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On products of cyclic and abelian finite p-groups (p odd)
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Abstract:

For an odd prime p, it is shown that if G = AB is a finite p-group, for subgroups

A and B such that A is cyclic and B is abelian of exponent at most p¥, then Q,(A)B < G, where

QU(A)=(ge Alg" =1).
Key words:

Much of what is known about finite p-groups
that are the product of a cyclic subgroup and an
abelian subgroup is limited to the case where both
“factors” are cyclic. Products of two cyclic p-groups
were investigated for odd primes by Huppert [5],
and for p =2 by Ito [7], It6 and Ohara [8,9], and
Blackburn [2]. Huppert showed in particular that if
p is an odd prime and if the finite p-group G is the
product of two cyclic subgroups, then G possesses a
normal cyclic subgroup N such that G/N is cyclic
([5] Hauptsatz I).

Apart from products of cyclic subgroups, little
is known about the detailed structure of finite
p-groups of the form G = AB, where A is cyclic and
B is abelian. Such products are, of course, metabe-
lian by the celebrated Theorem of Itd ([6] Satz 1);
while a result of Howlett ([4] Theorem A) shows
that exp(G) < exp(A)exp(B), where exp(G) de-
notes the exponent of a finite group G. The only
other relevant result appears to be that of Conder
and Isaacs ([3] Corollary C), which states that if
G = AB for abelian subgroups A and B such that B
is finite and either A or B is cyclic, then G'/(G' N A)
is isomorphic to a subgroup of B.

The present note considers the case where p is
an odd prime and G = AB is a finite p-group, where
A is a cyclic subgroup and B is an abelian subgroup
of exponent at most p*. For such a group Theorem 6
shows that Q;(A)B < G, where the characteristic
subgroup, Q(H), of a finite p-group H is defined by
Qu(H) = (h e H|h*" =1).For |A| = p" (n > k) and
N = Qi(A)B, it can then be seen that G/N is cyclic
of order p"* a result that can be viewed as a
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partial analogue to that of Huppert cited above.
Theorem 6 also generalises a recent result of the
author ([10] Lemma 2.5), which deals with the case
where A is cyclic and B is elementary abelian.

The following notation is used. The cyclic
group of order p" is denoted by Cp.. Ug denotes
the core of the subgroup U of a group G. Thus Ug =
() UY. The normal closure of U in G is denoted by
9eG
UY% so UY=(U%|geG). We first derive some
elementary results which will be used in the proof of
Theorem 6.

Lemma 1. Let G= AB be a finite p-group
for subgroups A and B such that A is abelian. Let N
be a normal subgroup of G and let s > 0 andt > 0 be
such that:

(i) N<Q.41(A)B<G;s

(ii) Q4(AN/N)BN/N < G/N;
(iii) ANN < X (A).
Then Q,+(A)BLG._

Proof. We let A/N = Q,(AN/N). Since A is
abelian and AN N < Q(A), we have Q;(AN/N) <
Q. (A)N/N, so A< Q. (AN. Now ABN =
ZB~§ G and AB < Qi (A)NB = Q44(A)B. Since
G/AB is abelian, it follows that Q.4(4A)B<G. O

Lemma 2. Let G = AB be a finite group for
subgroups A and B such that A is the cyclic group
(z). Then B¢ = (B, B).

Proof. We have (B,B")=((B,B*)NA)B
and so (B,B*)" = ((B,B*YNA)B*= ((B,B*)N
A)B* < (B, B*). Hence z normalises (B, B") and
thus B¢ = (B, B*). O

Lemma 3. Let G= AB be a finite p-group
for subgroups A and B such that A is the cyclic group
(z) and B is a proper subgroup of G. Let s be such
that AN BY = Q,(A). If t is such that Q;(A) < B,
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then t < s and |B: BN B*| < p*'.

Proof. Since G is a finite p-group and B is a
proper subgroup of G, we have BY # G. Hence
Q11(A) € B9, so Q,(A) # Qui1(A). But Q(A) <
AmBgAmBG:QS(AL so t<s. Now B¢=
Q,(A)B, so

B||B* Qs(A)||B
B — BB _ po _ 10118

- |BNBr| |Qs(A) N B|’

Since (A) < Q,(A) N B, we have [Q,(A4)NB| >
|2;(A)|. Hence

BIB| _IANB
BB = [ (A) |

and it follows that |[B: BN B*| < p*". O
Lemma 4. Letp be an odd prime and let G =
HK be a finite p-group for subgroups H and K such
that [H, K] < Z(G) and exp(K) < p'. Then
(i) exp([H, K]) < p'
(i) Qu(G) = (H)[H, KIK = (Q(H), K).

Proof. For (i) we let h € H and k € K, and
let z = [h,k]. Then h = A" = hz¥, so z*' = 1. But
[H,K|< Z(G), so [H,K] is abelian. Hence
exp([H, K]) < .

