Proc. Japan Acad., 91, Ser. A (2015) 9

* and the harmonic transformed

s,m

No. 1]
Asymptotic behavior of Lévy measure density corresponding
to inverse local time
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Abstract: For a one dimensional diffusion process D
process D*

Shymp?

the asymptotic behavior of the Lévy measure density corresponding to the inverse

local time at the regular end point is investigated. The asymptotic behavior of n*, the Lévy

*
s,m?

measure density corresponding to D

m. However, that of n"*, the Lévy measure density corresponding to D

follows from asymptotic behavior of the speed measure

*

%.m,» 18 given by a simple

form, n* multiplied by an exponential decay function, for any harmonic function h based on the

original diffusion operator.

Key words:

1. Inverse local time and Lévy measure
density. Let s be a continuous increasing func-
tion on an open interval I = (I1,l3), where —oo <
Iy <ly<oo, and let m be a right continuous
increasing function on I. We assume

(1) [s(l)] =+ m(l)] < oo,

where we set u(l;) = lim,_, yey u(z), ¢ = 1,2, if there
exist the limits, for functions w on I. (1) implies that
the end point /; is regular in the sense of Feller [2].
We pose the reflecting or absorbing boundary
condition at I; (¢ =1,2) if it is regular. Let G, be
a one dimensional diffusion operator on I with scale
function s, speed measure m, and null killing
measure. We denote by D = [X(t),P;] [resp.
D°, = [X(t),P°]] the one dimensional diffusion
prdcess on [ with G, as the generator and with I,
being reflecting [resp. absorbing]. Let denote by
I*(¢t,€) the local time of D! . that is,

s,m?

/fuw»m:/mmw@mth>m
0 I

for bounded continuous functions f on I. Since
I*(t,€) is continuous and nondecreasing in ¢ P’-a.s.,
there is the right continuous inverse function
I*1(t,€). Note that there exists the inverse local
time [*7'(¢,1;) at the end point [;, which is denoted
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by 7(t). Combining Lévy formulas due to R. M.
Blumenthal and R. K. Getoor ([1], Chapter V,
Theorem 3.21) and those due to K. It6 and H. P.
McKean ([3], Section 6.2), we obtain the following
result. We give the proof in another paper.

Proposition 1. The Laplace transform of
the distribution of [T*(t), t > 0] is given by the
following

@ Bl
:@m{—ft_géwu—wz&mmadf}

0 if s(ly) =00, or

Iy is regular and reflecting,
1/{s(l) = s(h)} if s(l2) < oo,
(@) n'(©) = lim g (€0)/{s(2) - (i)},

where E} stands for the expectation with respect to
B
1

t
(5) /q*(g,x)dgzP;(oh<t), cel t>0,
0

and oy, is the first hitting time for ;.

We note a representation of ¢*(§, z) in terms of
the transition probability density p°(t,z,y) of D7,
that is,

©6) ¢ ) =limp(& z,0)/{s(z) — s()},
£€>0, vel

Here p°(t, x,y) is the transition probability density
with respect to dm for D? . that is,

s,m?
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PU(X(t) € F) = [E P°(t,2,y) dm(y),

for x € I, E € B(I), where B(I) stands for the set of
all Borel sets of I. It is well known that p°(¢, z,y) is
represented as

(1) p°(t,z,y)
— /(O N ) ),

t>0, x,yel,

where do°()\) is a Borel measure on (0, o) satisfying

(8) / e Mdo’(\) < oo, t>0,
(0,00)

and ¥°(z,a), z € I, a € C, is the unique solution of
the following integral equation (9).

9)  (z,a) =s(z) —s(l)
+a . ,}{8(33) —s(y)}9°(y, a) dm(y).

By means of (4), (6), (7) and (9), we find
(10) n* (5) = zlgiTl Ds(w)Ds(y)po(Ea z, y)

= / e Mdo’(\),
(0,00)

where D) denotes the right derivative with
respect to s(x). n*(€) is the Lévy measure density
of the inverse local time [7*(¢), t > 0].

Example 2. Letl; =0,l; =1< 00, s(z) =2z
and m(z) = C(l — x)7(1+1/p), where C is a positive
number and 0 < p < 1. (1) is satisfied. By virtue of
Proposition 1, the Laplace transform of the distri-
bution of [7*(t), ¢t > 0] is given by

(1) Bjle )

= / e My (@, —=\)Y°(y, =) 02(N) d,
(0,00)
(14) ¢7(z,~\) = pm/I(l — @)
X {_Np(cpl_l/Q/)\/X)Jp(Cp(l - x)il/Qp\/X)
+ Jp<cpl_l/2p\/X)Np(Cp<l - 5‘7)71/%&)}7
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(15) o) = (lpm?)

