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Abstract: For any abelian variety A over a number field, we construct an extension of the

Tate-Shafarevich group by the Bloch-Tamagawa space using the recent work of Lichtenbaum

and Flach. This gives a new example of a Zagier sequence for the Selmer group of A.
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Introduction. Let A be an abelian variety

over a number field F and A_ its dual. Birch and

Swinnerton-Dyer, interested in defining the

Tamagawa number �ðAÞ of A, were led to their

celebrated conjecture [2, Conjecture 0.2] for the L-

function LðA; sÞ (of A over F ) which predicts both

its order r of vanishing and its leading term cA at

s ¼ 1. The difficulty in defining �ðAÞ directly is that

the adelic quotient AðAF Þ
AðF Þ is Hausdorff only when

r ¼ 0, i.e., AðF Þ is finite. Bloch [2] has introduced a

semiabelian variety G over F such that GðF Þ is

discrete and cocompact in GðAF Þ [2, Theorem 1.10]

and famously proved [2, Theorem 1.17] that the

Tamagawa number conjecture (4) for G is equiv-

alent to the Birch-Swinnerton-Dyer conjecture for

A over F . Observe that G is not a linear algebraic

group.

The aim of this short note is to indicate a

functorial construction of a locally compact group

YA given as

0! XA ! YA !ШðA=F Þ ! 0;ð1Þ

an extension of ШðA=F Þ by XA. The compactness

of YA is clearly equivalent to the finiteness of

ШðA=F Þ. This would be straightforward if GðLÞ
were discrete in GðALÞ for all finite extensions L of

F . But this is not true (Lemma 4):

GðALÞ
GðLÞ

is not Hausdorff in general.

The very simple idea for the construction of YA
is: Yoneda’s lemma. Namely, consider the category

of topological G-modules as a subcategory of the

classifying topos BG of G (continuous cohomology

of a topological group G, as in S. Lichtenbaum [10],

M. Flach [5]).

D. Zagier [18] has pointed out that the Selmer

groups SelmðA=F Þ (5) can be obtained from certain

two-extensions (6) of ШðA=F Þ by AðF Þ; these we

call Zagier sequences. We show how YA provides

a new natural Zagier sequence. In particular, this

shows that YA is not a split sequence.

Bloch’s construction has been generalized to

one-motives; it led to the Bloch-Kato conjecture on

Tamagawa numbers of motives [3]; it is also closely

related to Scholl’s method of relating non-critical

values of L-functions of pure motives to critical

values of L-functions of mixed motives [9, p. 252]

[13, 14].

Notations. We write A ¼ Af �R for the

ring of adeles over Q; here Af ¼ Ẑ�Z Q is the ring

of finite adeles. For any number field K, we let OK
be the ring of integers, AK denote the ring of adeles

A�Q K over K; write IK for the ideles. Let �F be a

fixed algebraic closure of F and write � ¼ Galð �F=F Þ
for the Galois group of F . For any abelian group P

and any integer m > 0, we write Pm for the

m-torsion subgroup of P . A topological abelian

group is Hausdorff.

Construction of YA. This will use the con-

tinuous cohomology of � via classifying spaces [10, 5]

to which we refer for a detailed exposition.

For each field L with F � L � �F , the group

GðALÞ is a locally compact group. If L=F is Galois,

then

GðALÞGalðL=F Þ ¼ GðAF Þ:

So
E ¼ lim

!
GðALÞ;
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the direct limit of locally compact abelian groups, is

equipped with a continuous action of � ¼ �F . The

natural map

E :¼ Gð �F Þ ,! E

is �F -equivariant. Though the subgroup GðF Þ �
GðAF Þ is discrete, the subgroup

E � E

fails to be discrete; this failure happens at finite

level (see Lemma 4 below). The non-Hausdorff

nature of the quotient

E=E

directs us to consider the classifying space/topos.

Let Top be the site defined by the category of

(locally compact) Hausdorff topological spaces with

the open covering Grothendieck topology (as in the

‘‘gros topos’’ of [5, §2]). Any locally compact abelian

group M defines a sheaf yM of abelian groups on

Top; this (Yoneda) provides a fully faithful embed-

ding of the (additive, but not abelian) category Tab

of locally compact abelian groups into the (abelian)

category T ab of sheaves of abelian groups on Top.

Write T op for the category of sheaves of sets on Top

and let y : Top! T op be the Yoneda embedding. A

generalized topology on a given set S is an object F

of T op with F ð�Þ ¼ S.

For any (locally compact) topological group G,
its classifying topos BG is the category of objects F

of T op together with an action yG� F ! F . An

abelian group object F of BG is a sheaf on T op,
together with actions yGðUÞ � F ðUÞ ! F ðUÞ, func-

torial in U ; we write HiðG; F Þ (objects of T ab) for

the continuous/topological group cohomology of G
with coefficients in F . These arise from the global

section functor

BG! T ab; F 7! FyG:

Details for the following facts can be found in [5, §3]

and [10].