For (ii) we note first that K¢ = [H, K] K, so by
(i), we have ((H),K) < Q:(H)[H, K]K < Q(G).
Conversely, let g=hk e G be such that ¢” =1,
where h € H and k € K. Letting z = [h, k] € Z(Q),
we see that

;DY

1=g" = (hk)?" = K'hVz >
Since p is odd and exp([H,K]) <p', we have

'+ . ¢ "
z 2 =1. In addition £k = 1. Hence h? =1, so

%(G) < (W(H),K) < 4(H)[H,K|K. O
Corollary 5. Letp be an odd prime and let G
be a finite p-group such that G = HZK for sub-
groups H, Z and K such that
(i) Z<Zz(G);
(i) [H, K] < 7
(it}) exp(K) < p'.

Proof. Since Z < Z(G), we have [HZ, K] =
[H,K] < Z(G). In addition, K normalises HZ, so
(W(HZ),K) = (HZ)K. The result then follows
from Lemma 4. O

We now come to our main result.

Theorem 6. Let p be an odd prime and let
G = AB be a finite p-group for subgroups A and B
such that A is cyclic and B is abelian. If exp(B) <
p*, then Qi (A)B < G.
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Proof. We use induction on |G|. We may
assume that G is non-cyclic, G # B and Q;(A) #
G. Thus A#1 and B#1, and hence Q(A) #1
and k> 1. Moreover, let |A| =p™. If k> n, then
Q(A) =A and Q(A)B= AB=(_. Thus we can
also assume that k < n — 1. Since A is cyclic and G
is a finite p-group, we note that Q;(A4)B < G for all
values of t.

We have Z(G)=(Z(G)NnA)(Z(G)N B) by,
say, [1] Lemma 2.1.2. If ANZ(G) =1, then 1 #
Z(G) < B. By induction, we have

W(AZ(G)/2(G)B/Z(G) L G/ Z(G).

Since AN Z(G) = 1, we apply Lemma 1 to see that
Q,(A)B < G. We thus may assume that

Q(4) < Z(G).

Moreover, letting B = € (A)B, we have exp(B) =
exp(B) and Q(A)B = Q(A)B. Thus if we can show
that Qx(A)B < G, then we also have Q,(A)B < G.
Hence we may assume that

01 (A) < B.

We next show that the result holds for k= 1. In
this case B is elementary abelian. By induction, we
have

Q4 (A/Q1(A)B/Q4(A) 2 G/ (A),
But Ql(A/Ql(A)) = QQ(A)/Ql(A), SO
O (A)BDG.

Now Q1(A)# A, so |Q(A)B:B|=|Q(A):
Q1 (A)| =pand B <QQy(A)B. If B 4 G then, letting
g € G\N¢(B), we see, by comparison of orders, that

,(A)B = BB.

Thus Q(A)B is the product of two elementary
abelian normal subgroups. Since p is odd, we see
that Q2(A)B has exponent p, which is a contra-
diction. We thus conclude that B = Q(A)B < G.

We now assume that k> 2. We let M be a
maximal proper subgroup of G such that A < M.
Then |G: M|=p and M = A(BN M). Since B«
M, we have |B: BN M| =p. We let B; = BN M.
By induction, we have Q(A4)B; < M. Since B
normalises B;, we note further that Bf = B*iw <
O (A)B.

We have B £ BY, as otherwise G = AB{ = M.
Since |B : By| = p, we further have BB{/BY =~ C,,.
Now ABY/BY = M/BY is a mnon-trivial, normal
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cyclic subgroup of index p in G/B¢ and G/BY is the
extension of ABS/B¢ by BBY/B{. Since p is odd,
we have

N(G/BY) = W (ABY | BY)BBY | BY < G/BY.

Now AN B? < AN Qk(A)Bl = Qk(A)(A n Bl) But
exp(B) < pF, so AN B; < Q(A). Hence ANBY <
Q(A).

We consider the case where AN BY # Qi (A).
Then ANBF < Q1(A). Now BY < Qu(A)B; <
O (A)B. Hence, by Lemma 1, we have ;(A)B < G.

We thus assume that AN BY = Q(A4), so
BY = Qi (A)B; < Q41(A)B. By Lemma 1, we have
Q11(A)B < G. Since exp(B) < p*, we have AN B <
Qr(A), s0 U(A) N B=Q1(A)NB= AN B. Hence
|1 (A)B: Q(A)B|=p and Q(A)B; = BY <
BYB=O(A)B< B < Q11 (A)BLG.

Since BB{/BY = C,, we have ®(B)< Bf.
Now k>2 so ¢ =(g)V em(@B)<
0 (BY) for all g€ B. Hence exp(BQ(BY)/
(BY)) <ptt. But  1#D(A) <(BY)  so,
by induction Q1 (AQ(BS) /0 (BY)) B (BY)/
01 (BY) < G/ (BY). Now if B is abelian, then
Q1(BY) is elementary abelian, so ANQ(BY) =
Q1(A). In addition, we have O(BY)< BY <
O (A)B, so, by Lemma 1, Q,(A)B < G.

