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The archimedean zeta integrals for GL(3) X GL(2)
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Abstract:

We consider here the archimedean zeta integrals for GL(3) x GL(2) and show

that the zeta integral for appropriate Whittaker functions is equal to the associated L-factor.

Key words:

1. Introduction. This paper gives a new
result which is a continuation of our former
paper [HIM] on the archimedean Whittaker func-
tions on GL(3).

In the case of GL(n+ 1) x GL(n), we expect
that the archimedean zeta integrals for appropriate
Whittaker functions are equal to the associated
L-factors. This expectation is well-grounded by
Stade’s result [St] for the spherical GL(n + 1,R) x
GL(n,R)-case and Popa’s result [Po] for GL(2) x
GL(1)-case. We discuss here the archimedean zeta
integrals for GL(3) x GL(2) and give an additional
evidence for this expectation. The main result in
this paper is based on explicit computation using
our explicit formulas of non-spherical Whittaker
functions on GL(3) and GL(2). Since the archime-
dean zeta integrals at the minimal K-types may
vanish in some cases (¢f. Lemma 4.2), the appro-
priate choices of K-type vectors are important.

2. Preliminaries.

2.1. Notation. Let F be R or C. For [ € F|,
we define the unitary character ; of F' by

27r\/7_ll£ if F=R
e if =R,
Yi(§) = { o) (EeF).
e if F=C
We define the norm |- |, on F by [{|g = [{| and
€l = |§|2 where |-| is the ordinary absolute

value. We set T'r(s) =7 */?T(s/2) and T'c(s) =
2(27)°I'(s) as usual. We denote by 1, the unit
matrix of degree n, and by Ej; the matrix unit of size
3 x 3 with 1 at (¢, j)-th entry and 0 at other entries.
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2.2. Basic objects. Let G, be the general
linear group GL(n, F') of degree n over F. Let N,, be
the group of upper triangular matrices in G,, with
diagonal entries equal to 1, and let A, be the group
of diagonal matrices with positive diagonal entries.
Moreover, we fix a maximal compact subgroup K,

of G, by
{ O(n) it F=R,
K, = .
Un) if F=C.
Then we have an Iwasawa decomposition

G, = N,A,K,. It is convenient to take the coor-
dinates on N,, and A,, as follows:

T = (177‘,]') € Nm
y=diag(v1y2 - Yn, Y2 Yn, -

where l‘i]‘GF, z; =1 (ISZSTL), xi]‘ZO (1§j<
i<n), and yr € Rog (1 <k <n). For ny,ng,---,
Ny € Zisg with ny +ns + - -+ + n,, = n, we associate
the upper triangular parabolic subgroup P, n, ...,
of G,,, whose Levi component is isomorphic to G, x
Gp, X - %X Gy, .

2.3. Irreducible of K,.
Here we introduce some notations for representa-
tions of the maximal compact subgroup K, of G,
with n = 2,3. We regard K5 as a subgroup of K3 via
the embedding

k
Kook <{T> € Ks.

For F' =R, the equivalence classes of irredu-
cible representations of K, = O(n) can be para-
meterized by the set

A = {(A1,0) | A € Zxo} U{(0,1)}
{0 ) | A1 € Zso, X2 € {0,1}}
We denote the representation of K, associated to
A= (A X) €A, by (7, V™). For n=2, the
dimension of the representation space V/\(Q) isl (A=
0) or 2 (A # 0), and we can take a basis {vy4}

) yn) e A’VL)

representations

(2.1)

if n =2,
if n=3.

qeSY?
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Sy ={£A} of V/\@) characterized by the action

0 in 0
T/iz) (( co.s sin )) ony = e\/—_lqﬁv)\q 0 €R),
—sinf cos@ ’ ’

-1 0 ,
T)(\Q) (( 01 >>v>\1q = (71))‘ Up—g-

For A = (A1, A2) € A, let P), be the C-vector space
of degree A; homogeneous polynomials of three
variables zi, 29, 23, and we define the action T) of K3
on Py by

(T\(k)p)(21, 22, z3) = (det k)2p((21, 22, 23) - k)

for k€ K3 and p € P,. Here (z1,29,23) -k is the
ordinal product of matrices. For n =3, we regard
Tf’) as the quotient representation of Ty on V )
Pr/(23 + 25 4 23)Pr_(20). Here we put Py_(o0) = {0}
it A—(2,0) ¢ Az. As a Ky-module, we have V
@MGE(A) V< with

