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A simple proof of convolution identities of Bernoulli numbers
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Abstract:

T. Agoh and K. Dilcher proved convolution identities of Bernoulli numbers in

2007. Their proof was complicated calculations in more than 10 pages, which were based on the
relation between the Stirling numbers of second kind and the Bernoulli numbers. In this short
paper, we give a simple proof of it. Essentially, the proof is based on just one formula on a new

kind of generating function.
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(i.e., we use the convention By = — %) In this paper

(which is based on a letter to Noriyuki Otsubo in
March/2014), we give a simple proof of the follow-
ing identity due to Agoh and Dilcher:

Theorem 0.1. Let [,m,n be non-negative
integers. Put

1 if n,m>0,

Gpm=0:=4 0 if (n=0,m#0) or (n#0,m=0),
-1 if n=m=0.

Then, we have
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Let X denote a new indeterminate, and put
D= %. We consider a new kind of generating
function, i.e., a generating function (with respect
to the derivatives) of the generating function of
Bernoulli numbers:

F(X) = FIFOIX) = 32 DY) = flt 4 X),
n>0 :

where the last equality comes from Taylor’s ex-

pansion.

This new kind of generating function seems
useful. For example, if we substitute ¢t + X for ¢
in classical Buler’s quadratic relation f(t)* =
—tDf(t) — (t —1)f(t), then we have f(t+ X)*=
~(t+X)Dft+X) - t+ X -Df(t+X), e,
F(X)*=—(t+ X)DF(X) — (t+ X —1)F(X). When
we compare the coefficients of X! (resp. X? etc.), we
obtain 2fD(f) = —tD*(f) — D(f) - (t — )D(f) — f
(resp.  (D()*+ fD*(f) = =4 D*(f) — D*(f) -
ELD*(f) — D(f) etc.), which gives us quadratic
relations among Bernoulli numbers other than
Euler’s one, etc.

In this short paper, we give a simple proof of
the convolution identity of Agoh-Dilcher [AD] in
2007 by wusing this generating function (their
original proof was complicated calculations in more
than 10 pages, which were based on the relation
between the Stirling numbers of second kind and
the Bernoulli numbers).

Proof. The formula (1) is derived just from the
following single key identity:
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By this identity, we have
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We compare the coefficients of
(2). By noting

f(=X+Y)-1 Bi (=X +Y)
( ) -y ( )
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Again, we compare the coefficients of % in this
identity. Then, we obtain the formula (1). O
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