The archimedean zeta integrals for $GL(3) \times GL(2)$ By Miki HIRANO,*) Taku ISHII**) and Tadashi MIYAZAKI***) (Communicated by Masaki Kashiwara, M.J.A., Jan. 12, 2016) **Abstract:** We consider here the archimedean zeta integrals for $GL(3) \times GL(2)$ and show that the zeta integral for appropriate Whittaker functions is equal to the associated L-factor. **Key words:** Whittaker fucntions; automorphic forms; zeta integrals. 1. Introduction. This paper gives a new result which is a continuation of our former paper [HIM] on the archimedean Whittaker functions on GL(3). In the case of $GL(n+1) \times GL(n)$, we expect that the archimedean zeta integrals for appropriate Whittaker functions are equal to the associated L-factors. This expectation is well-grounded by Stade's result [St] for the spherical $GL(n+1,\mathbf{R}) \times GL(n,\mathbf{R})$ -case and Popa's result [Po] for $GL(2) \times GL(1)$ -case. We discuss here the archimedean zeta integrals for $GL(3) \times GL(2)$ and give an additional evidence for this expectation. The main result in this paper is based on explicit computation using our explicit formulas of non-spherical Whittaker functions on GL(3) and GL(2). Since the archimedean zeta integrals at the minimal K-types may vanish in some cases (cf. Lemma 4.2), the appropriate choices of K-type vectors are important. ## 2. Preliminaries. **2.1. Notation.** Let F be \mathbf{R} or \mathbf{C} . For $l \in F$, we define the unitary character ψ_l of F by $$\psi_l(\xi) = \begin{cases} e^{2\pi\sqrt{-1}l\xi} & \text{if } F = \mathbf{R}, \\ e^{2\pi\sqrt{-1}(l\xi + \overline{l\xi})} & \text{if } F = \mathbf{C} \end{cases} (\xi \in F).$$ We define the norm $|\cdot|_F$ on F by $|\xi|_{\mathbf{R}} = |\xi|$ and $|\xi|_{\mathbf{C}} = |\xi|^2$ where $|\cdot|$ is the ordinary absolute value. We set $\Gamma_{\mathbf{R}}(s) = \pi^{-s/2}\Gamma(s/2)$ and $\Gamma_{\mathbf{C}}(s) = 2(2\pi)^{-s}\Gamma(s)$ as usual. We denote by 1_n the unit matrix of degree n, and by E_{ij} the matrix unit of size 3×3 with 1 at (i, j)-th entry and 0 at other entries. 2010 Mathematics Subject Classification. Primary 11F70; Secondary 11F30, 22E46. **2.2.** Basic objects. Let G_n be the general linear group GL(n, F) of degree n over F. Let N_n be the group of upper triangular matrices in G_n with diagonal entries equal to 1, and let A_n be the group of diagonal matrices with positive diagonal entries. Moreover, we fix a maximal compact subgroup K_n of G_n by $$K_n = \begin{cases} O(n) & \text{if } F = \mathbf{R}, \\ U(n) & \text{if } F = \mathbf{C}. \end{cases}$$ Then we have an Iwasawa decomposition $G_n = N_n A_n K_n$. It is convenient to take the coordinates on N_n and A_n as follows: $$x = (x_{ij}) \in N_n,$$ $$y = \operatorname{diag}(y_1 y_2 \cdots y_n, \ y_2 \cdots y_n, \ \cdots, \ y_n) \in A_n,$$ where $x_{ij} \in F$, $x_{ii} = 1$ $(1 \le i \le n)$, $x_{ij} = 0$ $(1 \le j < i \le n)$, and $y_k \in \mathbf{R}_{>0}$ $(1 \le k \le n)$. For n_1, n_2, \dots , $n_m \in \mathbf{Z}_{>0}$ with $n_1 + n_2 + \dots + n_m = n$, we associate the upper triangular parabolic subgroup P_{n_1, n_2, \dots, n_m} of G_n , whose Levi component is isomorphic to $G_{n_1} \times G_{n_2} \times \dots \times G_{n_m}$. **2.3.** Irreducible representations of K_n . Here we introduce some notations for representations of the maximal compact subgroup K_n of G_n with n = 2, 3. We regard K_2 as a subgroup of K_3 via the embedding $$(2.1) K_2 \ni k \mapsto \left(\begin{array}{c|c} k \\ \hline 1 \end{array}\right) \in K_3.$$ For $F = \mathbf{R}$, the equivalence classes of irreducible representations of $K_n = O(n)$ can be parameterized by the set $$\Lambda_n = \begin{cases} \{(\lambda_1, 0) \mid \lambda_1 \in \mathbf{Z}_{\geq 0}\} \cup \{(0, 1)\} & \text{if } n = 2, \\ \{(\lambda_1, \lambda_2) \mid \lambda_1 \in \mathbf{Z}_{\geq 0}, \ \lambda_2 \in \{0, 1\}\} & \text{if } n = 3. \end{cases}$$ We denote the representation of K_n associated to $\lambda = (\lambda_1, \lambda_2) \in \Lambda_n$ by $(\tau_{\lambda}^{(n)}, V_{\lambda}^{(n)})$. For n = 2, the dimension of the representation space $V_{\lambda}^{(2)}$ is 1 $(\lambda_1 = 0)$ or 2 $(\lambda_1 \neq 0)$, and we can take a basis $\{v_{\lambda,q}\}_{q \in S_{\lambda}}$, ^{*)} Department of Mathematics, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan. ^{**)} Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo 180-8633, Japan. ***) Department of