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Abstract: We investigate semicomplete meromorphic vector fields on complex surfaces,

those where the solutions of the associated ordinary differential equations have no multivalued-

ness. We prove that if a non-Kähler compact complex surface has such a vector field, then, up to

a bimeromorphic transformation, either the vector field is holomorphic, has a first integral or

preserves a fibration. This extends previous results of Rebelo and the author to the non-Kähler

setting.
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1. Introduction. In the beginning of the

20th century, Painlevé drew attention to the

general problem of determining the algebraic ordi-

nary differential equations whose general solution is

uniform, starting from those of smaller orders [14].

Differential equations given by rational vector fields

on algebraic manifolds of dimension n are natural

examples of such equations (they give autono-

mous algebraic differential equations of order n).

Already for these, and already in small dimensions,

Painlevé’s program is far from being achieved.

More generally, one may consider this problem

for meromorphic vector fields on general compact

complex manifolds, and not only algebraic ones. For

meromorphic vector fields on compact complex

Kähler surfaces, the situation is well understood.

These are the subject of Rebelo and the author’s

Theorem B in [6]:

Theorem 1.1. Let X be a semicomplete

meromorphic vector field on the compact complex

Kähler surface S. Then, up to a bimeromorphic

transformation, X is holomorphic, X has a first

integral or S has a rational or elliptic fibration

preserved by X (with each component of the locus of

poles of X contained in a fiber).

(In it, Rebelo’s notion of semicompleteness [15]

is used to formalize the notion of ‘‘vector field whose

general solution is uniform’’). There remained the

problem of understanding those semicomplete mer-

omorphic vector fields on complex compact surfaces

which are not Kähler. The aim of this article is to

extend Theorem 1.1 to the non-Kähler case. Our

result is the following one:

Theorem 1.2. Let S be a compact complex

non-Kähler surface, X a semicomplete meromorphic

vector field on S. Up to a bimeromorphic trans-

formation, either X is holomorphic, X has a first

integral or there is an elliptic fibration preserved by

X (with each component of the locus of poles of X

contained in a fiber).

We will show that, under the hypothesis of the

theorem, if the algebraic dimension of S is one, its

algebraic reduction gives either a first integral of X

or a fibration preserved by X; if it is zero, we will

prove that, up to a bimeromorphic transformation,

X is holomorphic (and is thus to be found within the

classification of holomorphic vector fields on com-

pact complex surfaces [4, Thm. 0.3]).

Together, Theorems 1.1 and 1.2 describe semi-

complete meromorphic vector fields on all compact

complex surfaces.

2. Proof of the theorem. We begin the

proof of Theorem 1.2. Let S be a non-Kähler

compact complex surface and X a semicomplete

meromorphic vector field on S. Since semicomplete-

ness is a birational invariant [6, Cor. 12], we may

suppose that S is minimal and that X is strictly

meromorphic (for otherwise it would automatically

satisfy Theorem 1.2). Since S is not Kähler, its

algebraic dimension, that we will denote by aðSÞ, is

strictly smaller than two [1, Ch. IV, Section 5].

If aðSÞ ¼ 1, there is an algebraic reduction of S,

a fibration � : S ! B such that B is an algebraic
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curve and such that any meromorphic function on S

is the pullback by � of an algebraic function on B.

Its generic fiber is an elliptic curve and every curve

in S is in a fiber (Theorems 4.2 and 4.3 in [9, Section

4]). The vector field X naturally induces a mer-

omorphic vector field Y on B such that ��X ¼ Y
(� is a first integral if Y � 0). The curve of poles

of X is contained in the fibers of � and thus, since X

is holomorphic in a neighborhood of a generic

fiber, the fibration is naturally preserved by X.

Further, since X is semicomplete, so is Y and is

thus holomorphic [6, Lemma 2]. This proves Theo-

rem 1.2 in this case. Example 3.1 will illustrate this

situation.