(A = {0,223 U{(,0) [ i € Z, 1 < pn <A},

via the correspondence v;\“] v, (= (1, p2) €
2(N), g€ S,), where v)‘ is the image of
if ¢ >0,

(214-\/—_22)#1 /\1 H1
(1) (—z +V=1z2)" 2" if <0
under the natural surjection Py — VA(S).
For F = C, the equivalence classes of irredu-

cible representations of K, = U(n) can be para-
meterized by the set

L) €Z7 A = N} ifn=2
! {0, 03) €Z3 | A > A > A3} ifn=3

and we denote the representation of K, associated
to A e An by (1) (n) V(") as before. For n =2, we
regard V as the C-vector space of degree A\ — Xy
homogeneous polynomials in two variables 21, 23, on
which K, acts by

(2 (k)p) (a1, Z2> = det(k)*p((z1,22) - })

forke Kyandp € V . We define a basis {UA(I}qu)‘?
S,\—{(]EZ|O<(]<)\1 )\2} of V)\ by
O g(21, 22) = zi\l Ao 128, For A= (A, M, N3) € As,
let Py be the C-vector space consisting of poly-
nomials of six variables zi, 29, 23, 293, 213, 212 Which
are degree A — Ao homogeneous with respect to
three variables zq,29,23 and are degree Ay — A3
homogeneous with respect to three variables

293, 213, 212. We define the action Ty of K3 on P) by

(Tx(K)p) (21, 22, 23, 223, 213, Z12)

[Vol. 92(A),

= det(k)kgp((zh 29, 23) - k, (223, 213, 212) - kN/’)

for k€ K3 and p € Py. Here k= (k) € Gy is a
matrix defined by
o ‘ k’iljl k’ilh
=
! kizjl kiz]é
with 1 <4 <id9 <3, 1 <7 <jo <3 such that i ¢
{tr,i2}, j& {j1,j2}, for k= (kij) € Ks. For n =3,
we regard T/\d as the quotient representation of T)
on V( = Pr/(21203 — 22213 + 23212) Pr—(2,1,0)-
we put P)\, 271"0 = {0} lf )\ (2, 1,0) ¢ A3
Ky-module, we have VAS) ~ @D, Vl52> with

S(A) = {(p1,p2) € Z* | A1 > g1 > Ao > o > N3},

Here
As a

via the correspondence v”).q vy (= (1, 12) €
Z(N), g € S,), where vﬁ)q is the image of
_ a0 —\s
(,ul - M2> ! mm{qzm: 2} <M1 - /\2> </\2 - Mz)
q i=max{0,u2—A2+q} : q—
pi—Xo—t Ao—plo—q+i i q—i Ai—f1 Ho—A3

X 2 213 2y s 2y M A

under the natural surjection Py — VA( ). Here (n) =
i

ni' is the binomial coefficient.
il(n—1)!

3. Whittaker functions on G,,.

3.1. The definition of Whittaker functions.
For [ € F*, let C*(N,\G,; 1) be the space of all

smooth-functions f: G, — C satisfying
f(zg) = Yi(@12 + w23 + -+ + Tp-10) f(9)

for z = (z;;) € N,, and g € G,,. Here G,, acts on this
space by the right translation, and we equip this
space with the topology of uniform convergence on
compact sets of a function and its derivatives.

For an irreducible admissible Hilbert represen-
tation (II, Hy) of G, the space

HomGn (Hﬁov o> (Nn\Gnv 1/11))

of continuous G,-homomorphisms is at most one
dimensional ([Shal), where Hf is the subspace of
Hyp consisting of all smooth vectors. If there is a
non-zero homomorphism in this space, we denote
the K,-finite part of its image by W(II,vy); and
say that II is generic. Functions in W(II, v) Kn are
called (K,-finite) Whittaker functions for II.