Mathematics, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan. $$\begin{split} S_{\lambda} &= \{\pm \lambda_1\} \text{ of } V_{\lambda}^{(2)} \text{ characterized by the action} \\ \tau_{\lambda}^{(2)} & \left(\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \right) v_{\lambda,q} = e^{\sqrt{-1}q\theta} v_{\lambda,q} \quad (\theta \in \mathbf{R}), \\ \tau_{\lambda}^{(2)} & \left(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right) v_{\lambda,q} = (-1)^{\lambda_2} v_{\lambda,-q}. \end{split}$$ For $\lambda = (\lambda_1, \lambda_2) \in \Lambda_3$, let \mathcal{P}_{λ} be the **C**-vector space of degree λ_1 homogeneous polynomials of three variables z_1, z_2, z_3 , and we define the action T_{λ} of K_3 on \mathcal{P}_{λ} by $$(T_{\lambda}(k)p)(z_1, z_2, z_3) = (\det k)^{\lambda_2} p((z_1, z_2, z_3) \cdot k)$$ for $k \in K_3$ and $p \in \mathcal{P}_{\lambda}$. Here $(z_1, z_2, z_3) \cdot k$ is the ordinal product of matrices. For n = 3, we regard $\tau_{\lambda}^{(3)}$ as the quotient representation of T_{λ} on $V_{\lambda}^{(3)} = \mathcal{P}_{\lambda}/(z_1^2 + z_2^2 + z_3^2)\mathcal{P}_{\lambda-(2,0)}$. Here we put $\mathcal{P}_{\lambda-(2,0)} = \{0\}$ if $\lambda - (2,0) \notin \Lambda_3$. As a K_2 -module, we have $V_{\lambda}^{(3)} \simeq \bigoplus_{\mu \in \Sigma(\lambda)} V_{\mu}^{(2)}$ with $$\Sigma(\lambda) = \{(0, \lambda_2)\} \cup \{(\mu_1, 0) \mid \mu_1 \in \mathbf{Z}, \ 1 \le \mu_1 \le \lambda_1\},\$$ via the correspondence $v_{\mu,q}^{\lambda} \leftrightarrow v_{\mu,q} \ (\mu = (\mu_1, \mu_2) \in \Sigma(\lambda), \ q \in S_{\mu})$, where $v_{\mu,q}^{\lambda}$ is the image of $$\begin{cases} (z_1 + \sqrt{-1}z_2)^{\mu_1} z_3^{\lambda_1 - \mu_1} & \text{if } q \ge 0, \\ (-1)^{\lambda_2} (-z_1 + \sqrt{-1}z_2)^{\mu_1} z_3^{\lambda_1 - \mu_1} & \text{if } q < 0 \end{cases}$$ under the natural surjection $\mathcal{P}_{\lambda} \to V_{\lambda}^{(3)}$. For $F = \mathbf{C}$, the equivalence classes of irreducible representations of $K_n = U(n)$ can be parameterized by the set $$\Lambda_n = \begin{cases} \{(\lambda_1, \lambda_2) \in \mathbf{Z}^2 \mid \lambda_1 \ge \lambda_2\} & \text{if } n = 2, \\ \{(\lambda_1, \lambda_2, \lambda_3) \in \mathbf{Z}^3 \mid \lambda_1 \ge \lambda_2 \ge \lambda_3\} & \text{if } n = 3 \end{cases}$$ and we denote the representation of K_n associated to $\lambda \in \Lambda_n$ by $(\tau_{\lambda}^{(n)}, V_{\lambda}^{(n)})$ as before. For n=2, we regard $V_{\lambda}^{(2)}$ as the **C**-vector space of degree $\lambda_1 - \lambda_2$ homogeneous polynomials in two variables z_1, z_2 , on which K_2 acts by $$(\tau_{\lambda}^{(2)}(k)p)(z_1, z_2) = \det(k)^{\lambda_2} p((z_1, z_2) \cdot k)$$ for $k \in K_2$ and $p \in V_{\lambda}^{(2)}$. We define a basis $\{v_{\lambda,q}\}_{q \in S_{\lambda}}$, $S_{\lambda} = \{q \in \mathbf{Z} \mid 0 \leq q \leq \lambda_1 - \lambda_2\}$ of $V_{\lambda}^{(2)}$ by $v_{\lambda,q}(z_1,z_2) = z_1^{\lambda_1 - \lambda_2 - q} z_2^q$. For $\lambda = (\lambda_1,\lambda_2,\lambda_3) \in \Lambda_3$, let \mathcal{P}_{λ} be the C-vector space consisting of polynomials of six variables $z_1,z_2,z_3,z_{23},z_{13},z_{12}$ which are degree $\lambda_1 - \lambda_2$ homogeneous with respect to three variables z_1,z_2,z_3 and are degree $\lambda_2 - \lambda_3$ homogeneous with respect to three variables z_2,z_3,z_{13},z_{12} . We define the action T_{λ} of K_3 on \mathcal{P}_{λ} by $$(T_{\lambda}(k)p)(z_1, z_2, z_3, z_{23}, z_{13}, z_{12})$$ = $$\det(k)^{\lambda_3} p((z_1, z_2, z_3) \cdot k, (z_{23}, z_{13}, z_{12}) \cdot \tilde{k})$$ for $k \in K_3$ and $p \in \mathcal{P}_{\lambda}$. Here $\tilde{k} = (\tilde{k}_{ij}) \in G_3$ is a matrix defined by $$ilde{k_{ij}} = \left|egin{array}{cc} k_{i_1j_1} & k_{i_1j_2} \ k_{i_2j_1} & k_{i_2j_2} \end{array} ight|$$ with $1 \le i_1 < i_2 \le 3$, $1 \le j_1 < j_2 \le 3$ such that $i \notin \{i_1, i_2\}$, $j \notin \{j_1, j_2\}$, for $k = (k_{ij}) \in K_3$. For n = 3, we regard $\tau_{\lambda}^{(3)}$ as the quotient representation of T_{λ} on $V_{\lambda}^{(3)} = \mathcal{P}_{\lambda}/(z_1 z_{23} - z_2 z_{13} + z_3 z_{12})\mathcal{P}_{\lambda-(2,1,0)}$. Here we put $\mathcal{P}_{\lambda-(2,1,0)} = \{0\}$ if $\lambda - (2,1,0) \notin \Lambda_3$. As a K_2 -module, we have $V_{\lambda}^{(3)} \simeq \bigoplus_{\mu \in \Sigma(\lambda)} V_{\mu}^{(2)}$ with $$\Sigma(\lambda) = \{(\mu_1, \mu_2) \in \mathbf{Z}^2 \mid \lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \lambda_3\},$$ via the correspondence $v_{\mu,q}^{\lambda} \leftrightarrow v_{\mu,q} \ (\mu = (\mu_1, \mu_2) \in \Sigma(\lambda), \ q \in S_{\mu})$, where $v_{\mu,q}^{\lambda}$ is the image of $$\begin{pmatrix} \mu_1 - \mu_2 \\ q \end{pmatrix}^{-1} \sum_{i = \max\{0, \mu_2 - \lambda_2 + q\}}^{\min\{q, \mu_1 - \lambda_2\}} \binom{\mu_1 - \lambda_2}{i} \binom{\lambda_2 - \mu_2}{q - i}$$ $$\times z_1^{\mu_1 - \lambda_2 - i} z_{13}^{\lambda_2 - \mu_2 - q + i} z_2^{i} z_{23}^{q - i} z_3^{\lambda_1 - \mu_1} z_{12}^{\mu_2 - \lambda_3}$$ under the natural surjection $\mathcal{P}_{\lambda} \to V_{\lambda}^{(3)}$. Here $\binom{n}{i} = \frac{n!