We will henceforth suppose that aðSÞ ¼ 0. Our

aim is to prove that the vector field is, up to a

bimeromorphic transformation, holomorphic. Let

biðSÞ denote the i-th Betti number of S. A theorem

of Kodaira [10, Thm. 11] states that if S is a non-

Kähler compact complex surface of vanishing

algebraic dimension then b1ðSÞ ¼ 1 (S belongs to

the class VII0). Two cases appear:

First case, b2ðSÞ ¼ 0. Since X is strictly

meromorphic, the curve of poles of X is a nonempty

curve on S. A theorem of Kodaira affirms that if S is

a minimal surface with no nonconstant meromor-

phic functions with b1ðSÞ ¼ 1, b2ðSÞ ¼ 0, and con-

taining at least one curve, S is a Hopf surface

[11, Thm. 34]. We will prove that a meromorphic

vector field on a Hopf surface of vanishing algebraic

dimension is holomorphic. The Hopf surface has

a finite nonramified cover bS that is the quotient

of C2 n f0g under the action of ðz; wÞ 7! ð�zþ
�wn; �wÞ, with either � ¼ 0 or � ¼ �n (further,

since we are supposing that the algebraic dimension

is zero, �j 6¼ �k if � ¼ 0). Let bX be the lift of X to bS.

The surface bS admits two holomorphic vector fields

Y1 and Y2, linearly independent almost everywhere:

if � ¼ 0, they are given by z@=@z and w@=@w; if

� 6¼ 0, by nz@=@zþ w@=@w and wn@=@z. There exist

meromorphic functions f1 and f2 on bS such that
bX ¼ f1Y1 þ f2Y2. Since f1 and f2 are necessarily

constants, bX is holomorphic and thus X is holo-

morphic as well.

Second case, b2ðSÞ > 0. The semicomplete-

ness hypothesis on X will allow us to give a more

precise description of its curve of poles. The

following is a key element in the proof of Theo-

rem 1.1 and involves no global hypothesis on S:

Theorem 2.1 ([6], Thm. A). Let X be a

semicomplete meromorphic vector field on the sur-

face S, Z a compact connected component of

the locus of poles of X. Up to a bimeromorphic

transformation, Z is either empty, a rational curve

of vanishing self-intersection, or supports a divisor

D of elliptic fiber type, a divisor such that D �D ¼ 0

and �ðDÞ ¼ 0.

Enoki constructed some minimal compact

complex surfaces Sn;�;t (n > 0, 0 < j�j < 1, t 2
Cn), generally called Enoki surfaces. They are

non-Kähler surfaces with b1ðSn;�;tÞ ¼ 1 and

b2ðSn;�;tÞ ¼ n. Each one of them has a cycle formed

by n rational curves Ci, i 2 Z=nZ, with Ci � Ciþ1 ¼
1, Ci � Ci ¼ �2 and Ci � Cj ¼ 0 if ji� jj > 1. The

surface Sn;�;t has the divisor Dn;�;t ¼
P

i Ci. It is of

vanishing self-intersection and has the combinator-

ics of Kodaira’s elliptic fiber In.

The particular cases Sn;�;0 are unramified

covers of some surfaces previously constructed by

Inoue [7], and are called parabolic Inoue surfaces.

All of these parabolic Inoue surfaces have holo-

morphic vector fields and one elliptic curve

[2, Thm. 1.31]. Reciprocally, if an Enoki surface

has a holomorphic vector field or a curve other than

those in the support of Dn;�;t, it is a parabolic Inoue

surface [13, Thm. 7.1].

Enoki provided the following characterization

of these surfaces [5]:

Theorem 2.2 (Enoki). Let S be a minimal

compact complex surface with b1ðSÞ ¼ 1 and b2ðSÞ ¼
n. If S has a divisor D 6¼ 0 with D �D ¼ 0, then S

is biholomorphic to Sn;�;t for some n; �; t and D ¼
mDn;�;t for some m 6¼ 0.