X {Jp(cpl_l/Qp\/X)Q + Np(cpl_l/Qp\/X)Q}_l-
Here ¢, = 2{Cp(1 + p)}/?, and J,(2) are N,(z) are
Bessel functions. We prove (13) with (14) and (15)
in another paper. Noting the asymptotic behavior of
Bessel functions, we have
CrCi(p)
BT(1+ p)
where f(t) ~ g(t) as t — 0 [resp. t — oo] stands for
1imy . fresp. t—oc] £(t)/g(t) = 1 for positive functions
f(t) and ¢(t), and Cy(p) is a positive number given
by
(16)

Noas

o%(\) ~ A— 0,

Ci(p) = {p(1 +p)}’/T(p).
Therefore we find
(17) n*(§) ~12CPCi(p) M) as € — oo

Example 3. Letl; =0, 1l = 0o, s(x) = z and
m(x) = Cx~'*1/7 where C is a positive number and
0<p<1. (1) is satisfied. By virtue of Proposi-
tion 1, the Laplace transform of the distribution of
[7*(t), t > 0] is given by

(18)  Eyle "]

=t [ 0= ac),

(19) w(©= [ e o) dr = CCu(pe
0

where Cy(p) is a positive number given by

(20) Ca(p) = {p(1 = p)} /T (p)-

(19) follows from the following representation of
p°(t,z,y).

(21) p°(t, =)
— [ M NN i
(0.00)
I'1+p)
22) Yz, -\ = —
22 v {Cp(1 = p)A}”
X Jp(2 Cp(l - p)/\xl/Qp)v

oy = C7C2(P)

(23) () = ) M.

2. Asymptotic behavior of Lévy measure
densities. In this section we consider asymptotic
behavior of Lévy measure densities. We assume one



No. 1]

of the following (A1), (A2) and (A3), where 0 <
p < 1and L(z) is a slowly varying function.

(A1) 1, =0, lp=1<o00, s(z) =2 and m(x) sat-
isfies |m(0)| < oo and

(24) m(l—1/z) ~ 2"V L(z) as z — oo

(A2) [} =0, Iy =00, s(z) =z and m(zx) satisfies
|m(0)|] < co and

(25)
(A3) 1, =0, Iy =00, s(z) =2 and m(z) satisfies
lim, o, m(z) = oo and

(26) m(z) ~ 2z VPL(z) as x— 0.

m(z) ~z VPL(z) as z — oo

Since I; =0 is regular, we can define the inverse
local time 7*(¢t) at O by putting the reflecting
boundary condition. We obtain the following
asymptotic behavior of Lévy measure densities.
Let K(z) be another slowly varying function such
that

(27) lim K(z)'"L(z’K (z))

= lim L(z)’K(z"/?L(z)) = 1,

where x — oo should be read as ¢ — 0 when (A3) is
satisfied.

Theorem 4. Assume (Al). Then the Lap-
lace transform of the distribution of [7*(t), t > 0] is
given by the same formula as (11) and the Lévy
measure density satisfies

(28) (O ~ICip)E K
as & — o0.
Theorem 5. Assume (A2) [resp. (A3)].

Then the Laplace transform of the distribution of
[7*(t), t > 0] is given by the same formula as (18)
and the Lévy measure density satisfies
(29) (&) ~ Cop)§ K ()

as &— o0 [resp. £ — 0.

Proof of Theorem 4. The assumption (A1)
implies that (A.1) with 8 =0 of [10] is satisfied,
where we should replace the role of I by that Iy in
(A.1) of [10]. Since l; =0 is regular, we can put
[1 =0 in (3.1) of [10]. Thus, by means of (5.11)
of [10], we have

/ e Mdo®(\) ~ 1720 (p)t K (1)
(0,00)

as t— oo.

Combining this with (10), we obtain (28). O
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Theorem 5 follows from some results on
Krein’s correspondence. The arguments of Krein’s
correspondence are due to [4] and [6]. Let denote by
M the totality of nonnegative right continuous
nondecreasing functions p(z) on [0,00] such that
p(z) # oo and p(o0) = oo. For p € M set u(0—) =0
and let o(x,\) be the solution of the integral

equation

e, N) =1+ [ (z—y)py,A) du(y),

[0,2]

x €10,1),
where A € C and | = sup{z : u(zr) < co}. We set

!
k() :/ o(z,0) 2 dr, o> 0.
0

k is called the characteristic function of p and the
correspondence p € M — & is called Krein’s corre-
spondence. Let K be the set of functions « on (0, 00)
such that

k(a) = c+/[0m)(a+/\) do(N), «a>0,

for some ¢ > 0 and some nonnegative Borel measure
o on [0,00) satisfying f[O,oo)(l + ) do(N) < oo. Tt
is well known that Krein’s correspondence is a one
to one map from M onto K (see [4], e.g.). From now
on we denote by p€ M — k€K Krein’s corre-
spondence. In [5] Kasahara proved the following
asymptotic theorem on Krein’s corespondence,
where 0 < p < 1, L(z) and K(z) are slowly varying
functions satisfying (27), and Cs(p) = p/{T'(1 —
p)C2(p)}-

Theorem 6 ([5]). peM kel and |=
oo. Then the following (30), (31) and (32) are
equivalent each other.

