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Abstract: The main purpose of this article is to study the Caffarelli-Kohn-Nirenberg type

inequalities (1.2) with p ¼ 1. We show that symmetry breaking of the best constants occurs

provided that a parameter j�j is large enough. In the argument we effectively employ equivalence

between the Caffarelli-Kohn-Nirenberg type inequalities with p ¼ 1 and the isoperimetric

inequalities with weights.
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1. Introduction. The Caffarelli-Kohn-

Nirenberg type inequalities (the CKN-type inequal-

ities) were introduced in [4] originally as rather

general multiplicative inequalities with weights

being powers of distance from the origin, and they

have been studied eagerly afterwards by many

authors (see e.g. [1,2,5,6,8,10,12,17–20,23,24,26]).

Symmetry breaking of extremal functions for the

CKN-type inequalities is also studied intensively in

the case where p ¼ 2 (see e.g. [11,13–16] and see

also [3,21] for p > 1). Recently in [22] the second

author systematically investigated the CKN-type

inequalities involving critical and supercritical

weights. More precisely, validity of inequalities,

existence of extremal functions, continuity of best

constants, symmetry of extremal functions and

symmetry breaking of the best constants were

established. For this purpose the condition p > 1
was assumed in [22] in most cases, but some results

on symmetry were studied including the case where

p ¼ 1 as well. On a basis of these observation, we

study in the present paper symmetry property of

the best constant and its breaking phenomena for

the CKN-type inequalities when p ¼ 1. We show

that symmetry breaking occurs provided that a

parameter j�j is large enough. In the argument we

effectively employ equivalence between the CKN-

type inequalities with p ¼ 1 and the isoperimetric

inequalities with weights. The full proofs will be

given in the paper [7].

First we define a class of weighted function. For

� 2 R and n � 1 we set

I�ðxÞ ¼ I�ðjxjÞ ¼ jxj��n for x 2 Rnnf0g:ð1:1Þ

When 0 < � < n holds, I� is called a Riesz kernel of

order �. Then the classical CKN-type inequalities

with p � 1 are represented in the following way: For

� 2 Rnf0g, there exists a positive number C such

that we haveZ
Rn
jruðxÞjpIpð1þ�ÞðxÞdx

� �1=p

ð1:2Þ

� C
Z

Rn
juðxÞjqIq�ðxÞdx

� �1=q

for any u 2 C1c ðRnnf0gÞ, where 1 � p � q <1,

1=p� 1=q � 1=n, and C depends only on p; q; � and

n. As was mentioned before, when � > 0 holds, the

CKN-type inequalities were introduced in [4] as a

part of multiplicative interpolation inequalities,

and later in [22] the CKN-type inequalities were

further investigated for all � 2 R. In the present

paper, we shall give a simple proof of the CKN-type

inequalities (1.2) for p ¼ 1 with the best constant

S1;q;� defined below, using equivalence between the

CKN-type inequalities with p ¼ 1 and the isoperi-

metric inequalities with weights. We note that

in [19] a class of weighted Sobolev inequalities were

studied by using isoperimetric inequalities with

general weight functions. To give a precise defini-

tion of the best constant S1;q;� it is convenient to

adopt the following function spaces and relating

norms including the case where p � 1:

Definition 1.1. Let 1 � p � q <1, � 2

doi: 10.3792/pjaa.92.51
#2016 The Japan Academy

2000 Mathematics Subject Classification. Primary 35J70;
Secondary 35J60.
�Þ

9, Azanakata, Shimizu, Daisen, Akita 014-0204, Japan.
��Þ

Faculty of Science, Ibaraki University, 2-1-1, Bunkyo,
Mito, Ibaraki 310-8512, Japan.

No. 4] Proc. Japan Acad., 92, Ser. A (2016) 51

http://dx.doi.org/10.3792/pjaa.92.51


Rnf0g and let u : Rn ! R.

