB = B.

Now we assume that ¢z 0. Then for [, =

1 m
(O 1)637

a+mep n(a+mep)+b+md
iﬂm’Yﬂn, = i( .

cp nep +d

Hence it is uniquely determined by ¢>1 and
d (mod ¢p), since a is determined by ad=
1 (mod cp) and b is determined by ad — 1 = cpb.
So the double cosets for I'y(p) have representatives
of the form
Pa o *
U U B< >B.
=1 d=1 pg d
(d,pg)=1
ad=1 (mod pq)

To compute the double cosets for I'g(p) W, with
(0 —1/\p _( a b
Wp_(ﬁ 0 , we let v = —ep d €

Ty(p) with a,b, c,d € Z such that ad — bep = 1,

+ ﬂm’ywpﬂn
B ((md —b)y/p n(md—>b)/p—a/\/p+ mc\/ﬁ>
d\/p (nd+c¢)\/p '
Hence it is uniquely determined by d >1 with
(d,p) =1 and b (mod d) since ¢ is determined by
—bep=1 (mod d) and a is determined by bep +
1=da. So the double cosets for I'y(p)W, have
representatives of the form
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Therefore, referring (2), by Proposition 2.1,
(4)  Pys(m,n)

pq

Son + 20 F Z 1 Z

k=1
q>1 Pq d=1
(d,pg)=1

n\ 2
m
dd=1 (mod pq)

(L) ()

bq pq
1 4 —mb 4+ nc
v e
a1 Q\/ﬁ c=1 q
plg (c,9)=1

—bep=1 (mod q)

24 <md+nd
e 22T

) _ S(m, i pa),
pq

d=1
(d, pg)=1
dd=1 (mod pq)

where S(m, n; pq) is the Kloosterman sum, and if we
take p, € Z such that p,p =1 (mod q), letting ¥/ =

_bp7
zq: (—mpqpb + nc)
o e T T

c=1 q
(c,q)=1
—bep=1 (mod q)

i (mqu/ + nc>
= e _—
c=1 q

be=1 (mod q)

= S(mpq, n; Q),
we have that
(5) Pxoo(m,n)

k=1
T S .
_ (ﬁ) b+ 2mi30 2P0
m =1 pq
4
" Jkl( m/mn)

bq
J 4m/mn
e '

S(mpgy,n;
+ Z (mpg, 3 q)
q>1 q\/ﬁ
Pl
3. The proof of the main theorem. We
note that by [2,Ch.3, Corollary 3.4],

q
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(6) P (z,m)# 0 if and only if Psoo(m,m) # 0.

From (5) with m = n, we have that

Pyso(m,m) =1+ 27ri_k’(5'mp +SW ),

m,p

where
S(m,m; 4
Sy = S SR <ﬂ> and
q>1 pq pq
- S(mp,, m;q 4m
S =y S ia) g AT
1 Q\/]_? q\/}_?
plq
Hence if we show that for large k,
1 |
(7) [Smp| < y and |5, | < e
then
| Pocoo(m, m)| > 1 = 27(| S| + |5¥,p ) >0,

hence Pyoo(m, m) # 0, and so P;f (z,m) # 0.
Therefore, in this section we will show that (7)
holds for large k£ and complete the proof of
Theorem 1.1.
First, we give the detailed proof of |S}2:p| <+
for large k. Following the notations of [4], we let

. 4
v=k-1,0=v"% and Q = —Wm,
v

and as in [4, Lemma 3.1], we let
d = (mpy,m,q) and ¢ =rd for r > 1.

Then, since p{ ¢ and (py,q) =1, we have that d =
(mﬁm m,q) = (m,q).

We consider the sum S’E{_p as the sum of two
cases when ¢ < Q//p or ¢ > Q/\/f) and for the sum
when ¢ < Q//p, we need an upper bound of the
absolute value of the Kloosterman sum by applying
[4, Lemma 3.1] as follows.

Lemma 3.1. ([4, Lemma 3.1]) Under the
notations defined above,
[S(mpy,m; q)| < 2°0)r!/d,
3 Lo
where w(p) = < 9° fr=2 and for
1, if p is an odd prime,

each positive integer n > 2, w(n) = Y
a prime p|n
Note that if k> 14, then v > 13 > 4w, so we
have that

w(p).
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4
(8) Q= T <m.
v
We have that
@ 15ty <y Sl (4
q>1 a/p

Amm
k-1 q\/;B

_q<Q/\/13 /P
plg
S(mpy, m; q 4mm
. |S(mp,, m; )| J“< )‘
ng/ﬁ WP /P
q

If ¢ <Q/\/p, then by the first inequality of

Lemma 3.1,
4mm,
k=1 — =
4P
<> > 20

5
>~ =1V d .
dim r<QJ (d\/p) rd\/p

Moreover, if k> 14, by (8), we have that r < Q/
(d\/p) < Q@ <m. So by [4,(3.7)], 2v1) < M(m) =
exp(Bj logm/loglog2m) for some constant B; >
log2. And since % > 1, by [4, Lemma 4.4 (4.18)],

1/2
we have that |(7%) / Te1 (vaits)| < Asg(s) for
some positive constant As, where g is as defined in

[4, (4.15)]. Hence,

M(m)
(10) 51 < pl/AQ1/2

‘S(mp_q, m; Q)’

Sp =
1 /P

4<Q/\/p
plq

Z dl/?

dlm 1<r<Q/(d\/p)
d<Q/vp

1/2
()
rd\/p rd\/p

d /2A5 E qg .
PR 1<rdQTlaym \TWVP
d<Q/\/p

Here by the definition of g as in [4, (4.15)] and as in
[4,p. 158], we show that

Q
(11) g ( )
1§7’<%/:(d\/;7)) rdy/p
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Q/dyp
< /1 ( dQ f> du + 39(y.)

d\/_ /Q/d\/'
Q

S_
dv/p 1

(z)dz + 39(yy)

a:fQG( Ydx + 30%yl/?

v [4, (4.16), (4.15)])

(b
i 5 00 1;3/2
<257 (

2
" 71 dx + 4o
1 2(271')5/2 mo?

b I(1/4) d

The last inequality is from [4, (4.16), (4.3)] and that
v, = (14 04)1/2 and so 3o yl/2 =3(0% + 012)1/4
3(20%)* < 402, since 0 < o < 1.