(30)  p(x) ~ 2 VPL(z) asx — oo [z —0).
(31) k() ~ Cs(p)a " K(1/a)

asa — 0 [a — o).
(32)  o(A) ~ {Cs(p)/T()T(2 = p)IN 'K (1/A)

as A—0 [\ — oof.

Now we show Theorem 5.

Proof of Theorem 5. Assume (A2) [resp.
(A3)]. Since m € M, there is the characteristic
function k € K such that m < k. By means of
Theorem 6, x(a) satisfies (31). As we saw in
Lemma 3 of [7], 1/ax(a) € K and the corresponding
spectral measure do.(A\) coincides with do®(X\)/A
for A>0 and 0.({0}) =0. Noting 1/ax(a)~
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Cs(p) 'a 1 /K(1/a) as a — 0 [resp. o — 00|, and
the relation between (31) and (32), we get
0.\ ~ {T(1 = pIT(1 + p)Cy ()} N /K (1/2)
as A — 0 [resp. A — o0,
and hence
p
o’(A) = / Edo, (&) ~
(M) o ©) )

as A — 0 [resp. A — o0].

Aoy ()

Thus we obtain
/ e Mdo®(\) ~ Co(p)t K ()™
(0,00)

as t— oo [resp. t — 0].

Combining this with (10), we obtain (29). O

3. Inverse local time of harmonic trans-
formed diffusion processes. In this section we
consider inverse local times of harmonic trans-
formed diffusion processes and the corresponding
Lévy measure densities. Let Dy, and D, be
diffusion processes on I as in Section 1. For both
diffusion processes we pose the absorbing boundary
condition at ls whenever it is regular, that is,
[s(l2)] + [m(l2)] < .

For >0, let h be a positive continuous
function on I satisfying Gs,,h = Bh. We set

w(@) = [ ) st
7%@:%¥ﬁ@dww

where ¢y € I is fixed arbitrarily. Let us consider a
harmonic transformed diffusion process on I whose
generator is given by Gj, n, . It is known that h(z) is
represented as a linear combination of g;(x,3) (i =
1,2) such that g;(z, 8) is positive and continuous in
x, gi1(z,B) is nondecreasing in z, go(x,3) is non-
increasing in =z, g¢;(l;,8) =0 if |s(l;)] < oo, and
Gsmgi = Bg;. Note that there exist such functions
9:(,8), i =1,2 ([3]). In the following we set

(33) h(z) = Bigi(z, B) + Baga(z, B),

where By >0, By >0. Since ¢((l;,8) =0, (33)
implies h(ly) € (0,00), and by virtue of Theorem 1.1
of [8], |sn(l1)| + |mn(l1)] < oo, that is, I; is regular
for harmonic transformed diffusion processes. Let
D}, ., = [X(1), P¥] [resp. D, ,, = [X(t),P}]] the

one dimensional diffusion process on I with Gj, ,,,, as
the generator and with /i being reflecting [resp.
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absorbing]. For both diffusion processes we pose the
absorbing boundary condition at Iy whenever it is
regular, that is, |sp(l2)| + |mp(l2)| < co. We denote
by [7"*)(t), t > 0] the inverse local time of D;, ., at
the end point I;.

We derive the following result from Propo-
sition 1, Theorem 1.1 of [8] and Theorem 3.2 of [9].

Theorem 7. The Laplace transform of the
distribution of [t"(t), t >0] is given by the
following

(34) EI [e*f”’*(ﬂ

= eXP{’Yh*t - t/w(l —e M) (g dﬁ},

0
he 0 if B1 =0,

(35 "= { 1/{sn(l2) = sn(l1)} if By >0,

(36)  n"(&) = (Baga(ln, B))Pe 07 (€),

where Eﬁ* stands for the expectation with respect to
Pl and n*(€) is given by (4).

We should note that n/* is independent of B;.

Finally we study asymptotic behavior of Lévy
measure density n"*(£). Assume that D = satisfies
one of (Al), (A2) and (A3). We might suppose
that the asymptotic behavior of n*(¢) depends on
those of s,(x) and my(x) as © — Iy, and hence that
of h(z) as x — l. However the asymptotic behavior
of n*(¢) is given by a quite simple form n*(&)
multiplied by e .

Theorem 8. Assume one of (A1), (A2) and
(A3). Let h be given by (33). Then (34), (35) and
(36) hold. In particular, the asymptotic behavior of
Lévy measure density n"* is given by (36) with n*(£)
satisfying (28) [resp. (29)] if (A1) [resp. (A2) or
(A3)] is satisfied.
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