We can thus assume that B is non-abelian.
We let Z = Z(B%) and note that Q,(A4) < BN
Z(G)< Z. We show that Z < Qi(A)B. If not,
then, by comparison of orders, B¢ = Q;,1(A)B =
Q(A)BZ. Now Qi(A) = ®(Q:1(A)), so BY =
Q11(A)B = BZ. But B is abelian, so B¢ is abelian.
Then BIG is abelian, which is a contradiction.
Therefore

Z < Qu(A)B.

We note further that Q;(A) £ Z, as otherwise B =
O (A)B is abelian.

We let A= (z) and see, by Lemma 2, that
BY = (B, B"). Now B is abelian, so BN B* < Z.
Since BY < Q41(A)B and Q,(A) < B, we apply
Lemma 3 to see that |B: BN B*| < pF. It follows
that

|B: BN Z| <p.

Now suppose that exp(BQ(Z)/Q(2)) < ptL.
Then, by induction, we see that Q;_1(AQ(Z)/
N(2)BN(Z2)/n(Z) 4 G/ (Z). But h(2) <
Q(A)B and AN (Z) = A (A). Hence, by Lemma
1, Q(A)B < G.
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We thus may assume that there exists y € B
such that y? ' ¢ Q(Z). Since exp(B) < pF, it fol-
lows that y? ' ¢ Z. Thus o(y) = p* and (y) N (BN
Z)=1. But |B:BNZ| <p*, so B=(y)(BNZ).
Hence BZ =(y)Z and BZ/Z = (y)/({y)NZ) =
(y) = Cp. Thus G/Z is the product of the non-
trivial cyclic subgroups AZ/Z and BZ/Z.

Now G/Z is a finite p-group, so AZ/Z is
normalised by a non-trivial subgroup of BZ/Z.
Hence (BZ/Z) normalises AZ/Z. But AZ/Z is
cyclic and Q,(BZ/Z) = C,. Since p is odd we see, by
considering the action of Q;(BZ/Z) on AZ/Z, that
M(AZ)Z)Y0(BZ)Z) <4 (BZ/Z)AZ]Z. We simi-
larly have O (AZ/Z2)0(BZ/Z) W (AZ/Z)BZ ] Z.
Hence

0 (AZ)2)0(BZ)Z) < G/ Z.

In addition, since BZ is abelian, we have AN
BZ < Z(G)N BZ < Z. 1t follows that AZ/Z N BZ/
7 =1¢gz.

We let r be such that Q,(AZ/Z) =Q,(A)Z/Z.
Since ©(A) < Z and Qi(A) £ Z, we have 2 <
r<k We further let y; =y” . Then (y)=
M ((y) and N(BZ/Z)= (y1)Z/Z. From above,
we then have

Q.(A)Z{y) 2G.

But Q1(AZ/Z) and Q,(BZ/Z) both centralise each
other and AZ/ZNBZ/Z = 1¢/z, so

V(A Z(y1))Z = (A Z)Z x ) Z]Z = C, x C,.

Now Q.(A)Z{y1)/Z is abelian, so [Q.(A),
(y1)] < Z. Since r < k, we have Q,.(A)Z{y;) < BY,
so Z < Z((A)Z(y1)). Hence, by Corollary 5, we
have

D (2(4)Z(y1)) = 0 (2(4)2)(y1)-
In addition, (B)Z/Z < (BZ/Z) = (y1)Z/Z, so
Q(B) < () 7.

We let N=0(9Q,(4)Z(y;)) and note that
Q1(A) < N. We let Q3(A) = (1), where o(z) =
p®. Now Q,.(A)Z is abelian, so (9,.(4)Z) is
elementary abelian. Hence z; ¢ O1(Q,(A)Z). If AN
N # Q(A), then x; € N. Thus there exist g€
0 (2.(A)Z) and 1#7ye€ (y1) such that z; = gy.
It follows that y=g 'z € 2 (Q(A4)2)2(A) <
Q,.(A)Z. Since y # 1, we have (y1) = (y) < Q.(A)Z,
which is a contradiction since the order of
0 (A)Z(y)/ Z is p*.
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We thus have ANN=0(A). Since
0.(A)Z(y1) <G, we have N <G. From above,
we have Q1(B) < % ((11)Z) < N, so exp(BN/N) <

p~!. We once more apply induction to see

that 4_1(AN/N)BN/N < G/N. Noting that
0 (A)Z(y1) < U(A)B, a final application of
Lemma 1 allows us to conclude that Q(A4)B < G.
O
Example 7. Letting p be an odd prime and
n >k > 1, we let G be the semi-direct product of a
cyclic group of order p” by a cyclic group of order p*
as follows:

G=(z,y,| " =y" =1, o/ =),

Then G = AB, where A = (z) = C)» and B = (y) =
Cr. This example shows that Theorem 6 is the best
one can expect, in the sense that B¢ = <po7y> =
O (A)B, so Q,(A)B 4 G for s < k.
Acknowledgement. The author is indebted
to the referee, whose comprehensive and thoughtful
report helped to improve this paper and, in par-
ticular, helped to simplify the proof of Theorem 6.
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