Theorems 2.1 and 2.2 imply that if S is a

compact complex surface with b1ðSÞ ¼ 1 and b2ðSÞ 6¼
0 endowed with a semicomplete meromorphic vec-

tor field X, its minimal model is an Enoki surface,

and the curve of poles of X is the support of the

divisor Dn;�;t. Theorem 1.2 is a consequence of the

following

Proposition 2.1. Let S be an Enoki surface,

X a meromorphic vector field on S. Then X is

holomorphic (in particular, S is a parabolic Inoue

surface).

Before proceeding to the proof of this proposi-

tion, let us recall some facts about Enoki surfaces

and their foliations. Enoki surfaces belong to the

class VII0; they contain global spherical shells and

may thus be obtained by Kato’s construction [8].

Let us go through this construction following [2].
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Let B0 ¼ fv 2 C2; jvj � �g be the closed ball and

consider the sequence of blowups

Bn �!
�n � � � �!�1

B0;

where �i is the blowup of pi�1, p0 ¼ 0,

Ci ¼ ��1
i ðpi�1Þ, pi 2 Ci. Let � : Bn ! B0, � ¼

�n � � � � � �1. Let � : B0 ! Bn such that, �ðB0Þ is

in the interior of Bn. Let pn ¼ �ð0Þ, and suppose

that pn 2 Cn. The Kato surface S is the compact

complex surface resulting from the identification of

the two boundary components of Bn n �ðintðB0ÞÞ
—considered as a real four-dimensional manifold-

with-boundary— by the map � ��.

The above data can be recovered from the germ

of F ¼ � � � at its fixed point 0. There is a natural

correspondence between the objects in ðC2; 0Þ that

are invariant by F and the objects in S.

The Kato surface of the above construction is

an Enoki surface if, furthermore [2, Thm. 3.33],

(a) pi =2 [j<iCj and

(b) p1 is not in the strict transform of ��1ðCnÞ
under �1,

or, equivalently, if the trace of DF j0 is nonzero

[2, Thm. 3.30].

We will henceforth assume that S is an Enoki

surface. In suitable coordinates ðx; yÞ, the germ of F

may be written as

F ðx; yÞ ¼ ðxyn þ P ðyÞ; tyÞ;ð1Þ

for some t 2 C, 0 < jtj < 1, and some polynomial P

of degree n� 1 [3, Thm. 1.19]. Here, y ¼ 0 is the

curve that maps via � into Cn. The parabolic Inoue

case corresponds to P � 0 in (1); in this case, both

the holomorphic vector field x@=@x and the germ

of curve x ¼ 0 are preserved by F and induce,

respectively, a holomorphic vector field Y and an

elliptic curve in S. In all cases, since the meromor-

phic one-form dy=y on ðC2; 0Þ is invariant by F , it

induces a global meromorphic one-form on S. On its

turn, the kernel of this form induces a holomorphic

foliation with singularities F on S (compare with

[13, Section 3]).

According to [12, Section 2.3], an Enoki surface

has no foliation other than this foliation F . Let us

give a short proof of this fact. Let G be a foliation

on S. By Levi’s extension principle, there exists a

meromorphic one-form ! ¼ �dxþ �dy on ðC2; 0Þ
generating it. In order for G to be preserved by

F , F �! ¼ h! for some meromorphic function h.

If � � 0, ! ¼ �dx and F �ð�dxÞ ¼ ð� � F ÞdF1 ¼

ð� � F Þ½ð@F1=@xÞdxþ ð@F1=@yÞdy�. From formula

(1), @F1=@y does not vanish identically, and G
cannot be preserved. If � is not identically zero, up

to multiplying by a meromorphic function, we may

suppose that ! ¼ �dxþ dy=y. Since dy=y is invar-

iant by F , we must have that h � 1 and that the

one-form �dx is preserved. Repeating the previous

arguments shows that this is impossible unless

� � 0. This proves the uniqueness of the foliation.