}{i!(n-i)!}$ is the binomial coefficient. ### 3. Whittaker functions on G_n . **3.1.** The definition of Whittaker functions. For $l \in F^{\times}$, let $C^{\infty}(N_n \backslash G_n; \psi_l)$ be the space of all smooth-functions $f: G_n \to \mathbf{C}$ satisfying $$f(xg) = \psi_l(x_{12} + x_{23} + \dots + x_{n-1n})f(g)$$ for $x = (x_{ij}) \in N_n$ and $g \in G_n$. Here G_n acts on this space by the right translation, and we equip this space with the topology of uniform convergence on compact sets of a function and its derivatives. For an irreducible admissible Hilbert representation (Π, H_{Π}) of G_n , the space $$\operatorname{Hom}_{G_n}(H^{\infty}_{\Pi}, \ C^{\infty}(N_n \backslash G_n; \psi_l))$$ of continuous G_n -homomorphisms is at most one dimensional ([Sha]), where H_{Π}^{∞} is the subspace of H_{Π} consisting of all smooth vectors. If there is a non-zero homomorphism in this space, we denote the K_n -finite part of its image by $\mathcal{W}(\Pi, \psi_l)_{K_n}$ and say that Π is generic. Functions in $\mathcal{W}(\Pi, \psi_l)_{K_n}$ are called $(K_n$ -finite) Whittaker functions for Π . 3.2. The archimedean L- and ϵ -factors. We recall the L- and ϵ -factors corresponding to finite dimensional semisimple representations of the Weil group W_F for F. See [HIM, §5.1 and §5.2] for details. For $F = \mathbf{R}$, the set of equivalence classes of irreducible representations of the Weil group $W_{\mathbf{R}}$ is exhausted by characters ϕ_{ν}^{δ} ($\nu \in \mathbb{C}$, $\delta \in \{0,1\}$) and two dimensional representations $\phi_{\nu,\kappa}$ ($\nu \in \mathbb{C}$, $\kappa \in$ $\mathbf{Z}_{>0}$), whose L- and ϵ -factors are given as follows: $$L(s, \phi_{\nu}^{\delta}) = \Gamma_{\mathbf{R}}(s + \nu + \delta), \quad \epsilon(s, \phi_{\nu}^{\delta}, \psi_{1}) = (\sqrt{-1})^{\delta},$$ $$L(s, \phi_{\nu, \kappa}) = \Gamma_{\mathbf{C}}(s + \nu), \quad \epsilon(s, \phi_{\nu, \kappa}, \psi_{1}) = (\sqrt{-1})^{\kappa+1}.$$ For $F = \mathbf{C}$, the set of equivalence classes of irreducible representations of the Weil group $W_{\mathbf{C}}$ is exhausted by characters ϕ_{ν}^{d} ($\nu \in \mathbb{C}$, $d \in \mathbb{Z}$), whose L- and ϵ -factors are given as follows: $$\begin{split} L(s,\phi_{\nu}^d) &= \Gamma_{\mathbf{C}}(s+\nu+|d|/2),\\ \epsilon(s,\phi_{\nu}^d,\psi_1) &= (\sqrt{-1})^{|d|}. \end{split}$$ For a finite dimensional semisimple representation ϕ of W_F with the irreducible decomposition $\phi \simeq \bigoplus_{i=1}^m \phi_i$, we define its L- and ϵ -factors by $$L(s,\phi) = \prod_{i=1}^{m} L(s,\phi_i), \quad \epsilon(s,\phi,\psi_1) = \prod_{i=1}^{m} \epsilon(s,\phi_i,\psi_1).$$ By the local Langlands correspondence, an irreducible admissible representation Π of G_n corresponds to an n-dimensional semisimple representation $\phi[\Pi]$ of W_F . Let Π and π be irreducible admissible representations of G_3 and G_2 , respectively. Then we define the archimedean L- and ϵ -factors for $\Pi \times \pi$ by $$L(s, \Pi \times \pi) = L(s, \phi[\Pi] \otimes \phi[\pi]),$$ $$\epsilon(s, \Pi \times \pi, \psi_1) = \epsilon(s, \phi[\Pi] \otimes \phi[\pi], \psi_1).$$ Observe the equivalences $$\begin{split} \phi^{\delta}_{\nu}\otimes\phi^{\delta'}_{\nu'}&\simeq\phi^{\delta-\delta'}_{\nu+\nu'}\quad \text{if }\delta\geq\delta',\\ \phi_{\nu,\kappa}\otimes\phi^{\delta'}_{\nu'}&\simeq\phi_{\nu+\nu',\kappa},\\ \phi_{\nu,\kappa}\otimes\phi_{\nu',\kappa'}&\simeq\phi_{\nu+\nu',\kappa+\kappa'}\oplus\phi_{\nu+\nu'-\kappa',\kappa-\kappa'}\ \text{if }\kappa>\kappa',\\ \phi_{\nu,\kappa}\otimes\phi_{\nu',\kappa}&\simeq\phi_{\nu+\nu',2\kappa}\oplus\phi^0_{\nu+\nu'-\kappa}\oplus\phi^1_{\nu+\nu'-\kappa} \end{split}$$ for $F = \mathbf{R}$ and the equivalence $\phi^d_{\nu} \otimes \phi^{d'}_{\nu'} \simeq \phi^{d+d'}_{\nu+\nu'}$ for $F = \mathbf{C}$, we can write the archimedean L- and ϵ -factors for $\Pi \times \pi$, explicitly. 