3.2. The archimedean L- and e-factors. We
recall the L- and e-factors corresponding to finite
dimensional semisimple representations of the Weil
group Wr for F. See [HIM, §5.1 and §5.2] for details.
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For FF =R, the set of equivalence classes of
irreducible representations of the Weil group Wx is
exhausted by characters ¢’ (v € C, § € {0,1}) and
two dimensional representations ¢,, (v € C, k€
Z-), whose L- and e-factors are given as follows:

L(s,6)) = Tr(s +v+6), e(s,¢),¢1) = (V-1),
L(s:buw) =Tels +v),  e(s, o thr) = (V=1
For F = C, the set of equivalence classes of
irreducible representations of the Weil group We is

exhausted by characters ¢¢ (v € C, d € Z), whose
L- and e-factors are given as follows:

L(s,¢y) = Tc(s + v +d|/2),
(s, 90 vn) = (V=1)".
For a finite dimensional semisimple represen-
tation ¢ of Wy with the irreducible decomposition
¢~ B!, ¢i, we define its L- and e-factors by

m m

5,0) = [[ L(s,00),  el(s,,9) He i 1),
=1

By the local Langlands correspondence, an
irreducible admissible representation II of G,
corresponds to an n-dimensional semisimple repre-
sentation ¢[II] of Wr. Let II and 7 be irreducible
admissible representations of GG3 and G5, respec-
tively. Then we define the archimedean L- and
e-factors for II x 7 by

L(s, T x ) = L(s, o[11] @ ¢[n]),
(s, TLx m, ) = e(s, $[T1] @ @l ).

Observe the equivalences

¢ @l =l 5>,

B @ Bl = Puiss

v @ Gyt = Pust ot B Gy —rt i i K> K,

D @ Bur = Buav 2k D Doy D By,
for F =R and the equivalence ¢‘Z ® ¢l‘f’ ~ ¢d+d/ for

v+
F=C, we can write the archimedean L- and
e-factors for IT x m, explicitly.
3.3. Generic representations of G,,. It is

known that any irreducible admissible generic
representation of (G, is infinitesimally equivalent
with an irreducible generalized principal series
representation ([Ja, Lemma 2.5]). Here we recall
some facts for irreducible admissible generic repre-
sentations of G,, with n =2,3.

First, we set F' = R. We shall specify certain
irreducible representations of G and G5 as follows:
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(1) Forve Candé € {0,1}, let x(,,5: G1 — C* be
the character defined by

X (8) = (t/1t]) |t (t € Gi =RY).

(2) For v€C and k€ Z>y, let D, be the
representation of (s characterized by
D(,,@(Iflg) =t (t S R>0) and D (v.K) |SL 2.R)
Df @ D_, where DF is the discrete series
representatlon of SL(Z,R) with Blattner pa-
rameter £k.

For n = 3, any irreducible admissible generic rep-
resentation I of G5 satisfies one of the following:

(1) I~ Indgfn( 1,60 B X(03.6,) B X(1y,55)) for some
1/1(,)5 with 8; > 69 > 3. The minimal K3-type is

Tor- 53752)Gand ¢[ ] d) n® ¢ @ ¢ vs'

(2) M~ Indp} (D, x) X X(1,,5)) for some v;, &, 6.
The minimal Kj-type is T((f)ﬁ), and ¢[lI] =
¢I/1+H 1)/2, k— 1@¢m

For n = 2, any irreducible admissible generic rep-
resentation 7 of GGy satisfies one of the following:

(1) m=~ Indgf1 (X(.6) B X(y.8)) ;fg))r some v/, 8} with
61 > &,. The Ko-types are 7,,” (N € A(m)) with

A(m) = {(8) — 65, 65) U
{()‘/la ) | A} € 8y = 8y + 2Zo},
and @[] = ¢ GB¢
(2) ™~ Dy w) for some o/, r'. The Ky-types are

72 (N € A(w)) with
A(m) = {(X},0) | N € K"+ 2220}

and ¢[ ] ¢u’ K—=1)/2,K —
Next, we set F C. For veCanddeZ,let

X[vd): G1 — C* be the character defined by
Xwa (t) = /[t G (¢ € Gy =C).

For n = 3, any irreducible admissible generic rep-
resentation II of G3 satisfies II 21ndgﬁ,,,(X[uhd1] X
Xivauds) X Xiy.a5)) for some v, d; with di > dy > ds.
The minimal K3-type of II is T(d)d )7 and ¢[lI] =
gb @gb EBngd* For n =2, any 1rreduc1ble admis-
81ble generlc representation m of G satisfies 7~
Indgfl( X2 ® X)) for some v, d} with d > dy.
The Ks-types of  are T)(\,) (N e A( )) with

A(m) = {(dy +m,dy —m) | m € Z=},

and gln] = ¢ @ 6.

3.4. Expllicit 2formulas. Here we introduce
the results for explicit formulas of the radial parts of
Whittaker functions on G,, with n = 2, 3.