Hence from (10) and (11), letting ¢ = (

A5M(m)
- p1/4Q1/2

<D
dlm
a<Q/\/p

1/2
Z m 6,_—3/4
X — a
dlm <( d > !

d<Q/\/p

+afe(2) alp1/4>7
m

for a positive constant Ag,
< AgM(m)(a°m' 2oy (m)p~/*
+4/c(4m) PP oy(m)p'?),

d 4
(smce — < ST = 47o® _1/2>
m = \/pv

+ 407,

5/2

TZ(1/4)

+ 402>

A

12) S

nf 1 22m)"" mo®
VP T2(1/4) d

1/2 —3/4

< AgM o_12(m)p
+ A M (m)o’p 2,
for a positive constant Az.

The last inequality follows from [4, (3.9)].
Next, if ¢ > Q//p, then we recall the trivial
bound,

(m)om

and by [4,Lemma 4.4 (4.17)],
constant As,

for some positive
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4mm Q
() )

< Asf <
o)’
where f is defined as in [4, (4.13)].
4mm
>Q/vp /P
pla
< 2

#<Q>
>Q/\/p q\/_ q\/_

§A9P1/2</(;O\/_f<u\/_>du+f( ))

1
< Agp /2 (2% /0 a2 f(x)dx + 0—2),
by [4, (4.13)],

1
< Agp_1/2< 612/2 / 2 F(x)dx + 02),
0
by [4, (4.14)],

< Awmop !t + Ago’p 12,

for positive constants Ag, A9 by modify-
4, (5.12), (5.13)].
Finally, by (9), (10) and (13), we have that
|S’}717::p| < Sy + 8o < AgM(m)oSm' 2o 1/2(m m)p /4

+ A7 M2 (m)o?p V% 4+ Aygymo'?p~! + Ago?p™ /2,

and the last three terms are all o(1) for sufficiently
large k. For the first term, we show that there exists
a positive constant C such that if k<m <
p*?k? exp(—C'log k/loglog k), then the first term is
also o(1).

By [4,(3.7) and (3.10)],
constants B; >log2 and B, > 2,
max(By, Bs),

’S(mﬁw m; Q)|

ing the proof of |

for some positive
if we let B=

(14) AgM(m)a®m'*a_ jy(m)p~3/*
< Ag g exp(—C'logk/2loglog k)
x exp((By logm + By(logm)'/?)/loglog 2m)
< Ag % exp(—Clogk/2loglogk
+ 2Blogm/loglog2m).

Then since k < m < p*?k? exp(—Clogk/loglogk),
we have that loglogk < loglog2m, and logm <
3/2logp + 2logk — Clogk/loglogk < 3/2logp +
2logk, so
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(15)  —Clogk/2loglogk + 2Blogm/loglog2m
< (—Clogk+4B(3/2logp
+2logk))/2loglogk
< (—=C +8B)logk/2loglogk
+ (3Blogp)/loglog k.

Hence, the first term of (14) is
k
< Ag—exp((—C + 8B) log k/2loglog k
v

+ (3Blogp)/loglogk)
= 0(1)7
for sufficiently large k, if C > 8 B > 8log 2. Hence we
have shown that for sufficiently large k& depending
on p, there exists a positive constant C > 8log2
such that if k < m < p*2k? exp(—Clogk/loglogk),
then

(16)

1

|Smp| < E
Next, in order to prove |S,,,| < ﬁ, for large k,
this part is for T'y(p) so we can prove in a similar
way by dividing ¢ into two cases when ¢ < Q/p or
q > Q/p instead of ¢ < Q//p or ¢ > Q//p as in the
proof of [3, Theorem 2] for I'y(p) and by modifying
the proof of [3, Theorem 2] leaving rational powers
of p out of the constant parts in the bounds, and
we can derive that for some positive constants

Ag, Ag, A, Ay,
4mm
Jp1 | ——
bq
>Q/p Pq

|S(m,m; pq)|
(17) | Smp| < Z -
1<¢<Q/p pq
4dmm
5 (50
pq
< AGM(m)m!2o%a_y 5 (m)

3 |S(m, m; pq)|
+ AjyM?(m)o® + ALo® + Aima'?p!

+

and the last three terms are o(1) for large k. Then if
k< m < p*?k? exp(—Clogk/loglogk), then as we
have shown above, the first term satisfies that

(18) AéM( )ml/QUGU 1/2( m)

kexp((—C-i— 8B
+0(1)) log k/2loglog k)
= 0(1)7

for sufficiently large k, if C > 8 B > 8log 2. Hence we
have shown that for sufficiently large k, there exists

< A(;p
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a positive constant C' > 8log?2 such that if £ <m <
p*2k? exp(—C'log k/loglog k), then
1
|Smp| < e

So (7) has been proved and this completes the
proof of Theorem 1.1.
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