3.3. Generic representations of G_n . known that any irreducible admissible generic representation of G_n is infinitesimally equivalent with an irreducible generalized principal series representation ([Ja, Lemma 2.5]). Here we recall some facts for irreducible admissible generic representations of G_n with n=2,3. First, we set $F = \mathbf{R}$. We shall specify certain irreducible representations of G_1 and G_2 as follows: (1) For $\nu \in \mathbf{C}$ and $\delta \in \{0,1\}$, let $\chi_{(\nu,\delta)}: G_1 \to \mathbf{C}^{\times}$ be the character defined by $$\chi_{(\nu,\delta)}(t) = (t/|t|)^{\delta} |t|_{\mathbf{R}}^{\nu} \quad (t \in G_1 = \mathbf{R}^{\times}).$$ (2) For $\nu \in \mathbf{C}$ and $\kappa \in \mathbf{Z}_{\geq 2}$, let $D_{(\nu,\kappa)}$ be the representation of G_2 characterized $D_{(\nu,\kappa)}(t1_2) = t^{2\nu} \ (t \in \mathbf{R}_{>0}) \ \text{and} \ D_{(\nu,\kappa)}|_{SL(2,\mathbf{R})} \simeq$ $D_{\kappa}^{+} \oplus D_{\kappa}^{-}$, where D_{κ}^{\pm} is the discrete series representation of $SL(2, \mathbf{R})$ with Blattner parameter $\pm \kappa$. For n=3, any irreducible admissible generic representation Π of G_3 satisfies one of the following: - (1) $\Pi \simeq \operatorname{Ind}_{P_{1,1,1}}^{G_3} (\chi_{(\nu_1,\delta_1)} \boxtimes \chi_{(\nu_2,\delta_2)} \boxtimes \chi_{(\nu_3,\delta_3)})$ for some ν_i, δ_i with $\delta_1 \geq \delta_2 \geq \delta_3$. The minimal K_3 -type is $\tau_{(\delta_1 \delta_3, \delta_2)}^{(3)}$, and $\phi[\Pi] = \phi_{\nu_1}^{\delta_1} \oplus \phi_{\nu_2}^{\delta_2} \oplus \phi_{\nu_3}^{\delta_3}$. (2) $\Pi \simeq \operatorname{Ind}_{P_{2,1}}^{G_3} (D_{(\nu_1,\kappa)} \boxtimes \chi_{(\nu_2,\delta)})$ for some ν_i, κ, δ . The minimal K_3 -type is $\tau_{(\kappa,\delta)}^{(3)}$, and $\phi[\Pi] = \int_{-\infty}^{\infty} d\delta$ - $\phi_{\nu_1+(\kappa-1)/2,\,\kappa-1}\oplus\phi_{\nu_2}^{\delta}$. For n=2, any irreducible admissible generic representation π of G_2 satisfies one of the following: (1) $\pi \simeq \operatorname{Ind}_{P_{1,1}}^{G_2}(\chi_{(\nu'_1,\delta'_1)} \boxtimes \chi_{(\nu'_2,\delta'_2)})$ for some ν'_i, δ'_i with $\delta'_1 \geq \delta'_2$. The K_2 -types are $\tau^{(2)}_{\lambda'}(\lambda' \in \Lambda(\pi))$ with $$\begin{split} \Lambda(\pi) &= \{ (\delta_1' - \delta_2', \delta_2') \} \cup \\ & \{ (\lambda_1', 0) \mid \lambda_1' \in \delta_1' - \delta_2' + 2 \mathbf{Z}_{>0} \}, \end{split}$$ and $\phi[\pi] = \phi_{\nu'_1}^{\delta'_1} \oplus \phi_{\nu'_2}^{\delta'_2}$. (2) $\pi \simeq D_{(\nu',\kappa')}$ for some ν' , κ' . The K_2 -types are $\tau_{\lambda'}^{(2)} \ (\lambda' \in \Lambda(\pi))$ with $$\Lambda(\pi) = \{ (\lambda'_1, 0) \mid \lambda'_1 \in \kappa' + 2\mathbf{Z}_{>0} \}$$ and $\phi[\pi] = \phi_{\nu'+(\kappa'-1)/2,\kappa'-1}$. Next, we set $F = \mathbf{C}$. For $\nu \in \mathbf{C}$ and $d \in \mathbf{Z}$, let $\chi_{[\nu,d]}: G_1 \to \mathbf{C}^{\times}$ be the character defined by $$\chi_{[\nu,d]}(t) = (t/|t|)^d |t|_{\mathbf{C}}^{\nu} \quad (t \in G_1 = \mathbf{C}^{\times}).$$ For n = 3, any irreducible admissible generic representation Π of G_3 satisfies $\Pi \simeq \operatorname{Ind}_{P_{1,1,1}}^{G_3}(\chi_{[\nu_1,d_1]} \boxtimes \chi_{[\nu_2,d_2]} \boxtimes \chi_{[\nu_3,d_3]})$ for some ν_i , d_i with $d_1 \geq d_2 \geq d_3$. The minimal K_3 -type of Π is $\tau_{(d_1,d_2,d_3)}^{(3)}$, and $\phi[\Pi] = \phi_{\nu_1}^{d_1} \oplus \phi_{\nu_2}^{d_2} \oplus \phi_{\nu_3}^{d_3}$. For n=2, any irreducible admissing G_1 and G_2 in G_3 and G_4 in G_4 and G_4 in G_4 and G_4 in G_4 in G_4 and G_4 in G_4 in G_4 in G_4 and G_4 in sible generic representation π of G_2 satisfies $\pi \simeq$ $\begin{array}{l} \operatorname{Ind}_{P_{1,1}}^{G_2}(\chi_{[\nu'_1,d'_1]}\boxtimes\chi_{[\nu'_2,d'_2]}) \text{ for some } \nu'_i,\ d'_i \text{ with } d'_1\geq d'_2. \\ \operatorname{The} K_2\text{-types of } \pi \text{ are } \tau_{\lambda'}^{(2)}\ (\lambda'\in\Lambda(\pi)) \text{ with} \end{array}$ $$\Lambda(\pi) = \{ (d'_1 + m, d'_2 - m) \mid m \in \mathbf{Z}_{>0} \},\$$ and $\phi[\pi] = \phi_{\nu'_1}^{d'_1} \oplus \phi_{\nu'_2}^{d'_2}$. **3.4. Explicit formulas.