First, we set n = 3. Let (II, Hy) be an irredu-
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cible admissible generlc representamon of G3, and
take A € Aj such that 7’)\ is the minimal Kj3-type of
II. Let Wy: V WL 1), be a Kz-embedding
which is unique up to scalar multiple. In the former
paper [HIM, Theorems 3.1 and 4.1], we give explicit
formulas of Wr(v)] 4, for an image v of a monomial
under the natural surjection Py — V

Next, we set n =2. Let (, ) be an irredu-
cible admissible generic representation of Gs. For
each N € A(r), the Ky-type 7')(\,2) occurs in 7|y, with
multiplicity one. Let W y: V/\,) — W(m, ), be a
Ks-embedding which is unique up to scalar multi—
ple. In the case of F =R, for any X € A(m) and
q' € Sy, the explicit formula of Wqy(vyg)ly, is
found in the standard textbooks. In the case of
F = C, the explicit formulas of Whittaker functions
at the minimal Ks-type of m are found in Popa
[Po, §5]. Applying the shift operator to Popa’s
formulas, we obtain the following:

Proposition 3.1. We use the above nota-
tion, and assume T~ Indgi1 (X[Vivdﬂ X X[u;,d’z]) with
dy > dy. Let N = (d} + m,d, —m) € A(w). There is
C € C* such that, for y= diag(yiys,y2) € Ay and
q € Sy,

W (v g)(y) =

20 +2v)

0(\/—1Z/u|)d’l+m‘q’yly2

XZ( ) V) + Uy — _(dll_d%)/2)i
( d’ +dy —2m); 27|ly1)
/a+\/_oc N ,+q’—|—m—i
s+, +——-——
27‘(\/ ! 2
_ d/ _ 4 -
x Fc<s+u§+ 2+2m g H)(Illw)_2

Here (a); =T(a+1)/T(a) is the Pochhammer sym-
bol, and « is a sufficiently large real number.

4. The archimedean zeta integrals.
Let II and 7 be
irreducible admissible generic representations of Gy
and G, respectively. For W e W(IL, 1), and
W' e W(m,-1)f,, we define the archimedean zeta
integral Z(s, W, W’) by

Z(s, W,W")

_ / W(%—)W’(hﬂdet(hﬂ;%dii,
N)\Gs 1

where dh is the right Gs-invariant measure on
No\G> which is suitably normalized. Using the
asymptotics of Whittaker functions, Jacquet and

4.1. The main result.
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Z(s, W,W")
L(s,II x )
function of s € C, and satisfies the local functional
equation:

is an entire

Shalika [JS] proved that

Z(1—s,W, W)
L(1 — s,T1 x 7)

Z(s, W, W")

:€(S7HX777'¢1) L(S HX’N‘) ;

where tilde symbols mean the contragradients.
Moreover, Jacquet [Ja] shows that there exists
a finite subset {(Wi, W)} o;c,,, C WL 91) g, X
W(m, 1), such that

> Z(s, Wi, W) = L(s, 1T x 7).
i—1
Now we state the main theorem of this paper.
Theorem 4.1. Let II and 7w be irreducible
admissible generic representations of Gz and G,
respectively. Then there exist W € W(IL, 1), and
W' e W(m, 1), such that

Z(s, W,W'") = L(s,II x ).

This theorem is proved by the computation
using the explicit formulas of Whittaker functions.
In our computation, Barnes’ lemma [Ba, §1.7] and
appropriate choices of Whittaker functions play
important roles. We introduce the appropriate
choices of Whittaker functions in the next sub-
section.

4.2.
chimedean L-factors.

Whittaker functions attaining the ar-
For p € Ay, we denote by
(%,§2>, V< >) the contragradient representation of Tp ,
and denote by {4}, the dual basis of {v,¢},cs,-
For p=(pi,p2) €Ay and ¢€S,, we define the
symbols p, ¢ and ¢(p, q) as follows:

ﬁ:pv q:_Q7 C(P,Q):l fOI'F:R,
p=(=p2,=p1), a=p1—p2—a
c(p,q) = (—1)" <p1 ; p2) for F =C.
q
Then we have 1;;,(2) ~ Vp@ via the correspondence