1. kukLq�ðRnÞ ¼
Z

Rn
jujqIq�ðxÞ dx

� �1=q

,

krukLp
1þ�ðR

nÞ ¼
Z

Rn
jrujpIpð1þ�ÞðxÞ dx

� �1=p

.

2. Lq�ðRnÞ ¼ fu : Rn ! R j kukLq�ð�Þ <1g.
3. By W 1;p

�;0 ðRnÞ we denote the completion of

C1c ðRnnf0gÞ w.r.t. the norm u 7! krukLp
1þ�ðR

nÞ.
4. For any function space V ðRnÞ on Rn, we set

V ðRnÞrad ¼ fu 2 V ðRnÞ j u is radialg.
Here we remark the following fundamental proper-

ties concerning with the density of smooth func-

tions.

Proposition 1.1. Assume that 1 � p <1
and � 2 R.

1. If � > 0, then C1c ðRnÞ � W 1;p
�;0 ðRnÞ and

C1c ðRnÞ are densely contained in W 1;p
�;0 ðRnÞ.

2. If � < 0, then C1c ðRnÞ 6�W 1;p
�;0 ðRnÞ.

3. C1c ðRnnf0gÞ and C1c ðRnnf0gÞrad are densely

contained in W 1;p
�;0 ðRnÞ and W 1;p

�;0 ðRnÞrad, re-

spectively.

Let us introduce more notations including the case

where p � 1.

Definition 1.2. Let 1 � p � q <1, 1=p�
1=q � 1=n and � 6¼ 0.

Ep;q;�½u� ¼
krukLp

1þ�ðR
nÞ

kukLq�ðRnÞ
for u 2 W 1;p

�;0 ðRnÞnf0g:ð1:3Þ

Sp;q;� ¼ inffEp;q;� ½u� j u 2W 1;p
�;0 ðRnÞnf0gg:ð1:4Þ

Sp;q;�rad ¼ inffEp;q;� ½u� j u 2W 1;p
�;0 ðRnÞradnf0gg:ð1:5Þ

Definition 1.3. Let !n be a surface area of

an n-dimensional unit ball. For 1 � q <1, we set

S1;q ¼ !1�1=q
n q1=q:ð1:6Þ

First of all we state the CKN-type inequalities

with the best constants for all � 6¼ 0.

Theorem 1.1. Let n � 1 and � 2 Rnf0g.
Assume that 1 � q � n=ðn� 1Þ if n > 1; 1 � q <1
if n ¼ 1. Then we have S1;q;�

rad � S1;q;� > 0 and the

following inequalities: For any u 2 C1c ðRnnf0gÞZ
Rn
jruðxÞjI1þ�ðxÞdxð1:7Þ

� S1;q;�

Z
Rn
juðxÞjqIq�ðxÞdx

� �1=q

:

The inequality (1.7) follows directly from Theorem

1.2, and the positivity of S1;q;� follows from Prop-

osition 2.1;1 and Theorem 1.3.

Definition 1.4. An open set M � Rn is

called admissible if M is bounded and @M is a C1

manifold.

In the next we state equivalence between the

CKN-type inequalities with p ¼ 1 and isoperimetric

inequalities with weights (the proof is given in

Section 3).

Theorem 1.2. Let n � 1 and � 2 Rnf0g.
Assume that 1 � q � n=ðn� 1Þ if n > 1; 1 � q <1
if n ¼ 1. Assume that M is an arbitrary admissible

open set of Rn. Then the CKN-type inequalities are

equivalent to the corresponding weighted isoperi-

metric inequalities with the same best constants,

which are given by the followingZ
@M

I1þ�ðxÞ dS � S1;q;�

Z
M

Iq�ðxÞ dx
� �1=q

;ð1:8Þ

where S denotes the ðn� 1Þ-dimensional Lebesgue

measure.

Remark 1.1. By Arad we denote a family of

all admissible open sets of Rn which are radially

symmetric with respect to the origin. From Theo-

rem 1.2 and its proof we easily see that

S1;q;�
rad ¼ inf

M2Aradnf�g

R
@M I1þ�ðxÞ dS
ð
R
M Iq�ðxÞ dxÞ1=q

:ð1:9Þ

In the next we describe symmetric properties

and important relations among S1;q;�
rad and S1;q;�.