** Here we introduce the results for explicit formulas of the radial parts of Whittaker functions on G_n with n = 2, 3. First, we set n=3. Let (Π, H_{Π}) be an irredu- cible admissible generic representation of G_3 , and take $\lambda \in \Lambda_3$ such that $\tau_\lambda^{(3)}$ is the minimal K_3 -type of Π . Let $\mathbf{W}_{\Pi}: V_\lambda^{(3)} \to \mathcal{W}(\Pi, \psi_l)_{K_3}$ be a K_3 -embedding which is unique up to scalar multiple. In the former paper [HIM, Theorems 3.1 and 4.1], we give explicit formulas of $\mathbf{W}_{\Pi}(v)|_{A_3}$ for an image v of a monomial under the natural surjection $\mathcal{P}_\lambda \to V_\lambda^{(3)}$. Next, we set n=2. Let (π, H_{π}) be an irreducible admissible generic representation of G_2 . For each $\lambda' \in \Lambda(\pi)$, the K_2 -type $\tau_{\lambda'}^{(2)}$ occurs in $\pi|_{K_2}$ with multiplicity one. Let $\mathbf{W}_{\pi,\lambda'} \colon V_{\lambda'}^{(2)} \to \mathcal{W}(\pi,\psi_l)_{K_2}$ be a K_2 -embedding which is unique up to scalar multiple. In the case of $F = \mathbf{R}$, for any $\lambda' \in \Lambda(\pi)$ and $q' \in S_{\lambda'}$, the explicit formula of $\mathbf{W}_{\pi,\lambda'}(v_{\lambda',q'})|_{A_2}$ is found in the standard textbooks. In the case of $F = \mathbf{C}$, the explicit formulas of Whittaker functions at the minimal K_2 -type of π are found in Popa [Po, §5]. Applying the shift operator to Popa's formulas, we obtain the following: **Proposition 3.1.** We use the above notation, and assume $\pi \simeq \operatorname{Ind}_{P_{1,1}}^{G_2}(\chi_{[\nu'_1,d'_1]} \boxtimes \chi_{[\nu'_2,d'_2]})$ with $d'_1 \geq d'_2$. Let $\lambda' = (d'_1 + m, d'_2 - m) \in \Lambda(\pi)$. There is $C \in \mathbf{C}^{\times}$ such that, for $y = \operatorname{diag}(y_1y_2, y_2) \in A_2$ and $q' \in S_{\lambda'}$, $$\begin{split} \mathbf{W}_{\pi,\lambda'}(v_{\lambda',q'})(y) &= C \left(\sqrt{-1} l / |l| \right)^{d_1' + m - q'} y_1 y_2^{2\nu_1' + 2\nu_2'} \\ &\times \sum_{i=0}^{q'} \binom{q'}{i} \frac{(-m)_i \left(-\nu_1' + \nu_2' - m - (d_1' - d_2') / 2 \right)_i}{\left(-d_1' + d_2' - 2m \right)_i \left(2\pi |l| y_1 \right)^i} \\ &\times \frac{1}{2\pi \sqrt{-1}} \int_{\alpha - \sqrt{-1}\infty}^{\alpha + \sqrt{-1}\infty} \Gamma_{\mathbf{C}} \left(s + \nu_1' + \frac{q' + m - i}{2} \right) \\ &\times \Gamma_{\mathbf{C}} \left(s + \nu_2' + \frac{d_1' - d_2' + m - q' + i}{2} \right) (|l| y_1)^{-2s} ds. \end{split}$$ Here $(a)_i = \Gamma(a+i)/\Gamma(a)$ is the Pochhammer symbol, and α is a sufficiently large real number. ### 4. The archimedean zeta integrals. **4.1. The main result.** Let Π and π be irreducible admissible generic representations of G_3 and G_2 , respectively. For $W \in \mathcal{W}(\Pi, \psi_1)_{K_3}$ and $W' \in \mathcal{W}(\pi, \psi_{-1})_{K_2}$, we define the archimedean zeta integral Z(s, W, W') by $$Z(s, W, W')$$ $$= \int_{N_2 \setminus G_2} W\left(\frac{h}{1}\right) W'(h) |\det(h)|_F^{s-\frac{1}{2}} d\dot{h},$$ where $d\dot{h}$ is the right G_2 -invariant measure on $N_2\backslash G_2$ which is suitably normalized. Using the asymptotics of Whittaker functions, Jacquet and Shalika [JS] proved that $\frac{Z(s,W,W')}{L(s,\Pi \times \pi)}$ is an entire function of $s \in \mathbf{C}$, and satisfies the local functional equation: $$\frac{Z(1-s,\tilde{W},\tilde{W}')}{L(1-s,\tilde{\Pi}\times\tilde{\pi})} = \epsilon(s,\Pi\times\pi,\psi_1)\frac{Z(s,W,W')}{L(s,\Pi\times\pi)},$$ where tilde symbols mean the contragradients. Moreover, Jacquet [Ja] shows that there exists a finite subset $\{(W_i,W_i')\}_{1\leq i\leq m}\subset \mathcal{W}(\Pi,\psi_1)_{K_3}\times \mathcal{W}(\pi,\psi_{-1})_{K_2}$ such that $$\sum_{i=1}^{m} Z(s, W_i, W_i') = L(s, \Pi \times \pi).$$ Now we state the main theorem of this paper. **Theorem 4.1.** Let Π and π be irreducible admissible generic representations of G_3 and G_2 , respectively. Then there exist $W \in \mathcal{W}(\Pi, \psi_1)_{K_3}$ and $W' \in \mathcal{W}(\pi, \psi_{-1})_{K_2}$ such that $$Z(s, W, W') = L(s, \Pi \times \pi).$$ This theorem is proved by the computation using the explicit formulas of Whittaker functions. In our computation, Barnes' lemma [Ba, §1.7] and appropriate choices of Whittaker functions play important roles. We introduce the appropriate choices of Whittaker functions in the next subsection. **4.2.** Whittaker functions attaining the archimedean *L*-factors. For $\rho \in \Lambda_2$, we denote by $(\tilde{\tau}_{\rho}^{(2)}, \tilde{V}_{\rho}^{(2)})$ the contragradient representation of $\tau_{\rho}^{(2)}$, and denote by $\{\tilde{v}_{\rho,q}\}_{q \in S_{\rho}}$ the dual basis of $\{v_{\rho,q}\}_{q \in S_{\rho}}$. For $\rho = (\rho_1, \rho_2) \in \Lambda_2$ and $q \in S_{\rho}$, we define the symbols $\tilde{\rho}$, \tilde{q} and $c(\rho, q)$ as follows: $$\begin{split} \tilde{\rho} &= \rho, \quad \tilde{q} = -q, \qquad c(\rho, q) = 1 \quad \text{for } F = \mathbf{R}, \\ \tilde{\rho} &= (-\rho_2, -\rho_1), \quad \tilde{q} = \rho_1 - \rho_2 - q, \\ c(\rho, q) &= (-1)^q \binom{\rho_1 - \rho_2}{q} \quad \text{for } F = \mathbf{C}. \end{split}$$ Then we have $\tilde{V}_{\rho}^{(2)} \simeq V_{\tilde{\rho}}^{(2)}$ via the correspondence $\tilde{v}_{\rho,q} \leftrightarrow c(\rho,q)v_{\tilde{\rho},\tilde{q}} \ (q \in S_{\rho}).