The construction of the Enoki surface and of

its foliation can be done simultaneously. Consider

a nonsingular foliation F 0 on ðC2; 0Þ. Under the

blowup of 0 by �1, this regular point of the foliation

produces an exceptional divisor C1 that is invariant

by the induced foliation F 1. There is only one

singular point of the transformed foliation F 1 along

C1. Let p2 be a regular point of F 1 in C1 and

continue the construction of the Enoki surface until

we have a foliation Fn on Bn. Let � map F 0 to Fn

(mapping fy ¼ 0g to Cn) and suppose that F is

contracting. Through Kato’s construction, this

produces a general Enoki surface with a foliation

(notice that condition (b) in the construction of the

Enoki surface is automatically satisfied). The only

singularities of the foliation are at the intersection

of the divisors, where the foliation has, locally, a

first integral (the holonomy is trivial).

Let us now come to the proof of Proposition

2.1. Let S be an Enoki surface, D its divisor and let

X be a meromorphic vector field on S. If S is a

parabolic Inoue surface, it has a holomorphic and

nonzero vector field Y . Since X and Y are collinear

and since S has no meromorphic functions, X and

Y differ by a multiplicative constant, and X is

holomorphic. Let us thus assume that S is not a

parabolic Inoue surface and, in particular, that it

has no curves other than those of the cycle in the

support of D. Let X be a meromorphic vector field

on S. By Levi’s extension principle, it is associated

to a meromorphic vector field in B0. Since the

foliation it induces is the unique foliation on the

Enoki surface, the vector field is of the form X0 ¼
gðx; yÞ@=@x for some meromorphic function g. In

order for this vector field to induce a global one, we

should have

��1
� X0 ¼ ��X0:ð2Þ

In particular, the curves of zeros and poles of g

other than y ¼ 0 are preserved by F and induce

curves in S different from C1; . . . ; Cn. Since we
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supposed that there are no further curves in S, X0

must actually be of the form hðx; yÞyq@=@x, with h

holomorphic and nonzero, q 2 Z. In the chart of

the blowup ðx; yÞ ¼ ðsy; yÞ, the vector field reads

hðsy; yÞyq�1@=@s. (As a function of s and y, hðsy; yÞ
is holomorphic and nonzero at the origin.) After n

blowups, the order of the transformed vector field

along Cn is q � n. However, in order to satisfy (2),

this number must equal q. This contradiction

proves Proposition 2.1 and finishes the proof of

Theorem 1.2. �

3. An example and a remark.

Example 3.1. Consider the meromorphic

vector field bX ¼ yx�1ðy@=@y� x@=@xÞ on C2. Out-

side fxy ¼ 0g, it has the solutions t 7!
ð�2ct1=2; ct�1=2Þ. Let b� : C2 n f0g ! P1 be given

by ðx; yÞ 7! x=y. The image of bX under � is the

vector field Y ¼ 2@=@�. Let S be the secondary

Hopf surface obtained as the quotient of C2 n f0g
under the action of the group generated by the

maps ðx; yÞ 7! ð2x; 2yÞ and ðx; yÞ �!� ð�x;�yÞ.
These maps preserve bX and b� and there is thus

a well-defined vector field X on S and a map

(elliptic fibration) � : S ! P1, ��ðXÞ ¼ Y . The

elliptic curves in S coming from fx ¼ 0g and fy ¼
0g are, respectively, the curves of zeros and poles of

X. Outside these curves, where X is holomorphic,

the solutions are single-valued (� cancels the multi-

valuedness of the solutions of bX).

Remark 3.1. Enoki surfaces do not have

strictly meromorphic vector fields, although they

are not far from doing so. Consider the vector field

xyq@=@x, q 2 Z. In the chart ðx; yÞ ¼ ðsy; yÞ of the

blowup of 0, the vector field reads again syq@=@s,

so that, after n blowups, the vector field is

equivalent to the original one. Equivalently, the

vector field is preserved under the local ramified

maps ðx; yÞ 7! ðxyn; yÞ. However, the derivative at

the origin of these maps has trace equal to 1, and

they are not contracting.
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