Theorem 1.3 (Symmetry). Let n � 1. As-

sume that 1 � q � n=ðn� 1Þ if n > 1; 1 � q <1 if

n ¼ 1. Let �1;q ¼ 1� 1=q ð� 1=nÞ. Then it holds that:

1. S1;q;� ¼ S1;q;��; S1;q;�
rad ¼ S

1;q;��
rad for � 6¼ 0.

2. S1;q;�
rad ¼ S1;qj�j1��1;q for � 6¼ 0.

3. S1;q;� ¼ S1;q;�
rad ¼ S1;qj�j1��1;q for

0 < j�j � n� 1, n > 1.

Proof. The assertion 1 of this theorem is

already established in Proposition 3.1; [22] and

the assertions 2 and 3 are proved by direct

calculations using Theorem 1.2 and its remark. �

Now we state main theorems in this article.

Theorem 1.4 (Symmetry breaking). As-

sume that q is fixed such as 1 � q � n=ðn� 1Þ if n >

1; 1 � q <1 if n ¼ 1. Then we have the followings:

1. If n > 1, then we have S1;q;�
rad > S1;q;� for suffi-

ciently large j�j.
2. If n ¼ 1, then we have S

1;q;�
rad ¼ 21�1=qS1;q;�

ð> S1;q;�Þ for any � 2 Rnf0g.
Remark 1.2.

1. When q ¼ 1 holds, the CKN-type inequality

becomes the weighted Hardy inequality and
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the best constant S1;1;� coincides with the one

restricted in W 1;1
�;0 ðRnÞrad:

S1;1;� ¼ S1;1;�
rad ¼ j�j for � 6¼ 0:ð1:10Þ

2. For n > 1, the number; S1;1�;n�1 ¼ S1;1�;n�1
rad ¼

n
!n
n

� �1=n
coincides with the best constant of

the Sobolev inequality (c.f. [25]) and S1;1�;n�1 is

attained by characteristic functions of balls

which do not belong to W 1;1
n�1;0ðRnÞ but to the

space of functions of bounded variation.

Therefore the space W 1;1
�;0 ðRnÞ is too small to

discuss existences of extremal functions of

the best constants. In the future we shall

study existences of extremal functions using

suitable spaces of functions of bounded varia-

tion (c.f. [9]).

Definition 1.5. For 1 � q � n=ðn� 1Þ if

n > 1; 1 � q <1 if n ¼ 1, we set

�1ðqÞ ¼ supf� > 0 : S1;q;� ¼ S1;q;�
rad g:ð1:11Þ

It follows from Theorem 1.3; 3 and Theorem 1.4

that we have n� 1 � �1ðqÞ <1 ð1 � q � n=ðn� 1Þ
if n > 1; 1 � q <1 if n ¼ 1). More precisely we

have:

Theorem 1.5. Assume that 1 � q � n=
ðn� 1Þ if n > 1; 1 � q <1 if n ¼ 1. Then we have

the followings:

1. If � 2 ð0;�1ðqÞ�, then S1;q;� ¼ S1;q;�
rad .

2. If � 2 ð�1ðqÞ;1Þ, then S1;q;� < S1;q;�
rad .

Our article is organized in the following way. In

Section 2 we introduce useful change of variables.

In Section 3 we give sketch of proofs of Theorems

1.2, 1.4 and 1.5.

2. Change of variables. Here we see rela-

tions among the best constants by a method of

change of variables.

Definition 2.1. For � > 0, we set Y�ðyÞ ¼
jyj��1y for y 2 Rn.

Definition 2.2. Let � > 0 and u : Rn ! R.

T�uðyÞ ¼ uðY�ðyÞÞ ¼ uðjyj��1yÞ for y 2 Rn.

By a calculation we have the next lemma.