Upq < c(p, @)vpq (4 € Sp)-

Let II and 7 be irreducible admissible generic
representations of G3 and G, respectively. For
NeA), let WV = W(mdo1)g be a
Ks-embedding, which is unique up to scalar multi-
ple. We regard K as a subgroup of K3 via the
embedding (2.1). Then, by Schur’s orthogonality,
we obtain the following lemmas:

Lemma 4.2. We use the above notation. Let
W: ‘/;(2) — WL 41 ) g, be a Ky-homomorphism with
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pENy. For g€S, and ¢ €Sy, the
Z(Saw(vﬂﬂ)vwﬂ )\’(U/\’ ’)) is equal to

dilep( = / / W) <+>

25— 1(

integral

X W 5(v50) (W) |7 2|y2 Y1y2) " dyrdys

if (N, d') = (p,q), and is equal to 0 if otherwise. Here
y = diag(y1y2,92) € As.

Let X be the element of A3 such that 7')(\3) is the
minimal Kjs-type of II. The explicit formulas of
Whittaker functions for IT are known only at 7'/(\3).
However, because of this lemma, the archime-
dean zeta integral Z(s, W,W’) vanishes for any
Whittaker function W for II at T£3) and W' e
W(m, 1), if there is no pe ¥(\) such that
p € A(m). We will construct Ky-homomorphisms
W: 1/,,(2) — W(H,d)l)m with p € Ay such that p €
A(7), using the action of the Lie algebra of Gs.

Let g5 be the complexification gl(3, F') ®g C of
the Lie algebra of G3, and we denote by U(gs) the
universal enveloping algebra of g;. We regard U(gs)
as a Ky-module via the adjoint action Ad. We define
a subset X, of Ay by

5 {(01,0) | o1 € Z>o} if F =R,
") {(o1,00) €2 |01 > 0> 0y} if F=C.
For o = (01,02) € %y, let D, be a C-vector subspace

of U(gs) spanned by {E,,},..q with
(B ®1l—-FE3eVvV-1)" ifr>0,
EO"!‘ =
(Byy @1+ Ey®@V-1)" ifr<o0
for F =R,

e "5 () ()
i=max{0r—o} N 027 ° ¢
X (Bis®1—V—1E;3®vV—1)
X (B3 ®1—V—-1Ep3 @ V—-1)""
X (B @1+ V—-1Ep @ V-1)"""
(~Ei3®1—V—1E;3® V—1) for F =C.

Then D, is a Ky-submodule of U(gs), and D, ~ V/2)
via the correspondence E,, < v,, (r € S,).

Let Wi V( ) w 771’1)1(.5 be a Ks-embed-
ding, which is unique up to scalar multiple. For
0= (01,00) €, and p€ Z()\), we define a Ko-
homomorphism ~ Wg": V? ®¢ V(Q) — WL, 1) g,
by Wi (vor @ vq) = Es, TWH( for r € S, and
g € S,. Since

o1—r+1

X

,u. q)
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Wi (Vor @ v,4) ()
0 if F=C and r # oy,
T @1y Wia(v),) ()

for y = diag(y1y2y3, ¥2y3,y3) € A3, the explicit for-
mula of WY"(vy, ®v,4)]4, is obtained from the
explicit formula of Wy (v uq)|Aa

It is known that V% ®c V,,( Vis a multiplicity
free Ko-module, that is, there is a subset (o, ) of
Ay such that V® ®¢ V2 ~ D, es(o) V. For pe
Y(o, ), let Ig*”ﬂ/;)(?) — V% ®¢ V,,(2> be the Ks-em-
bedding, which is up to scalar multiple. We define
a Kj-homomorphism Wy': Vp<) WL, 1), b
Wi, = Wi o I7#. In the rest of this paper, we
consider the archlmedean zeta integral of the form

(4.1)  Z(s, W, (vg), Wrs(0p3))  (q € Sp).

In the case of F =R, for 0 = (01,0) € &, and
= (1, 1u2) € 3(N), we have

otherwise

{(201,0),(0,0),(0,1)} if o1 = p1 >0,
{0, p2)} if o1 = =0,
Bl ) = {(o1 + p1,0)} if o1 # g and oy =0,

{(o1 + 111,0), (lox — p1],0)} otherwise.
Under some normalization, we obtain the following
explicit expressions of I7# (p € X(o, n)):

o If oy # py or oy = up =0, we have

Vo @ Vpg ifr+¢q>0,
IU’H('U/J 7‘+q) = . .
p ’ (=1)"v,, ® v,y fr+¢<0
for r € S, and ¢ € S, such that r +q € S,,.
e If oy =y >0, we have
Iggho) (U(Qol,(]),Qq) = Ug,q ® Upygq (C] € 50)7
Izjdft)) (v(0.0),O) = Vg0, @ Uy~ + Vo,—0y @ Vpoy