(a) (Yoneda) Any topological G-module M pro-

vides an (abelian group) object yM of BG; see

[10, Proposition 1.1].

(b) If 0!M ! N is a map of topological G-mod-

ules with M homeomorphic to its image in N,

then the induced map yM ! yN is injective

[5, Lemma 4].

(c) Applying Propositions 5.1 and 9.4 of [5] to the

profinite group � and any continuous �-mod-

ule M provide an isomorphism

Hið�; yMÞ ’ Hi
ctsð�;MÞ

between this topological group cohomology

and the continuous cohomology (computed

via continuous cochains). This is also proved

in [10, Corollary 2.4].

For any map f : M ! N of topological abelian

groups, the cokernel of yf : yM ! yN is well-

defined in T ab even if the cokernel of f does not

exist in Tab. If f is a map of topological G-modules,

then the cokernel of the induced map yf : yM !
yN, a well-defined abelian group object of BG, need

not be of the form yP .

The pair of topological �-modules E ,! E gives

rise to a pair yE ,! yE of objects of B�. Write Y
for the quotient object yE

yE . As E=E is not Hausdorff

(Lemma 4), Y is not yN for any topological

�-module N.

Definition 1. We set YA ¼ H0ð�;YÞ 2 T ab.
Our main result is the

Theorem 2.

(i) YA is the Yoneda image yYA of a Hausdorff

locally compact topological abelian group YA.

(ii) XA is an open subgroup of YA.

(iii) The group YA is compact if and only if

ШðA=F Þ is finite. If YA is compact, then the index of

XA in YA is equal to #ШðA=F Þ.
As ШðA=F Þ is a torsion discrete group, the

topology of YA is determined by that of XA.

Proof of Theorem 2. The basic point is the

proof of (iii). From the exact sequence

0! yE ! yE! Y ! 0

of abelian objects in B�, we get a long exact

sequence (in T ab)
0! H0ð�; yEÞ ! H0ð�; yEÞ !

! H0ð�;YÞ ! H1ð�; yEÞ !j H1ð�; yEÞ ! � � � :
We have the following identities of topological

groups: H0ð�; yEÞ ¼ yGðF Þ and H0ð�; yEÞ ¼
yGðAF Þ. Thus, it suffices to identify KerðjÞ as

yШðA=F Þ. Let E� denote E endowed with the

discrete topology; the identity map on the under-

lying set provides a continuous �-equivariant map

E� ! E. Since E is a discrete �-module, the

inclusion E ! E factorizes via E�. By item (c)

above, KerðjÞ is isomorphic to the Yoneda image

of the kernel of the composite map
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H1
ctsð�; EÞ !

j0

H1
ctsð�;E�Þ !k H1

ctsð�;EÞ:

Since E and E� are discrete �-modules, the map j0

identifies with the map of ordinary Galois cohomol-

ogy groups

H1ð�; EÞ !j
00

H1ð�;E�Þ:
The traditional definition [2, Lemma 1.16] of

ШðG=F Þ is as Kerðj00Þ. As

ШðA=F Þ ’ШðG=F Þ

[2, Lemma 1.16], to prove Theorem 2, all that

remains is the injectivity of k. This is straightfor-

ward from the standard description of H1 in terms

of crossed homomorphisms: if f : �! E� is a

crossed homomorphism with kf principal, then

there exists � 2 E with f : �! E satisfies

fð�Þ ¼ �ð�Þ � � � 2 �:

This identity clearly holds in both E and E�. Since

the �-orbit of any element of E is finite, the left

hand side is a continuous map from � to E�. Thus, f

is already a principal crossed (continuous) homo-

morphism. So k is injective, finishing the proof of

Theorem 2. �

Remark 3. The proof above shows: If every

element of a topological �-module N has open

stabilizer, then the natural map H1ð�; N�Þ !
H1ð�; NÞ is injective.

Bloch’s construction of G [2, 11]. Write

A_ðF Þ ¼ B� finite. By the Weil-Barsotti formula,

Ext1
F ðA;GmÞ ’ A_ðF Þ:

Every point P 2 A_ðF Þ determines a semi-abelian

variety GP which is an extension of A by Gm. Let G

be the semiabelian variety determined by B:

0! T ! G! A! 0;ð2Þ

an extension of A by the torus T ¼ HomðB;GmÞ.
The semiabelian variety G is the Cartier dual

[4, §10] of the one-motive

½B! A_�:

The sequence (2) provides (via Hilbert Theorem 90)

[2, (1.4)] the following exact sequence

0!
T ðAF Þ
T ðF Þ !

GðAF Þ
GðF Þ !

AðAF Þ
AðF Þ ! 0:ð3Þ

It is worthwhile to contemplate this mysterious

sequence: the first term is a Hausdorff, non-compact

group and the last is a compact non-Hausdorff

group, but the middle term is a compact Hausdorff

group!

Lemma 4. For any field L with F � L � �F ,

the group GðLÞ is a discrete subgroup of GðALÞ if

and only if AðKÞ � AðLÞ is of finite index.