$ Let Π and π be irreducible admissible generic representations of G_3 and G_2 , respectively. For $\lambda' \in \Lambda(\pi)$, let $\mathbf{W}_{\pi,\lambda'} \colon V_{\lambda'}^{(2)} \to \mathcal{W}(\pi,\psi_{-1})_{K_2}$ be a K_2 -embedding, which is unique up to scalar multiple. We regard K_2 as a subgroup of K_3 via the embedding (2.1). Then, by Schur's orthogonality, we obtain the following lemma: **Lemma 4.2.** We use the above notation. Let $\mathbf{W}: V_{\rho}^{(2)} \to \mathcal{W}(\Pi, \psi_1)_{K_3}$ be a K_2 -homomorphism with $\rho \in \Lambda_2$. For $q \in S_\rho$ and $q' \in S_{\lambda'}$, the integral $Z(s, \mathbf{W}(v_{\rho,q}), \mathbf{W}_{\pi,\lambda'}(v_{\lambda',q'}))$ is equal to $$\frac{1}{\dim V_{\rho}^{(2)}} \sum_{r \in S_{\rho}} \frac{c(\rho, r)}{c(\rho, q)} \int_{0}^{\infty} \int_{0}^{\infty} \mathbf{W}(v_{\rho, r}) \left(\begin{array}{c|c} y & \\ \hline & 1 \end{array} \right)$$ $$\times \mathbf{W}_{\pi,\tilde{\rho}}(v_{\tilde{\rho},\tilde{r}})(y)|y_1|_F^{s-\frac{3}{2}}|y_2|_F^{2s-1}(y_1y_2)^{-1}dy_1dy_2$$ if $(\lambda', q') = (\tilde{\rho}, \tilde{q})$, and is equal to 0 if otherwise. Here $y = \operatorname{diag}(y_1 y_2, y_2) \in A_2$. Let λ be the element of Λ_3 such that $\tau_{\lambda}^{(3)}$ is the minimal K_3 -type of Π . The explicit formulas of Whittaker functions for Π are known only at $\tau_{\lambda}^{(3)}$. However, because of this lemma, the archimedean zeta integral Z(s,W,W') vanishes for any Whittaker function W for Π at $\tau_{\lambda}^{(3)}$ and $W' \in \mathcal{W}(\pi,\psi_{-1})_{K_2}$ if there is no $\rho \in \Sigma(\lambda)$ such that $\tilde{\rho} \in \Lambda(\pi)$. We will construct K_2 -homomorphisms $\mathbf{W}: V_{\rho}^{(2)} \to \mathcal{W}(\Pi,\psi_1)_{K_3}$ with $\rho \in \Lambda_2$ such that $\tilde{\rho} \in \Lambda(\pi)$, using the action of the Lie algebra of G_3 . Let \mathfrak{g}_3 be the complexification $\mathfrak{gl}(3, F) \otimes_{\mathbf{R}} \mathbf{C}$ of the Lie algebra of G_3 , and we denote by $U(\mathfrak{g}_3)$ the universal enveloping algebra of \mathfrak{g}_3 . We regard $U(\mathfrak{g}_3)$ as a K_2 -module via the adjoint action Ad. We define a subset Σ_n of Λ_2 by $$\Sigma_{\mathfrak{n}} = \begin{cases} \{(\sigma_1, 0) \mid \sigma_1 \in \mathbf{Z}_{\geq 0}\} & \text{if } F = \mathbf{R}, \\ \{(\sigma_1, \sigma_2) \in \mathbf{Z}^2 \mid \sigma_1 \geq 0 \geq \sigma_2\} & \text{if } F = \mathbf{C}. \end{cases}$$ For $\sigma = (\sigma_1, \sigma_2) \in \Sigma_{\mathfrak{n}}$, let \mathcal{D}_{σ} be a **C**-vector subspace of $U(\mathfrak{g}_3)$ spanned by $\{E_{\sigma,r}\}_{r \in S_{\sigma}}$ with $$E_{\sigma,r} = \begin{cases} (E_{23} \otimes 1 - E_{13} \otimes \sqrt{-1})^{\sigma_1} & \text{if } r \ge 0, \\ (E_{23} \otimes 1 + E_{13} \otimes \sqrt{-1})^{\sigma_1} & \text{if } r \le 0 \\ & \text{for } F = \mathbf{R}, \end{cases}$$ $$E_{\sigma,r} = \sum_{i=\max\{0,r-\sigma_{1}\}}^{\min\{-\sigma_{2},r\}} {\sigma_{1} - \sigma_{2} - r \choose -\sigma_{2} - i} {r \choose i}$$ $$\times (E_{13} \otimes 1 - \sqrt{-1}E_{13} \otimes \sqrt{-1})^{\sigma_{1} - r + i}$$ $$\times (E_{23} \otimes 1 - \sqrt{-1}E_{23} \otimes \sqrt{-1})^{r - i}$$ $$\times (E_{23} \otimes 1 + \sqrt{-1}E_{23} \otimes \sqrt{-1})^{-\sigma_{2} - i}$$ $$\times (-E_{13} \otimes 1 - \sqrt{-1}E_{13} \otimes \sqrt{-1})^{i} \text{ for } F = \mathbf{C}.$$ Then \mathcal{D}_{σ} is a K_2 -submodule of $U(\mathfrak{g}_3)$, and $\mathcal{D}_{\sigma} \simeq V_{\sigma}^{(2)}$ via the correspondence $E_{\sigma,r} \leftrightarrow v_{\sigma,r} \ (r \in S_{\sigma})$. Let $\mathbf{W}_{\Pi}: V_{\lambda}^{(3)} \to \mathcal{W}(\Pi, \psi_1)_{K_3}$ be a K_3 -embedding, which is unique up to scalar multiple. For $\sigma = (\sigma_1, \sigma_2) \in \Sigma_{\mathfrak{n}}$ and $\mu \in \Sigma(\lambda)$, we define a K_2 -homomorphism $\mathbf{W}_{\Pi}^{\sigma,\mu}: V_{\sigma}^{(2)} \otimes_{\mathbf{C}} V_{\mu}^{(2)} \to \mathcal{W}(\Pi, \psi_1)_{K_3}$ by $\mathbf{W}_{\Pi}^{\sigma,\mu}(v_{\sigma,r} \otimes