Lemma 2.1. Assume that 1 � p � q <1,

� > 0, and � > 0. Then we have the followings:

kukLq�ðRnÞ ¼ �1=qkT�ukLq
��
ðRnÞ

for u 2 Lq�ðRnÞ;
krukLp

1þ�ðR
nÞ

¼
1

�1=p0

@

@r
½T�u�

����
����
2

þ
�2

r2
j�½T�u�j2

 !1=2
������

������
Lp

1þ��ðR
nÞ

for u 2 W 1;p
�;0 ðRnÞ:

As an application of Lemma 2.1, let us prepare

some estimates of the best constants as a basic tool

for the proofs of main results.

Proposition 2.1. Let n � 1. Assume that

1 � q � n=ðn� 1Þ if n > 1; 1 � q <1 if n ¼ 1. Let

�1;q ¼ 1� 1=q ð� 1=nÞ. Then it holds that:

1.
�

�

����
����
1��1;q

S1;q;� � S1;q;� � �

�

����
����
�1;q

S1;q;� for 0 < j�j �

j�j.

2.
1

2 � ðn� 1Þ=� S
1;1�;n�1 � S 1;1�;� � S 1;1�;n�1 ¼

S1;1�;n�1
rad for j�j � n� 1 and n > 1, where 1� ¼
n=ðn� 1Þ.
Proof. These estimates are simple variants of

the assertions 4 and 5 of Theorem 2.2 in [22]. �

3. Proofs of Theorems. In the proofs of

theorems, we may assume that � > 0 by virtue of

the assertion 1 of Theorem 1.3. Let us prepare two

lemmas without proofs (see e.g. Theorem 1.24 and

Lemma 1 in Section 1.35 in [24]).

Lemma 3.1 (Coarea formula). Assume

that � is domain of Rn and 	 is a nonnegative

Borel measurable function on �. Then we have for

u 2 C 0;1
c ð�ÞZ

�

	ðxÞjruðxÞj dx ¼
Z 1

0

dt

Z
juðtÞj¼t

	ðxÞ dS:ð3:1Þ

Here C0;1
c ð�Þ denotes the space of all Lipschiz

continuous functions with compact support in �,

and S denotes the ðn� 1Þ-dimensional Lebesgue

measure.

Lemma 3.2. Assume that f is a nonnegative

non-increasing function on ð0;1Þ and p � 1. Then

we haveZ 1
0

ðfðxÞÞp dðxpÞ �
Z 1

0

fðxÞ dx
� �p

:ð3:2Þ

Proof of Theorem 1.2. Since it is standard to

show the implication (1.7) to (1.8), we assume that

(1.8). Let us set Mt ¼ fjuðxÞj > tg for any u 2
C1c ðRnnf0gÞ. Since we may assume that Mt is

admissible for almost all t, by Lemma 3.1 and

Lemma 3.2 we have
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Z
Rn
jruðxÞjI1þ�ðxÞ dx

¼
Z 1

0

dt

Z
@Mt

I1þ�ðxÞ dS

� S1;q;�

Z 1
0

dt

Z
Mt

Iq�ðxÞ dx
� �1=q

� S1;q;�

Z 1
0

dðtqÞ
Z
Mt

Iq�ðxÞ dx
� �1=q

¼ S1;q;�

Z
Rn
juðxÞjqIq�ðxÞ dx

� �1=q

:

Hence we have (1.7) with the same best constant

S1;q;�. �

Proof of Theorem 1.4. First we prove Theo-

rem 1.4 when n > 1. For 0 < 
 < 1 we set A
 ¼
f1� 
 < jxj < 1g and B2
 ¼ fjxj < 2
g. By C and C0

we denote positive numbers depending only on the

dimension of the space. Let e ¼ ð1; 0; � � � ; 0Þ and set

M ¼ D
 ¼ A
 \ feþ B2
g. We prepare fundamental

estimates involving A
 and D
. First we see that

there is a 
0 > 0 and a positive number C such that

we have

vol ðD
Þ=vol ðA
Þ � C
n�1 ð0 < 
 < 
0Þ:

Then by a direct calculation we can proveZ
@M

I1þ�ðxÞ dS � C
n�1

Z
@B1

I1þ�ðxÞ dSð3:3Þ

ð0 < 
 < 
0Þ:

On the other hand, we see

Z
A


Iq�ðxÞ dx ¼
Z
@B1

dS

Z 1

1�

rq��nrn�1 dr

¼ ð1� ð1� 
Þq�Þ
Z
B1

Iq�ðxÞ dx:

Let x ¼ ðx1; x
0Þ and D0
 ¼ A
 \ fjx0j < 
x1g. Then

D0
 � D
 ¼M and vol ðD0
Þ=vol ðD
Þ � C hold. ThusZ
M

Iq�ðxÞ dx �
Z
D0



Iq�ðxÞ dxð3:4Þ

¼
vol ðD0
Þ
vol ðA
Þ

Z
A


Iq�ðxÞ dx

� C
n�1

Z
A


Iq�ðxÞ dx:

It follows from (3.3) and (3.4) that we have

R
@M I1þ�ðxÞ dS
ð
R
M Iq�ðxÞ dxÞ1=q

ð3:5Þ

�
C
n�1

R
@B1

I1þ�ðxÞ dS
C0
ðn�1Þ=qð1� ð1� 
Þq�Þ1=qð

R
B1
Iq�ðxÞ dxÞ1=q

� C
ðn�1Þð1�1=qÞ
R
@B1

I1þ�ðxÞ dS
ð
R
B1
Iq�ðxÞ dxÞ1=q

ðfor a sufficiently large �Þ

¼ C
ðn�1Þð1�1=qÞS1;q;�
rad :

Hence for sufficiently small 
, we have

C
ðn�1Þð1�1=qÞ < 1 (see Remark 3.1).

We proceed to the case where n ¼ 1. By S we

denote the counting measure. We have for a > 0

and � > 0

S1;q;�
rad ¼ inf

a

R a
�a jxj

� dS

ð
R a
�a jxj

q��1 dxÞ1=q
¼ 21�1=qðq�Þ1=q:ð3:6Þ

On the other hand we have for a < 0 < b; � > 0

S1;q;� ¼ inf
a<0<b

R b
a jxj

� dS

ð
R b
a jxj

q��1 dxÞ1=q
ð3:7Þ

¼ inf
a<0<b

ðjaj� þ jbj�Þðq�Þ1=q

ðjajq� þ jbjq�Þ1=q
¼ ðq�Þ1=q:

Thus we see that S1;q;�
rad ¼ 21�1=qS1;q;� > S1;q;�. �

Remark 3.1. In the estimate (3.5), it suffi-

ces to assume that � � Cðq; nÞ
ðn�1Þðq�1�Þ, where

Cðq; nÞ are some positive numbers depending only

on q and n.

Proof of Theorem 1.5.

1. We assume 0 < � < � and S1;q;� ¼ S1;q;�
rad , then

it follows from Theorem 1.3;2 and Proposition

2.1;1 that S1;q;�
rad � S1;q;�, and this proves the

assertion.

2. There exists a nonradial function u 2W 1;1
�;0 ðRnÞ

such that we have for any " > 0

S1;q;� � " � E1;q;�ðuÞ � S1;q;� þ ":ð3:8Þ
Assume that � > �, then we have

S1;q;� � E1;q;�ðT�=�uÞ < ð�=�Þ�1;q�1E1;q;�ðuÞ
ðby Lemma 2.1 with � ¼ �=�Þ

� ð�=�Þ�1;q�1S1;q;� þ ð�=�Þ�1;q�1"

� �=�ð Þ�1;q�1S1;q;�
rad þ ð�=�Þ

�1;q�1"

¼ S1;q;�
rad þ ð�=�Þ

�1;q�1":

Hence we see S1;q;� < S1;q;�
rad by "! 0. �
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