Proof. Pick a subgroup C ’ Zs of A_ðLÞ such

that B� C has finite index in A_ðLÞ. The Bloch

semiabelian variety G0 over L determined by B� C
is an extension of A by T 0 ¼ HomðB� C;GmÞ. One

has an exact sequence 0! T 00 ! G0 ! G! 0 de-

fined over L where T 00 ¼ HomðC;GmÞ is a split

torus of dimension s. Consider the commutative

diagram with exact rows and columns

:

The proof of surjectivity in the columns follows

Hilbert Theorem 90 applied to T 00 [2, (1.4]). The

Bloch-Tamagawa space X0A ¼
G0ðALÞ
G0ðLÞ for A over L is

compact and Hausdorff; its quotient by

T 00ðALÞ
T 00ðLÞ ¼

IL

L�

� �s

is GðALÞ
GðLÞ . The quotient is Hausdorff if and only if

s ¼ 0. �

A more general form of Lemma 4 is implicit

in [2]: For any one-motive ½N !� A_� over F , write V

for its Cartier dual (a semiabelian variety), and put

X ¼ V ðAF Þ
V ðF Þ

:

Then X is compact if and only if Kerð�Þ is finite; X

is Hausdorff if and only if the image of � has finite

index in A_ðF Þ.
Tamagawa numbers. Let H be a semisimple

algebraic group over F . Since HðF Þ embeds dis-

cretely in HðAF Þ, the adelic space XH ¼ HðAF Þ
HðF Þ is
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Hausdorff. The Tamagawa number �ðHÞ is the

volume of XH relative to a canonical (Tamagawa)

measure [15]. The Tamagawa number theorem [8, 1]

(which was formerly a conjecture) states

�ðHÞ ¼
#PicðHÞtorsion

#ШðHÞð4Þ

where PicðHÞ is the Picard group and ШðHÞ the

Tate-Shafarevich set of H=F (which measures the

failure of the Hasse principle). Taking H ¼ SL2

over Q in (4) recovers Euler’s result

�ð2Þ ¼
�2

6
:

The above formulation (4) of the Tamagawa

number theorem is due to T. Ono [12, 17] whose

study of the behavior of � under an isogeny explains

the presence of PicðHÞ, and reduces the semisimple

case to the simply connected case. The original form

of the theorem (due to A. Weil) is that �ðHÞ ¼ 1 for

split simply connected H. The Tamagawa number

theorem (4) is valid, more generally, for any

connected linear algebraic group H over F . The

case H ¼ Gm becomes the Tate-Iwasawa [16, 7]

version of the analytic class number formula: the

residue of the zeta function �ðF; sÞ is the volume of

the (compact) unit idele class group J1
F of F .

Zagier extensions [18]. The m-Selmer group

SelmðA=F Þ (for m > 0) fits into an exact sequence

0! AðF Þ
mAðF Þ

! SelmðA=F Þ !ШðA=F Þm ! 0:ð5Þ

D. Zagier [18, §4] has pointed out that while the

m-Selmer sequences (5) (for all m > 1) cannot be

induced by a sequence (an extension of ШðA=F Þ by

AðF Þ)
0! AðF Þ ! ?!ШðA=F Þ ! 0;

they can be induced by an exact sequence of the

form

0! AðF Þ ! A! S !ШðA=F Þ ! 0ð6Þ

and gave examples of such (Zagier) sequences.

Combining (1) and (3) above provides the following

natural Zagier sequence

0! AðF Þ ! AðAF Þ !
YA

T ðAF Þ
!ШðA=F Þ ! 0:

Write AðA �F Þ for the direct limit of the groups

AðALÞ over all finite subextensions F � L � �F . The

previous sequence discretized (neglect the topology)

becomes

0! AðF Þ ! AðAF Þ !
AðA �F Þ
Að �F Þ

� ��

!ШðA=F Þ ! 0:

Remark 5. (i) For an elliptic curve E over

F , Flach has indicated how to extract a canonical

Zagier sequence via �	1�
2R�ðSet;GmÞ from any

regular arithmetic surface S ! SpecOF with

E ¼ S �SpecOF SpecF .

(ii) It is well known that the class group

PicðOF Þ is analogous to ШðA=F Þ and the unit

group O�F is analogous to AðF Þ. Iwasawa [6, p. 354]

proved that the compactness of J1
F is equivalent to

the two basic finiteness results of algebraic number

theory: (i) PicðOF Þ is finite; (ii) O�F is finitely

generated. His result provided a beautiful new proof

of these two finiteness theorems. Bloch’s result

[2, Theorem 1.10] on the compactness of XA uses

the Mordell-Weil theorem (AðF Þ is finitely gener-

ated) and the non-degeneracy of the Néron-Tate

pairing on AðF Þ � A_ðF Þ (modulo torsion).

Question 6. Can one define directly a space

attached to A=F whose compactness implies the

Mordell-Weil theorem for A and the finiteness of

ШðA=F Þ?
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