v_{\mu,q}) = E_{\sigma,r}\mathbf{W}_{\Pi}(v_{\mu,q}^{\lambda})$ for $r \in S_{\sigma}$ and $q \in S_{\mu}$. Since $$\mathbf{W}_{\Pi}^{\sigma,\mu}(v_{\sigma,r} \otimes v_{\mu,q})(y)$$ $$= \begin{cases} 0 & \text{if } F = \mathbf{C} \text{ and } r \neq \sigma_1, \\ (2\pi\sqrt{-1}y_2)^{\sigma_1 - \sigma_2} \mathbf{W}_{\Pi}(v_{\mu,q}^{\lambda})(y) & \text{otherwise} \end{cases}$$ for $y = \operatorname{diag}(y_1y_2y_3, y_2y_3, y_3) \in A_3$, the explicit formula of $\mathbf{W}_{\Pi}^{\sigma,\mu}(v_{\sigma,r} \otimes v_{\mu,q})|_{A_3}$ is obtained from the explicit formula of $\mathbf{W}_{\Pi}(v_{\mu,q}^{\lambda})|_{A_3}$. It is known that $V_{\sigma}^{(2)} \otimes_{\mathbf{C}} V_{\mu}^{(2)}$ is a multiplicity It is known that $V_{\sigma}^{(2)} \otimes_{\mathbf{C}} V_{\mu}^{(2)}$ is a multiplicity free K_2 -module, that is, there is a subset $\Sigma(\sigma,\mu)$ of Λ_2 such that $V_{\sigma}^{(2)} \otimes_{\mathbf{C}} V_{\mu}^{(2)} \simeq \bigoplus_{\rho \in \Sigma(\sigma,\mu)} V_{\rho}^{(2)}$. For $\rho \in \Sigma(\sigma,\mu)$, let $I_{\rho}^{\sigma,\mu} \colon V_{\rho}^{(2)} \to V_{\sigma}^{(2)} \otimes_{\mathbf{C}} V_{\mu}^{(2)}$ be the K_2 -embedding, which is up to scalar multiple. We define a K_2 -homomorphism $\mathbf{W}_{\Pi,\rho}^{\sigma,\mu} \colon V_{\rho}^{(2)} \to \mathcal{W}(\Pi,\psi_1)_{K_3}$ by $\mathbf{W}_{\Pi,\rho}^{\sigma,\mu} = \mathbf{W}_{\Pi}^{\sigma,\mu} \circ I_{\rho}^{\sigma,\mu}$. In the rest of this paper, we consider the archimedean zeta integral of the form $$(4.1) \quad Z(s, \mathbf{W}_{\Pi, \rho}^{\sigma, \mu}(v_{\rho, q}), \mathbf{W}_{\pi, \tilde{\rho}}(v_{\tilde{\rho}, \tilde{q}})) \quad (q \in S_{\rho}).$$ In the case of $F = \mathbf{R}$, for $\sigma = (\sigma_1, 0) \in \Sigma_n$ and $\mu = (\mu_1, \mu_2) \in \Sigma(\lambda)$, we have $$\Sigma(\sigma, \mu) = \begin{cases} \{(2\sigma_1, 0), (0, 0), (0, 1)\} & \text{if } \sigma_1 = \mu_1 > 0, \\ \{(0, \mu_2)\} & \text{if } \sigma_1 = \mu_1 = 0, \\ \{(\sigma_1 + \mu_1, 0)\} & \text{if } \sigma_1 \neq \mu_1 \text{ and } \sigma_1 \mu_1 = 0, \\ \{(\sigma_1 + \mu_1, 0), (|\sigma_1 - \mu_1|, 0)\} & \text{otherwise.} \end{cases}$$ Under some normalization, we obtain the following explicit expressions of $I_{\rho}^{\sigma,\mu}$ $(\rho \in \Sigma(\sigma,\mu))$: • If $\sigma_1 \neq \mu_1$ or $\sigma_1 = \mu_1 = 0$, we have $$I_{\rho}^{\sigma,\mu}(v_{\rho,r+q}) = \left\{ \begin{array}{ll} v_{\sigma,r} \otimes v_{\mu,q} & \text{if } r+q \geq 0, \\ (-1)^{\mu_2} v_{\sigma,r} \otimes v_{\mu,q} & \text{if } r+q < 0 \end{array} \right.$$ for $r \in S_{\sigma}$ and $q \in S_{\mu}$ such that $r + q \in S_{\rho}$. • If $\sigma_1 = \mu_1 > 0$, we have $$I_{(2\sigma_{1},0)}^{\sigma,\mu}(v_{(2\sigma_{1},0),2q}) = v_{\sigma,q} \otimes v_{\mu,q} \quad (q \in S_{\sigma}),$$ $$I_{(0,0)}^{\sigma,\mu}(v_{(0,0),0}) = v_{\sigma,\sigma_{1}} \otimes v_{\mu,-\sigma_{1}} + v_{\sigma,-\sigma_{1}} \otimes v_{\mu,\sigma_{1}},$$ $$I_{(0,1)}^{\sigma,\mu}(v_{(0,1),0}) = v_{\sigma,\sigma_{1}} \otimes v_{\mu,-\sigma_{1}} - v_{\sigma,-\sigma_{1}} \otimes v_{\mu,\sigma_{1}}.$$ By these expressions, we obtain the explicit formulas of $\mathbf{W}_{\Pi,\rho}^{\sigma,\mu}(v_{\rho,q})|_{A_3}$ $(q \in S_{\rho})$ for each $\rho \in \Sigma(\sigma,\mu)$. By direct computation, we know that (4.1) coincides with $L(s,\Pi \times \pi)$ up to nonzero constant multiple, if we take σ , μ and ρ as follows: (Case 1-1) $\Pi \simeq \operatorname{Ind}_{P_{1,1,1}}^{G_3}(\chi_{(\nu_1,\delta_1)} \boxtimes \chi_{(\nu_2,\delta_2)} \boxtimes \chi_{(\nu_3,\delta_3)})$ with $\delta_1 \geq \delta_2 \geq \delta_3$, and $\pi \simeq \operatorname{Ind}_{P_{1,1}}^{G_2}(\chi_{(\nu_1',\delta_1')} \boxtimes \chi_{(\nu_2',\delta_2')})$ with $\delta_1' > \delta_2'$: - If $\delta_1' = \delta_2' = \delta_2$, we set $\sigma = (0,0)$, $\mu = (0,\delta_2')$ and $\rho = (0,\delta_2')$. - If $\delta'_1 = \delta'_2 \neq \delta_2$ and $\delta_1 = \delta_3$, we set $\sigma = (2,0)$, $\mu = (0,\delta_2)$ and $\rho = (2,0)$. - If $\delta'_1 = \delta'_2 \neq \delta_2$ and $\delta_1 > \delta_3$, we set $\sigma = (1,0)$, $\mu = (1,0)$ and $\rho = (0,\delta'_2)$. - If $(\delta'_1, \delta'_2) = (1, 0)$ and $\delta_1 = \delta_3$, we set $\sigma = (1, 0)$, $\mu = (0, \delta_2)$ and $\rho = (1, 0)$. - If $(\delta'_1, \delta'_2) = (1, 0)$ and $\delta_1 > \delta_3$, we set $\sigma = (0, 0)$, $\mu = (1, 0)$ and $\rho = (1, 0)$. (Case 1-2) $\Pi \simeq \operatorname{Ind}_{P_{1,1,1}}^{G_3}(\chi_{(\nu_1,\delta_1)} \boxtimes \chi_{(\nu_2,\delta_2)} \boxtimes \chi_{(\nu_3,\delta_3)})$ with $\delta_1 \geq \delta_2 \geq \delta_3$, and $\pi \simeq D_{(\nu',\kappa')}$: - If $\delta_1 = \delta_3$, we set $\sigma = (\kappa', 0)$, $\mu = (0, \delta_2)$ and $\rho = (\kappa', 0)$. - If $\delta_1 > \delta_3$, we set $\sigma = (\kappa' 1, 0)$, $\mu = (1, 0)$ and $\rho = (\kappa', 0)$. (Case 2-1) $\Pi \simeq \operatorname{Ind}_{P_{2,1}}^{G_3}(D_{(\nu_1,\kappa)} \boxtimes \chi_{(\nu_2,\delta)}), \text{ and } \pi \simeq \operatorname{Ind}_{P_{1,1}}^{G_2}(\chi_{(\nu_1',\delta_1')} \boxtimes \chi_{(\nu_2',\delta_2')}) \text{ with } \delta_1' \geq \delta_2'$: - If $\delta'_1 = \delta'_2 \neq \delta$, we set $\sigma = (1,0)$, $\mu = (1,0)$ and $\rho = (0, \delta'_2)$. - If $(\delta'_1, \delta'_2) = (1, 0)$ or $\delta'_2 = \delta$, we set $\sigma = (0, 0)$, $\mu = (\delta'_1 \delta'_2, \delta'_2)$ and $\rho = (\delta'_1 \delta'_2, \delta'_2)$. (Case 2-2) $\Pi \simeq \operatorname{Ind}_{P_{2,1}}^{G_3}(D_{(\nu_1,\kappa)} \boxtimes \chi_{(\nu_2,\delta)}), \text{ and } \pi \simeq D_{(\nu_1,\kappa)}$ - If $\kappa' \leq \kappa$, we set $\sigma = (0,0)$, $\mu = (\kappa',0)$ and $\rho = (\kappa',0)$. - If $\kappa' \geq \kappa$, we set $\sigma = (\kappa' \kappa, 0)$, $\mu = (\kappa, 0)$ and $\rho = (\kappa', 0)$. In the case of $F = \mathbf{C}$, we have $$\Sigma(\sigma, \mu) = \{ \sigma + \mu + (-i, i) \mid i \in S_{\sigma} \cap S_{\mu} \},\$$ and the explicit expressions of $I_{\rho}^{\sigma,\mu}$ ($\rho \in \Sigma(\sigma,\mu)$) are given by Koornwinder [Ko]. Hence, we can obtain the explicit formulas of $\mathbf{W}_{\Pi,\rho}^{\sigma,\mu}(v_{\rho,q})|_{A_3}$ ($q \in S_{\rho}$) for each $\rho \in \Sigma(\sigma,\mu)$. Let $\Pi \simeq \operatorname{Ind}_{P_{1,1,1}}^{G_3}(\chi_{[\nu_1,d_1]} \boxtimes \chi_{[\nu_2,d_2]} \boxtimes \chi_{[\nu_3,d_3]})$ with $d_1 \geq d_2 \geq d_3$, and $\pi \simeq \operatorname{Ind}_{P_{1,1}}^{G_2}(\chi_{[\nu'_1,d'_1]} \boxtimes \chi_{[\nu'_2,d'_2]})$ with $d'_1 \geq d'_2$. By direct computation, we know that (4.1) coincides with $L(s,\Pi \times \pi)$ up to nonzero constant multiple, if we take σ , μ and ρ as follows: - If $-d'_1 \ge d_1$, we set $\sigma = (-d'_1 d'_2 d_1 d_2, 0)$, $\mu = (d_1, d_2)$ and $\rho = (-d'_1 d'_2 d_1, d_1)$. - If $-d_2' \ge d_1 \ge -d_1' \ge d_2$, we set $\sigma = (-d_1' d_2' d_1 d_2, 0)$, $\mu = (d_1, d_2)$ and $\rho = (-d_2', -d_1')$. - If $-d'_2 \ge d_1$ and $d_2 \ge -d'_1 \ge d_3$, we set $\sigma = (-d'_2 d_1, 0), \ \mu = (d_1, -d'_1) \text{ and } \rho = (-d'_2, -d'_1).$ - If $-d'_2 \ge d_1$ and $d_3 \ge -d'_1$, we set $\sigma = (-d'_2 d_1, -d'_1 d_3)$, $\mu = (d_1, d_3)$ and $\rho = (-d'_2, -d'_1)$. - If $d_1 \ge -d'_2 \ge -d'_1 \ge d_2$, we set $\sigma = (-d'_1 d_2, 0)$, $\mu = (-d'_2, d_2)$ and $\rho = (-d'_2, -d'_1)$. - If $d_1 \ge -d'_2 \ge d_2 \ge -d'_1 \ge d_3$, we set $\sigma = (0,0)$, $\mu = (-d'_2, -d'_1)$ and $\rho = (-d'_2, -d'_1)$. Here, because of the local functional equation of the archimedean zeta integrals, we omit the following cases which are contragradient to the above cases: - The case of $d_1 \geq -d_2 \geq d_2$ and $d_3 \geq -d_1$. - The case of $d_2 \ge -d'_2 \ge -d'_1 \ge d_3$. - The case of $d_2 \ge -d_2^{\tilde{i}} \ge d_3 \ge -d_1'$. - The case of $d_3 \geq -d_2'$. #### References - [Ba] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. - [HIM] M. Hirano, T. Ishii and T. Miyazaki, The Archimedean Whittaker functions on GL(3), in Geometry and analysis of automorphic forms of several variables, Ser. Number Theory Appl., 7, World Sci. Publ., Hackensack, NJ, 2012, pp. 77–109. - [Ja] H. Jacquet, Archimedean Rankin-Selberg integrals, in Automorphic forms and L-functions II. Local aspects, Contemp. Math., 489, Amer. Math. Soc., Providence, RI, 2009, pp. 57–172. - [JS] H. Jacquet and J. Shalika, Rankin-Selberg convolutions: Archimedean theory, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), 125–207, Israel Math. Conf. Proc., 2, Weizmann, Jerusalem, 1990. - [Ko] T. H. Koornwinder, Clebsch-Gordan coefficients for SU(2) and Hahn polynomials, Nieuw Arch. Wisk. (3) **29** (1981), no. 2, 140–155. - [Po] A. A. Popa, Whittaker newforms for Archimedean representations, J. Number Theory **128** (2008), no. 6, 1637–1645. - [Sha] J. A. Shalika, The multiplicity one theorem for GL_n , Ann. of Math. (2) **100** (1974), 171–193. - [St] E. Stade, Mellin transforms of $GL(n, \mathbb{R})$ Whittaker functions, Amer. J. Math. **123** (2001), no. 1, 121–161.