I?dﬁ)(v((),l)ﬂ) = Vg0, @ Vy—0, = Vo~ @ Vp,o -

By these expressions, we obtain the explicit for-
mulas of W' (v,4)] 4, (¢ € S,) for each p € ¥(o, ).
By direct computation, we know that (4.1) coin-
cides with L(s,II x w) up to nonzero constant
multiple, if we take o, u and p as follows:
(Case 1-1) H = Indgfll (X(Vl.(sl) IZ X(l/z,&g) & X(V;g,ég))
with 61 > 6, > 63, and 7~ Indgi] (X(l,;ﬁ;) X X(V;,é'z))
with 8] > 65:
o If &) =&, =62, weset 0 = (0,0), p
p=1(0,0).
o If §) =6, # 62 and 6, = 63, we set o = (2,0),
1= (0,8) and p = (2,0).

= (0, 6%) and
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o If §) =6, # 6, and 6 > 63, we set o =(1,0),
5= (1,0) and p = (0, ).
e If (6],65) = (1,0) and 6, = 63, we set o = (1,0),
p=1(0,6) and p = (1,0).
o If (&],65) = (1,0) and 6 > 63, we set o = (0,0),
p=(1,0) and p = (1,0).
(Case 1'2) I~ Indgﬁlil (X(Vl-,bi) X X (v2,62) X X(V3,5:;))
with 61 > 6 > 63, and 7~ D )
o If 6 =03, we set o= (x',0), p=1(0,8,) and

p=(x,0).
o If 6 > 63, we set 0 = (k' — 1,0), = (1,0) and
p= (Hlvo)'

(Case 2-1) II~ Indgzl(D(Vm) X X(,6), and m o~
Ind (X(0) © X(wep) with &) > &:
o If &) =6, # 6, we set 0 = (1,0), p=(1,0) and
p=(0,8).
o If (8,65) = (1,0) or & =46, we set o =(0,0),
= (8 — 8,8) and p = (6 — 8,85).
(Case 2-2) I~ Indgj~1 (D) ® X(16)), and m o~
D(,/,H/)I
o If ' <k, we set o = (0,0), p=(x,0) and p =
(,0).
o If K > Kk, we set 0 = (K — k,0), u=(x,0) and
p=(x,0).
In the case of F = C, we have
oy p) ={o+p+(=i,i) [ i €5, NS},

and the explicit expressions of I7 (p € ¥(o, u1)) are
given by Koornwinder [Ko]. Hence, we can obtain
the explicit formulas of W (v,4)|4, (¢ €S,) for
each p € X(o,p). Let IT =~ Ind%’, | (X4 B X5 B
X[ug,d;;]) with dl Z dg Z dg, and 7~ Indgﬁl (X[V/“d/]] X
X[,,de;]) with d > d,. By direct computation, we
know that (4.1) coincides with L(s,II x 7) up to
nonzero constant multiple, if we take o, u and p as
follows:
o If —d/l Z d], we set o0 = (—dll — d’2 — dl — dg,O),
o= (dl,dg) and P = (_dll — d,2 — dl,dl).
o If —d,>dy > —d| >dy, weset o = (—d| —d) —
dy — d270)7 = (dladQ) and p= (_dlz’ _dll)'
o If —d,>d; and dy > —d; > ds, we set o=
(—dy — dy,0), = (do, —}) and p = (~d ).
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o If —d, > d; and d3 > —d|, we set 0= (—d, —
dy,—d, — dy), p = (dy,ds) and p = (—dj, —d).
o If dy>—d,>—d| >dy, we set o= (-d| —
d2,0), p= (_dlbdQ) and p = (_dl27 _dll)‘
o If dy > —d, > dy > —d| > ds, we set o = (0,0),
p= (~dyy —dy) and p = (~dj —d}).
Here, because of the local functional equation of the
archimedean zeta integrals, we omit the following
cases which are contragradient to the above cases:
e The case of di > —d, > dy and d3 > —d).
e The case of dy > —d) > —d| > ds.
e The case of dy > —d, > d3 > —dj.
e The case of d3 > —d,.
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